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Weakly Interacting Massive Particles
There existe well-motivated theories beyond the SM, providing DM       
 candidates at the EW scale:

* SUSY with R-parity: LSP
* Little Higgs with T-parity
* Extra dimensions with K-parity: LKP

Weak cross-sections gives rougly the right density
for thermal WIMPs    – 'The WIMP Miracle'

  
  
 
  
•



Nicolás BERNAL          Uni Bonn

Weakly Interacting Massive Particles
There existe well-motivated theories beyond the SM, providing DM       
 candidates at the EW scale:

* SUSY with R-parity: LSP
* Little Higgs with T-parity
* Extra dimensions with K-parity: LKP

Weak cross-sections gives rougly the right density
for thermal WIMPs    – 'The WIMP Miracle'

We assume a particle-physics model independent-framework: 
generic WIMP with mass mχ ,

   annihilation cross-section <σv>
   and annihilating into a given 2 SM particles final state.
•
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Detecting Dark Matter
* Collider searches

Missing energy
(Tevatron, LHC, ILC, CLIC...)

* Direct detection
Nuclear recoil produced by DM elastic scattering

(Xenon, CDMS, Edelweiss, DAMA/LIBRA, CoGent, CRESST...)

* Indirect detecion
Observation of annihilation/decay products
- Gamma-rays telescopes

(Fermi, EGRET, Hess, Magic, Veritas...)

- Antimatter experiments
(Pamela, AMS-02, Heat, Bess...)

- Neutrino detectors
(IceCube, Antares, Amanda, Super-Kamiokande...)



Nicolás BERNAL          Uni Bonn

Detecting Dark Matter
* Collider searches

Missing energy
(Tevatron, LHC, ILC, CLIC...)

* Direct detection
Nuclear recoil produced by DM elastic scattering

(Xenon, CDMS, Edelweiss, DAMA/LIBRA, CoGent, CRESST...)

* Indirect detecion
Observation of annihilation/decay products
- Gamma-rays telescopes

(Fermi, EGRET, Hess, Magic, Veritas...)

- Antimatter experiments
(Pamela, AMS-02, Heat, Bess...)

- Neutrino detectors
(IceCube, Antares, Amanda, Super-Kamiokande...)

Complementarity between
different detection modes!
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Detecting Dark Matter
* Collider searches

Missing energy
(Tevatron, LHC, ILC, CLIC...)

* Direct detection
Nuclear recoil produced by DM elastic scattering

(Xenon, CDMS, Edelweiss, DAMA/LIBRA, CoGent, CRESST...)

* Indirect detecion
Observation of annihilation/decay products
- Gamma-rays telescopes

(Fermi, EGRET, Hess, Magic, Veritas...)

- Antimatter experiments
(Pamela, Heat, Bess...)

- Neutrino detectors
(IceCube, Antares, Amanda, Super-Kamiokande...)
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Signal and backgrounds
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Gamma­rays: general features

The differential intensity of the gamma-ray signalThe differential intensity of the gamma-ray signal

Prompt gamma-rays produced by
annihilation of DM particles:

* Particle physics:
● m

χ
        dark matter mass

● <σv>    thermally averaged annihilation cross section
● Br

i
        branching ratio into photons for the i-th annihilation channel

● dN/dE  differential gamma ray yield of SM particles into photons
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Gamma­ray spectra from DM annihilation
We assume DM annihilates into 2 SM particles and use Pythia.
 

DM

DM

Primary channels

W+, Z, b, μ-, e-, t...

W-, Z, b, μ+, e+, t...
_ _
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Gamma­ray spectra from DM annihilation
We assume DM annihilates into 2 SM particles and use Pythia.
 

DM

DM

γ, e+, e-, p, p...
_

γ, e+, e-, p, p...
_Primary channels

Decay,
hadronization Final products

W+, Z, b, μ-, e-, t...

W-, Z, b, μ+, e+, t...
_ _
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Gamma­ray spectra from DM annihilation
We assume DM annihilates into 2 SM particles and use Pythia.
Here only prompt photons are shown

 By S. Palomares-Ruiz & JM Siegal-Gaskins  arXiv:1003.1142

Hard
channels

Soft
channels

DM

DM

W+, Z, b, μ-, e-, t...

