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There existe well-motivated theories beyond the SM, providing DM
candidates at the EW scale:

* SUSY with R-parity: LSP
* Little Higgs with T-parity
* Extra dimensions with K-parity: LKP

Weak cross-sections gives rougly the right density
for thermal WIMPs —'"The WIMP Miracle'
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There existe well-motivated theories beyond the SM, providing DM
candidates at the EW scale:

* SUSY with R-parity: LSP
* Little Higgs with T-parity
* Extra dimensions with K-parity: LKP

Weak cross-sections gives rougly the right density
for thermal WIMPs - '"The WIMP Miracle'

We assume a particle-physics model independent- framework
generic WIMP with mass m ,

annihilation cross-section <ov>
and annihilating into a given 2 SM particles final state.
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* Collider searches

Missing energy
(Tevatron, LHC, ILC, CLIC...)

* Direct detection |

Nuclear recoil produced by DM elastic scattering
(Xenon, CDMS, Edelweiss, DAMA/LIBRA, CoGent, CRESST...)

E Indirect detecion
Observation of annihilation/decay products

3 Gamma-rays telescopes
(Fermi, EGRET, Hess, Magic, Veritas...)

- Antimatter experiments
(Pamela, AMS-02, Heat, Bess...)

- Neutrino detectors
(lceCube, Antares, Amanda, Super-Kamiokande...)
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E Indirect detecion
Observation of annihilation/decay products

r Gamma-rays telescopes
(Fermi, EG )
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The differential intensity of the gamma-ray signal
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The differential intensity of the gamma-ray signal

Prompt gamma-rays produced by

annihilation of DM patrticles:
AQ (ov) d J"r‘

4T 2m3 — dE., ’
i i

(‘ ) (B, AQ) = Re p2 T(Q) 52 222 7 g, 22

' LiE-:,- 4 prompt
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The differential intensity of the CEININEREVAI[iEL

Prompt gamma-rays produced by
annihilation of DM particles:

AY (00) 5~
_ 1 ) B l;a}_ r
AT 2my " dE.

( rfE: ) l"E i A ) R @ Pe ’Tl. )

f /7 prompt

* Particle physics:

m dark matter mass ,
<ov> thermally averaged annihilation cross section
Br branching ratio into photons for the i-th annihilation channel

dN/dE differential gamma ray yield of SM particles into photons
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We assume DM annihilates into 2 SM particles and use Pythia.
Bl\Y Wl Dol €, L

DM We b, e, L.,
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We assume DM annihilates into 2 SM particles and use Pythia.
DM Wil €, L e e D D.

DM WeeZb 1 e, 1. | e e, p,p...
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We assume DM annihilates into 2 SM particles and use Pythia.
Here only prompt photons are shown

DM WD o, b v

DM WeeZ Bl et T Y

CET Soft
channels z"‘ channels

10 100 0. 10 100
E_r, [GeV]

By S. Palomares-Ruiz & JM Siegal-Gaskins arXiv:1003.1142
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The differential intensity of the gamma-ray signal

Prompt gamma-rays produced by
annihilation of DM patrticles:

0 — AD _ d _'h‘vr.j:.
Re p2 T(Q) — F—L N "BR; —L .
‘o Pe 35) 47 P :rnl — ' dE., -

/ df) / p(r(s,Q)) * ds
O 'T-':'-'_.: J AN < los ) o

p(r) dark matter density profile
p, local DM density

R, distance Sun - galactic center

AQ solid angle of the ROI
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From N-body simulations

NFW profile (via Lactea II) Einasto profile (Aquarius)
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The differential intensity of the gamma-ray signal

™ (B, A0) = ( ddy

dE, o +(; ]

NaE ) od (ﬁ dE,

dE-

/ prompt 4 bremsstrahlung 4 synchrotron

* Gamma-rays from Inverse Compton Scattering:

- Electrons/Positrons propagate in the ISM

DM M=o Z 0D e et e e

DM We Zib. et e, e
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af 5 0
diffusion energy loss

Nicolas BERNAL

Uni Bonn

0
il g(mf) — Qinj — Qhﬁ(Z)Fspallf

convective wind source spallations
borrowed from
M. Cirelli
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The differential intensity of the gamma-ray signal

dd, (4., ., N ( dd, ]

dE g

—(E,, AQ) = [_) A& :_(

dE-, dE, dE,

/' prompt 4 bremsstrahlung 4 synchrotron

* Gamma-rays from Inverse Compton Scattering:

- Gamma-rays production via ICS off the ambient photon background
(CMB, Star light, IR...)

