

Fitting MMAMSB at the LHC

John Conley

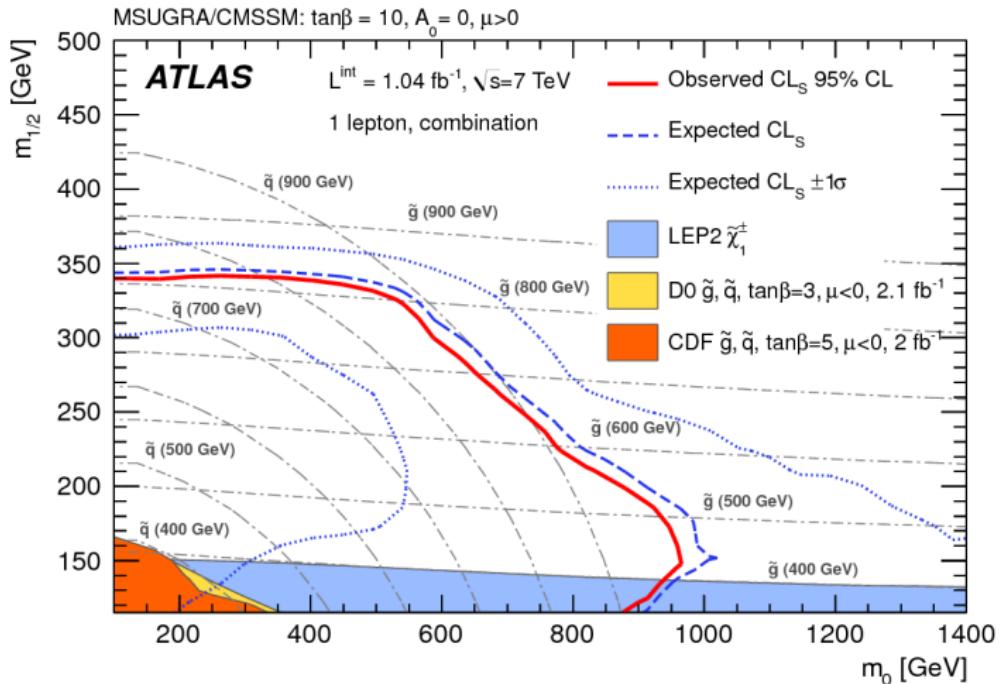
Physikalisches Institut
Universität Bonn