W-, Z, b, μ+, e+, t...
_ _

γ, e+, e-, p, p...
_

γ, e+, e-, p, p...
_Primary channels

Decay,
hadronization Final products
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Gamma­rays: general features

The differential intensity of the gamma-ray signalThe differential intensity of the gamma-ray signal

Prompt gamma-rays produced by
annihilation of DM particles:

* Astrophysics:

● ρ(r)    dark matter density profile
● ρ

0
       local DM density

● R
0
       distance Sun – galactic center

● ΔΩ     solid angle of the ROI
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DM halo profiles
From N-body simulations

NFW profile  (Via Lactea II) Einasto profile (Aquarius)

Free parameters:      ρ
0
 ,  r

S                                            
ρ

0
 ,  r

S
  and  α
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Gamma­rays: general features

The differential intensity of the gamma-ray signalThe differential intensity of the gamma-ray signal

* Gamma-rays from Inverse Compton Scattering:

- Electrons/Positrons propagate in the ISM

DM

DM

W+, Z, b, μ-, e-, t...

W-, Z, b, μ+, e+, t...
_ _

γ, e+, e-, p, p...
_

γ, e+, e-, p, p...
_Primary channels

Decay,
hadronization Final products
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Gamma­rays: general features

borrowed from
M. Cirelli
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Gamma­rays: general features

The differential intensity of the gamma-ray signalThe differential intensity of the gamma-ray signal

* Gamma-rays from Inverse Compton Scattering:
 

- Gamma-rays production via ICS off the ambient photon background
                     (CMB, Star light, IR...)

DM

DM

W+, Z, b, μ-, e-, t... γ, e+, e-, p, p...
_

γ, e+, e-, p, p...
_Primary channels

Decay,
hadronization Final products

γ γ

W-, Z, b, μ+, e+, t...
_ _
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Gamma­rays: general features

The differential intensity of the gamma-ray signalThe differential intensity of the gamma-ray signal

* Bremsstrahlung is due to particle interaction with the ISM,
      subdominant with respect to the prompt photons and ICS

* The gamma-ray synchrotron signal  lies at radio frequencies
(at least for typical WIMP DM masses)            irrelevant
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Gamma­ray spectra from DM annihilation

Important contribution from ICS at low energies!

NB and S Palomarez-Ruiz arXiv:1006.0477

100 GeV
   1   TeV
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Instrument modelization
Fermi Science Tools (version v9r23p1)

Signal
* Compute the signal
* We generate photon events according
to the instrument response function: gtobssim
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Galactic backgrounds
* Diffuse galactic emission:
gll_iem_v02_P6_V11_DIFFUSE.fit  (Recommended by the Fermi coll.)
     Pions decay
     Bremsstrahlung
     Inverse Compton scattering of CR
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Galactic backgrounds
* Diffuse galactic emission:
gll_iem_v02_P6_V11_DIFFUSE.fit  (Recommended by the Fermi coll.)
     Pions decay
     Bremsstrahlung
     Inverse Compton scattering of CR

* Resolved point sources:
AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010

1451 point sources
resolved at > 4 σ

AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010
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Galactic backgrounds
* Diffuse galactic emission:
gll_iem_v02_P6_V11_DIFFUSE.fit  (Recommended by the Fermi coll.)
     Pions decay
     Bremsstrahlung
     Inverse Compton scattering of CR

* Resolved point sources:
AA Abdo [Fermi-LAT Collaboration],
Astrophys. J supp . 188:405, 2010

* Isotropic  background:
AA Abdo [Fermi-LAT Collaboration],
Phys. Rev. Lett. 104,101101, 2010
isotropic_iem_v02_P6_V11.txt
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Instrument modelization
Fermi Science Tools (version v9r23p1)

Signal
* Compute the signal
* We generate photon events according
to the instrument response function: gtobssim

Background (data from Fermi-LAT)
* Download raw data
* Apply cuts on energy, position and time: gtselect + gtmktime
  August 4, 2008 to July 12 2011
  20ºx20º centered in the GC (RA=266.46º, Dec=-28.97º)
* binned likelihood of the data: gtlike
   (normalizations free)
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Galactic backgrounds

NB and S Palomares-Ruiz, arXiv:1006.0477
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Overview of the analysis
* We consider the energy range [1, 300] GeV
     20 energy bins

* We select an 'optimal' angular window

* We add the ICS contribution to the DM-induced
gamma-ray spectrum: crucial for some cases

* We use the latest Fermi measurements for
the background around the GC

* We evaluate Fermi abilities to constrain DM properties:
      annihilation cross section, mass
      and dominant annihilation channels