DM YW Z. b, e, b e’, e

DM WLZ b, et e, e
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The differential intensity of the gamma-ray signal

( dd.,

 AE

i 1 't 5
4 bremsstrahlung VT synchrotron

* Bremsstrahlung is due to particle interaction with the ISM,
subdominant with respect to the prompt photons and ICS

* The gamma-ray synchrotron signal lies at radio frequencies
(at least for typical WIMP DM masses) irrelevant
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Important contribution from ICS at low energies!

v N
10°°

XA = WW

Prompt
ICS ——

10 10
E, [GeV] E, [GeV]

NB and S Palomarez-Ruiz arXiv:1006.0477
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Fermi Science Tools (version v9r23p1)

Signal |
* Compute the signal

* We generate photon events according
to the instrument response function: gtobssim
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* Diffuse galactic emission:

gll_iem v02 P6 V11 DIFFUSE.fit (Recommended by the Fermi coll.)
Pions decay
Bremsstrahlung fi
Inverse Compton scattering of CR
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* Diffuse galactic emission:
gll_iem v02 P6 V11 DIFFUSE.fit (Recommended by the Fermi coll.)

Pions decay
Bremsstrahlung
Inverse Compton scattering of CR

* Resolved point sources:
AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010

o No association Possible association with nearby SNR or PWN
x AGN - blazar * Starburst Gal % Pulsar % Pulsar w/PWN

x AGN - unknown + Galaxy ® PWN A Globular cluster
X AGN - non blazar O SNR X XRB or MQO

AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010
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* Diffuse galactic emission:
gll_iem v02 P6 V11 DIFFUSE.fit (Recommended by the Fermi coll.)

Pions decay
Bremsstrahlung
Inverse Compton scattering of CR

* Resolved point sources:
AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010

* Isotropic background:

AA Abdo [Fermi-LAT Collaboration],
Phys. Rev. Lett. 104,101101, 2010
iIsotropic_iem _v02 P6 V11.txt
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Fermi Science Tools (version v9r23p1)

Signal |
* Compute the signal

* We generate photon events according
to the instrument response function: gtobssim

- Background (data from Fermi-LAT)
* Download raw data
* Apply cuts on energy, position and time: gtselect + gtmktime
August 4, 2008 to July 12 2011
20°x20° Centered in the GC (RA=266.46°, Dec=-28. 97°)
* binned likelihood of the data: gtlike

(normalizations free)
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NB and S Palomares-Ruiz, arXiv:1006.0477
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* \We consider the energy range [1 300] GeV
20 energy bins

* We select an 'optimal' angular window

* We add the ICS contribution to the DM-induced
gamma-ray spectrum: crucial for some cases

* We use the latest Fermi measurements for
the background around the GC

* We evaluate Fermi abilities to constrain DM propertles |
annihilation cross section, mass
and dominant annlhllatlon channels

* We evaluate Fermi abilities to constraint DM density profile
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Significance of the signal: S/N
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b (deg) Angle [deg]
PD Serpico and G Zaharijas TE Jeltema and S Profumo
Astropart. Phys. Rev. D 69 (2004) JCAP 0811:003, 2008

Nicolas BERNAL Uni Bonn



Significance of the signal: S/N
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5 75 10 125 15

b (deg) Angle [deg]
PD Serpico and G Zaharijas - TE Jeltema and S Profumo
Astropart. Phys. Rev. D 69 (2004) JCAP 0811:003, 2008

Our selection:
10 degrees
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* With Colliders

G. Polesello and D. R. Tovey, JHEP 05:071, 2004

N. M. Nojiri, G. Polesello and D. R. Tovey, JHEP 03:063, 2006

E. A. Baltz, M. Battaglia, M. E. Peskin and T. Wizansky, Phys. Rev. D74:103521, 2006

G. Bélanger, O. Kitter, S. Kraml, H. U. Martyn and A. Pukhov, Phys. Rev. D78:015011, 2008

R. L. Arnowitt, B. Dutta, A. Gurrola,’ T. Kamon, A. Krislock and D. Toback, Phys. Rev. Lett. 100:231802, 2008
B. Altunkaynak, M. Holmes and B. D. Nelson, JHEP 10:013, 2008...

* With Direct Detection

A. M. Green, JCAP 0708:022, 2007 and JCAP 0807:005, 2008

G. Bertone, D. G. Cerdefio, J. I. Collar and B. C. Odom, Phys. Rev. Lett. 99:151301, 2007
M. Drees, C.-L. Shan, JCAP 0806:012, 2008

L. E. Strigari and R. Trotta, JCAP 0911:019, 2009

A. H. G. Peter, Phys. Rev. D81:087301, 2010

Y.-T. Chou and C.-L. Shan, JCAP 1008:014, 2010

J. Billard, F. Mayet, D. Santos Phys.Rev. D83 (2011) 075002...

~* With Neutrinos from the Sun

J. Edsjo and P. Gondolo, Phys. Lett. B357:595, 1995

M. Cirelli, N. Fornengo, T. Montaruli, |. Sokalski, A. Strumia and F. Vissani, Nucl. Phys. B727:99, 2005
O. Mena, S. Palomares-Ruiz and S. Pascoli, Phys. Lett. B664:92, 2008