* We evaluate Fermi abilities to constraint DM density profile
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Optimal angular window

Significance of the signal: S/N

PD Serpico and G Zaharijas
Astropart. Phys. Rev. D 69 (2004)

TE Jeltema and S Profumo
JCAP 0811:003, 2008
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Optimal angular window

Significance of the signal: S/N

PD Serpico and G Zaharijas
Astropart. Phys. Rev. D 69 (2004)

Our selection:
•               10 degrees

TE Jeltema and S Profumo
JCAP 0811:003, 2008
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Constraining DM properties
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Constraining DM properties
* With Colliders

● G. Polesello and D. R. Tovey, JHEP 05:071, 2004
● N. M. Nojiri, G. Polesello and D. R. Tovey, JHEP 03:063, 2006

E. A. Baltz, M. Battaglia, M. E. Peskin and T. Wizansky, Phys. Rev. D74:103521, 2006
G. Bélanger, O. Kitter, S. Kraml, H. U. Martyn and A. Pukhov, Phys. Rev. D78:015011, 2008
R. L. Arnowitt, B. Dutta, A. Gurrola, T. Kamon, A. Krislock and D. Toback, Phys. Rev. Lett. 100:231802, 2008
B. Altunkaynak, M. Holmes and B. D. Nelson, JHEP 10:013, 2008...

* With Direct Detection
A. M. Green, JCAP 0708:022, 2007 and JCAP 0807:005, 2008
G. Bertone, D. G. Cerdeño, J. I. Collar and B. C. Odom, Phys. Rev. Lett. 99:151301, 2007
M. Drees, C.-L. Shan, JCAP 0806:012, 2008
L. E. Strigari and R. Trotta, JCAP 0911:019, 2009
A. H. G. Peter, Phys. Rev. D81:087301, 2010
Y.-T. Chou and C.-L. Shan, JCAP 1008:014, 2010

● J. Billard, F. Mayet, D. Santos Phys.Rev. D83 (2011) 075002...

* With Neutrinos from the Sun
J. Edsjö and P. Gondolo, Phys. Lett. B357:595, 1995
M. Cirelli, N. Fornengo, T. Montaruli, I. Sokalski, A. Strumia and F. Vissani, Nucl. Phys. B727:99, 2005
O. Mena, S. Palomares-Ruiz and S. Pascoli, Phys. Lett. B664:92, 2008
A. Esmaili, Y. Farzan JCAP 1104 (2011) 007 

● C.R. Das, O. Mena, S. Palomarez-Ruiz, S. Pascoli arXiv:1110.5095...

* With Gamma-Rays
S. Dodelson, D. Hooper and P. D. Serpico, Phys. Rev. D77:063512, 2008
T. E. Jeltema and S. Profumo, JCAP 0811:003, 2008
S. Palomares-Ruiz and J. Siegal-Gaskins, JCAP 07:023, 2010
NB and S. Palomares-Ruiz, arXiv:1006.0477 and arXiv:1103.2377...

* With a Combination
NB, A. Goudelis, Y. Mambrini and C.Muñoz, JCAP 0901:046, 2009
G. Bertone, D. G. Cerdeño, M. Fornasa, R. R. Austri and R. Trotta, Phys. Rev. D82:055008, 2010
G. Bertone, D.G. Cerdeño, M. Fornasa, L. Pieri, R.Ruiz de Austri, R. Trotta arXiv:1111:2607...
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Constraining DM properties: default setup

* 20º x 20º around the GC

* DM profile: NFW

* <σv> = 3  10-26   cm3 / s

* Propagation model: MED

* 5 years data taking

* “Real data”: τ+ τ- pairs

* Signal reconstructed with τ+ τ-  and bb  pairs

* DM density profile known
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Default setup

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 80 GeV

100%
•   τ+τ−

100%
•  bb
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Default setup

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 270 GeVmχ = 80 GeV
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Data: bb

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 270 GeVmχ = 80 GeV
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Dependence on the DM density profile
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Einasto DM profile
m = 270 GeV

NB and S Palomares-Ruiz, arXiv:1006.0477

Data: bbData: τ+ τ- 
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Dependence on systematic errors
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Data: bb
Error background: 20%

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 125 GeVmχ = 105 GeV
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Dependence on the assumed DM model
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Data: μ+ μ­ 