A. Esmalll Y. Farzan JCAP 1104 (2011) 007

- C.R. Das, O. Mena, S. Palomarez-Ruiz, S. Pascoli arXiv:1110. 5095

* With Gamma-Rays

S. Dodelson, D. Hooper and P. D. Serpico, Phys. Rev. D77:063512, 2008
T. E. Jeltema and'S. Profumo, JCAP 0811:003, 2008

S. Palomares-Ruiz and J. Siegal-Gaskins, JCAP 07:023, 2010

NB and S. Palomares-Ruiz, arXiv:1006.0477 and arXiv:1103.2377...

* With a Combination

NB, A. Goudelis, Y. Mambrini and C.Mufioz, JCAP 0901:046, 2009
G. Bertone, D. G. Cerdefio, M. Fornasa, R. R. Austri and R. Trotta, Phys. Rev. D82:055008, 2010
G. Bertone, D.G. Cerdeno, M. Fornasa, L. Pieri, R.Ruiz de Austri, R. Trotta arXiv:1111:2607...
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: 202 x 202 around the GC
* DM profile: NFW
"<ov>=3 10< Ch: {s

* Propagation model: MED

* 5 years data taking-

i “Real data”. T* T pairs

* Signal reconstructed with T T and bb pairs

* DM density profile known
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m =80 GeV

(oVv) [cm3 s'l]
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NB and S Palomares-Ruiz, arXiv:1006.0477
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T 80 GeV = 270 GeV
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Data:- 1t T Data: bb
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m =105 GeV m =125 GeV
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M = 50 GeV I = 105 GeV

100%
il 20 40 60 80 100 20 40 60 80 100
R BR, [%] BR () [%]
100%
bb 100 100

[GeV] [GeV]
NB and S Palomares-Ruiz, arXiv:1006.0477
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M = 50 GeV I = 105 GeV
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NB and S Palomares-Ruiz, arXiv:1006.0477
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MED with MED
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* We consider the energy range [1, 300] GeV
- 20 energy bins

* 10 concentric 12 x 12 angular bins around the GC
* 5 years data taking

*<gv>=3 10% cm3/s |
“‘Real data”. b b pairs

* DM profile: Einasto or-NFW
p, = 0.4 GeViem’

R,= 8.3 kpc
Q. =105 r. = 20 kpc

* Signal reconstructed with T T and b b pairs

* Background error: statical + systematics (normalization)
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DM properties...

NB and S Palomares-Ruiz, arXiv:1006.0477
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DM properties...

{oV) [cm3 s'l]

20 40 60 80 100

BR,y, [%]

100
m, [GeV]

NB and S Palomares-Ruiz, arXiv:1103.2377
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DM properties...
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BRyy [%] flux normalization
proportional to
<ov> and J(q, Py Fs)

NB and S Palomares-Ruiz, arXiv:1103.2377
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DM properties... and DM density profile
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NB and S Palomares-Ruiz, arXiv:1103.2377
3

p(r) = po exp | ——
!
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DM properties... and DM density profile
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NB and S Palomares-Ruiz, arXiv:1103.2377
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DM properties... and DM density profile

{oV) [cm3 s'l]
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o

100
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NB and S Palomares-Ruiz, arXiv:1103.2377
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So far, we have shown results by just using gamma-rays observations

However...
Local DM density:

p,= 0.39 = 0.03 GeV/cm? (Catena & Ullio '09)
p,= 0.40 £ 0.04 GeV/cm?® (McMillan '11)

p, determined with an error of 50% or 10%

Annihilation cross section:

<ov> could be determined within
an order of magnitude at 3c  (Baltz et al '06)
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* <gv> is determined within an order of magnitude at 3o
* p, determined with an error of 50% or 10%
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NB and S Palomares-Ruiz, arXiv:1103.2377
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* Without priors
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* <gv> is determined within an order of magnitude at 3o
* p, determined with an error of 50% or 10%
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NB and S Palomares-Ruiz, arXiv:1103.2377

Nicolas BERNAL Uni Bonn



Ui O e e A R ' . .