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 105 GeVmχ = 50 GeV

100%
•   τ+τ−

100%
•  bb
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Data: μ+ μ­ 

NB and S Palomares-Ruiz, arXiv:1006.0477

mχ = 105 GeVmχ = 50 GeV

100%
•   τ+τ−

100%
•  bb

when taking into account the ICS to the γ spectrum, the annihilation channels 
cannot be generically classified as hard or soft
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Dependence on the propagation model
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Data: μ+μ­; MIN   Simulated: μ+μ­/bb; MAX
m= 50 GeV

NB and S Palomares-Ruiz, arXiv:1006.0477

MIN with MAXMED with MED
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Constraining DM properties
and the DM density profile
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Default setup
* We consider the energy range [1, 300] GeV
     20 energy bins

* 10 concentric 1º x 1º angular bins around the GC

* 5 years data taking

* <σv> = 3  10-26   cm3 / s
  “Real data”: b b  pairs

* DM profile: Einasto or NFW
  ρ

0
 = 0.4 GeV/cm3

  R
0 
= 8.3 kpc

  α = 0.17        r
S
 = 20 kpc

* Signal reconstructed with τ+ τ-  and b b  pairs

* Background error: statical + systematics (normalization)
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m
χ
 = 80 GeV and Einasto

assuming a known DM profile!

NB and S Palomares-Ruiz, arXiv:1006.0477

DM properties...

ρ
0
 ,  r

S
  and  α
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m
χ
 = 80 GeV and Einasto

DM profile unknown

NB and S Palomares-Ruiz, arXiv:1103.2377

DM properties...

ρ
0
 ,  r

S
  and  α
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m
χ
 = 80 GeV and Einasto

DM profile unknown

NB and S Palomares-Ruiz, arXiv:1103.2377

DM properties...

* Remember:
flux normalization
proportional to
<σv>  and J(α, ρ

0
, r

S
)
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m
χ
 = 80 GeV and Einasto

DM profile unknown

NB and S Palomares-Ruiz, arXiv:1103.2377

and DM density profileDM properties...
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m
χ
 = 25 GeV and Einasto

DM profile unknown

NB and S Palomares-Ruiz, arXiv:1103.2377

and DM density profileDM properties...
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m
χ
 = 25 GeV and Einasto

DM profile unknown

NB and S Palomares-Ruiz, arXiv:1103.2377

and DM density profileDM properties...

Only gamma-rays!



Nicolás BERNAL          Uni Bonn

Constraining DM properties
and the DM density profile,

assuming information on ρ0 and <σv>
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DM halo profiles

So far, we have shown results by just using gamma-rays observations

    However...

               Local DM density:

ρ
0
= 0.39 ± 0.03 GeV/cm3 (Catena & Ullio '09)

ρ
0
= 0.40 ± 0.04 GeV/cm3 (McMillan '11)

ρ
0
 determined with an error of 50%  or  10%        

               Annihilation cross section:

              <σv> could be determined within
                     an order of magnitude at 3σ    (Baltz et al '06)
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m
χ
 = 80 GeV and Einasto

NB and S Palomares-Ruiz, arXiv:1103.2377

* <σv> is determined within an order of magnitude at 3σ
•* ρ

0
 determined with an error of 50%  or  10%
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m
χ
 = 80 GeV and Einasto

NB and S Palomares-Ruiz, arXiv:1103.2377

* Without priors
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m
χ
 = 25 GeV and Einasto

NB and S Palomares-Ruiz, arXiv:1103.2377

* <σv> is determined within an order of magnitude at 3σ
•* ρ

0
 determined with an error of 50%  or  10%
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Constraining DM properties
and the DM density profile:

comparison with N­body simulations
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Comparison with simulations
* We consider the NFW density profile
        determined by the parameters ρ

0
 and r

s

* It's convenient to rewrite these parameters using
        the virial mass  M

vir
 and the concentration parameter c

vir
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Comparison with simulations
* We consider the NFW density profile
        determined by the parameters ρ

0
 and r

s

* It's convenient to rewrite these parameters using
        the virial mass  M

vir
 and the concentration parameter c

vir

* Structural properties of DM halos depend on the halo mass

Muñoz-Cuartas et al '10

At z=0 and for relaxed halos:

This eq. represents the mean 
concentration for a given M

vir

MW could be a quite atypical galaxy!!



Nicolás BERNAL          Uni Bonn

m
χ
 = 25 GeV and NFW

•* ρ
0
 = 0.4 GeV/cm3  &   r

S
 = 20 kpc            (M

vir
 = 1.6 1012 M

Θ
 , c

vir
 = 15.2)

•                                                                                            (PJ McMillan '11)
•                                                           
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m
χ
 = 25 GeV and NFW

NB and S Palomares-Ruiz, arXiv:1103.2377

•* ρ
0
 = 0.4 GeV/cm3  &   r

S
 = 20 kpc            (M

vir
 = 1.6 1012 M

Θ
 , c

vir
 = 15.2)

•                                                                                            (PJ McMillan '11)
•                        No priors                                 Priors over <σv> and ρ

0
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m
χ
 = 25 GeV and NFW

NB and S Palomares-Ruiz, arXiv:1103.2377

•* M
DM

(60 kpc) = 4 1011 M
Θ
  ,  ρ

0
 = 0.4 GeV/cm3                        r

S
 = 10 kpc 

•                                                                                                (SDSS Collab. Xue et al '08)
•                        No priors                                 Priors over <σv> and ρ

0
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Conclusions
* We have studied the abilities of Fermi-LAT, by using current observation of 
gamma-rays from the GC, to constrain some DM properties as annihilation 
cross section, mass and branching ratio into dominant annihilation channels

* Conversely, gamma-ray searches could also be used to learn about the 
structure of the Milky Way DM halo

* We have studied the effect of astrophysical uncertainties on the 
determination of some DM particle properties

* We have used the latest Fermi measurements to simulate the galactic 
backgrounds

* we also consider the improvement in these results when external 
information on <σv> and ρ

0
 is included
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DM halo profiles
From N-body simulations

NFW profile Einasto profile

R
0
= 8.5 kpc  old recommendation by the International Astronomical Union '86!

R
0
= 7.2   ± 0.3   kpc (Bica et al '05)

R
0
= 8.2   ± 0.5   kpc (Bovy et al '09)

R
0
= 8.33 ± 0.35 kpc (Gillessen et al '08)

R
0
= 8.4   ± 0.6   kpc (Reid et al '09)

R
0
= 8.7   ± 0.5   kpc (Vanhollebeke et al '09)...

                      we are assuming  R
0
= 8.3 kpc as our default value

Distance Sun - GC
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m
χ
 = 25 GeV and NFW

NB and S Palomares-Ruiz, arXiv:1103.2377

•* ρ
0
 = 0.3 GeV/cm3          r

S
 = 38.6 kpc       (M

vir
 = 2.5 1012 M

Θ
 , c

vir
 = 9.2)

•

•                        No priors                                 Priors over <σv> and ρ
0
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Comparison with simulations

* We consider the NFW density profile
        determined by the parameters ρ

0
 and r

s

* It's convenient to rewrite these parameters using
        the virial mass  M

vir
 and the concentration parameter c

vir
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Statistical method
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DM halo profiles
From N-body simulations

NFW profile Einasto profile

ρ
0
= 0.3 GeV/cm3  it's usually assumed   but...

 

Local DM density:
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DM halo profiles
From N-body simulations

NFW profile Einasto profile

ρ
0
= 0.3 GeV/cm3  it's usually assumed   but...

ρ
0
= 0.32 ± 0.07 GeV/cm3 (Strigari & Trotta '09)

ρ
0
= 0.39 ± 0.03 GeV/cm3 (Catena & Ullio '09)

ρ
0
= 0.40 ± 0.04 GeV/cm3 (McMillan '11)

ρ
0
= 0.43 ± 0.15 GeV/cm3 (Salucci et al '10)

ρ
0
= 0.5   ± 0.2   GeV/cm3 (Gates et al '95)

        

Local DM density:
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DM halo profiles
From N-body simulations

NFW profile Einasto profile

ρ
0
= 0.3 GeV/cm3  it's usually assumed   but...

ρ
0
= 0.32 ± 0.07 GeV/cm3 (Strigari & Trotta '09)

ρ
0
= 0.39 ± 0.03 GeV/cm3 (Catena & Ullio '09)

ρ
0
= 0.40 ± 0.04 GeV/cm3 (McMillan '11)

ρ
0
= 0.43 ± 0.15 GeV/cm3 (Salucci et al '10)

ρ
0
= 0.5   ± 0.2   GeV/cm3 (Gates et al '95)

                      we are assuming  ρ
0
= 0.4 GeV/cm3 as our default value

Local DM density:
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