Nicolas BERNAL



* We consider the NFW density profile
determined by the parameters p. and

* It's convenient to rewrite these parameters using
the virial mass and the concentration parameter
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* We consider the NFW density profile
determined by the parameters p. and

* It's convenient to rewrite these parameters using
the virial mass and the concentration parameter

* Structural properties of DM halos depend on the halo mass

z=0.00
z=0.23
_ : 2=0.38
At z=0 and for relaxed halos: T =112
y —0.097 ) S
I || e ( Myir ) :
e h1Mg
This eq. represents the mean 06
concentration for a given M__ o5
i A 10 10,5 11 11.5 12 125 13 135 14
MW could be a quite atypical galaxy!! loz v v

R e
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“p, = 0.4 GeVicm® & r, =20 kpc (M, =1.610” M, , c, = 15.2)
(PJ McMillan '11)
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*p,=0.4 GeVicm® & r_ =20 kpc (M =116102M_, ¢ =152)
(PJ McMillan '11)
No priors Priors over <ov> and p,

12 12
My; [1077"M] My [1077 Mg]

NB and S Palomares-Ruiz, arXiv:1103.2377
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*M,,,(60 kpc) =4 10" M, , p,= 0.4 GeV/cm? r. = 10 kpc

(SDSS Collab. Xue et al '08)
No priors Priors over <ov> and p

1.5 2 25

12 12
My; [1077"M] My [1077 Mg]

NB and S Palomares-Ruiz, arXiv:1103.2377
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* \We have studied the abilities of Fermi-LAT, by using current ebservation of
gamma-rays from the GC, to constrain some DM properties as annihilation
cross section, mass and branching ratio into dominant annihilation channels

* Conversely, gamma-ray searches could also be used to learn about the
structure of the Milky Way DM halo

* We have studied the effect of astrophysical uncertainties on the
- determination of some DM particle properties --

* We have used the latest Fermi measurements to simulate the galachc
backgrounds -

* we also consider the improvement in these results when -external
information on <ov> and p, is included
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From N-body simulations
NFW profile Einasto profile

ik

") =po—————————————5 — NI} = Po ©Xp | —— — ] —\

Distance Sun - GC

R,= 8.9 kpc old recommendation by the International Astronomical Union '86!

R=7.2 *0.3 Kkpc (Bicaetal'05)
R=8.2 0.5 kpc (Bovy etal'09)
R,=8.33 £ 0.35 kpc (Gillessen et a/'08)
R=8.4 0.6 Kkpc (Reid etal'09)

R.=8.7 +0.5 kpc (Vanhollebeke et al '09)...

we are assuming R = 8.3 kpc as our default value
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*p,=0.3 GeViem® —» r,=386kpc (M _=25102M_,c_=9.2)

VIr

No priors Priors over <ov> and p,

1.5 2

12 12
My; [1077"M] My [1077 Mg]

NB and S Palomares-Ruiz, arXiv:1103.2377
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* We consider.the NFW density profile
determined by the parameters p, and r_

* It's convenient to rewrite these parameters using
the virial mass M __and the concentration parameter c

3M,, Y3
4 ﬂvir Perit

R = |

&\;ir = ].'E:;T‘_ + tﬁj E_.EE]_'”_ - 1] - lj{_’ |:.'i E'["ﬂ - ].I:I :
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From N-body simulations
NFW profile Einasto profile

¥

o |' Rﬁ; I,-"r r, ] [1 _|_ |' Rﬁ; I,."r ry :I 2 o : P ., vk P Rﬂ W (¥
() = po Bl L+ (Ro/ro)l T2 ()" (Be)

(r/rs) [1 + (r/7s)]2 a \\Ts,

. I's

Local DM density:
p,= 0.3 GeV/cm?® it's usually assumed but...
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From N-body simulations
NFW profile Einasto profile

[l

- |' RI..-;_: I,-"r r. ] [1 N |' RI..-;_: I,."r r. :I 0 - 2 1/ 1\ . R:..._..._I NET
plr)=psg ——m———————5— p(r) = pe exp | —— ( — — | = )

Local DM density:
p,= 0.3 GeV/cm?® it's usually assumed but...

p,= 0.32 + 0.07 GeV/cm?® (Strigari & Trotta '09)
p,= 0.39 + 0.03 GeV/cm® (Catena & Ullio '09)
p,= 0.40 + 0.04 GeV/cm® (McMillan '11)

p,= 0.43 £ 0.15 GeV/cm® (Salucci et al '10)
p,=. 06 02 S GEN (e (Gates et al '95)
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From N-body simulations
NFW profile Einasto profile

[l

o (R /rs) [1+ (Re/1s)] 2 o [ 2 [ 1T\" "R )
plr)=psg ————mm——m————— plr) = ps exp | —— ( — | = )

Local DM density:
p,= 0.3 GeV/cm?® it's usually assumed but...

p,= 0.32 + 0.07 GeV/cm?® (Strigari & Trotta '09)
p,= 0.39 + 0.03 GeV/cm® (Catena & Ullio '09)
p,= 0.40 + 0.04 GeV/cm® (McMillan '11)

p,= 0.43 £ 0.15 GeV/cm® (Salucci et al '10)
p,=. 06 02 S GEN (e (Gates et al '95)

we are assuming p = 0.4 GeV/cm? as our default value
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