Inaugural Bethe Forum, 4 November 2011

arXiv:1110.1287

J.C., H. Dreiner, L. Glaser, M. Krämer, J. Tattersall

Outline

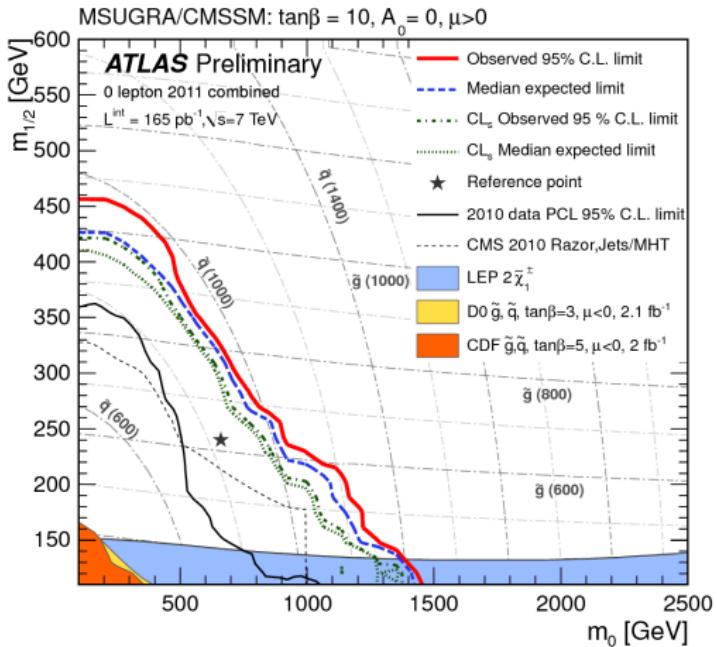

1 Introduction

2 MMAMSB

3 Fit procedure

4 Fit results

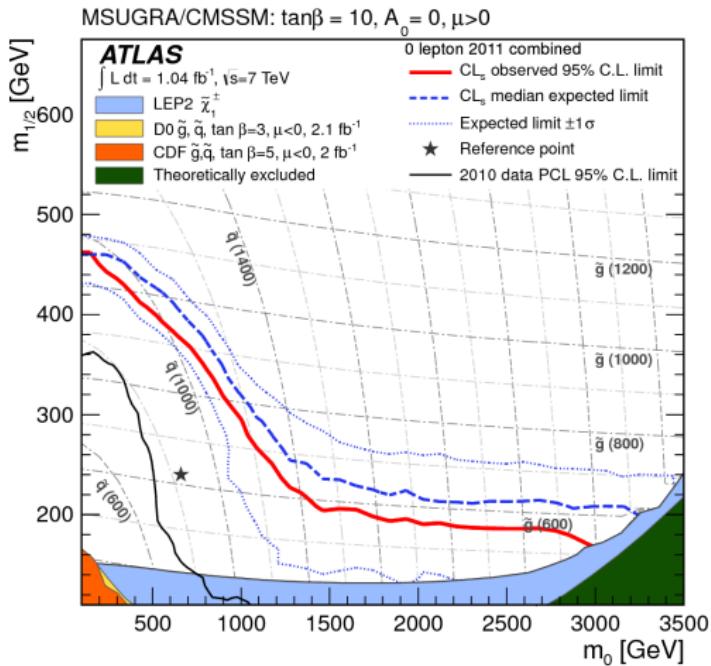
SUSY at the LHC



The LHC has taken a big bite out of SUSY parameter space.

universität bonn

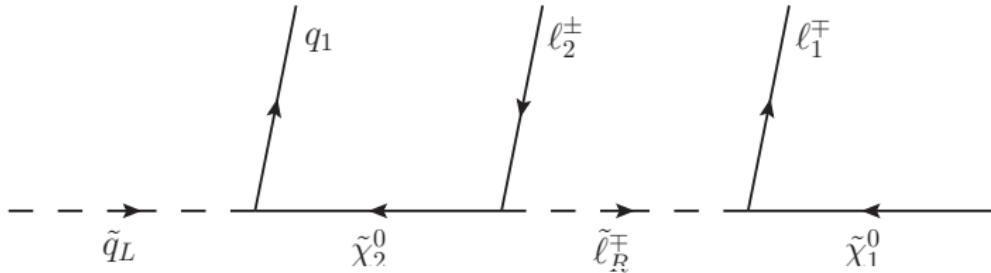
SUSY at the LHC



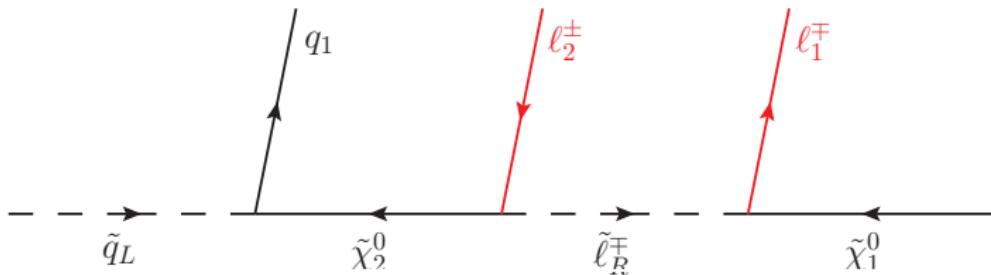
The LHC has taken a big bite out of SUSY parameter space.

universität bonn

SUSY at the LHC



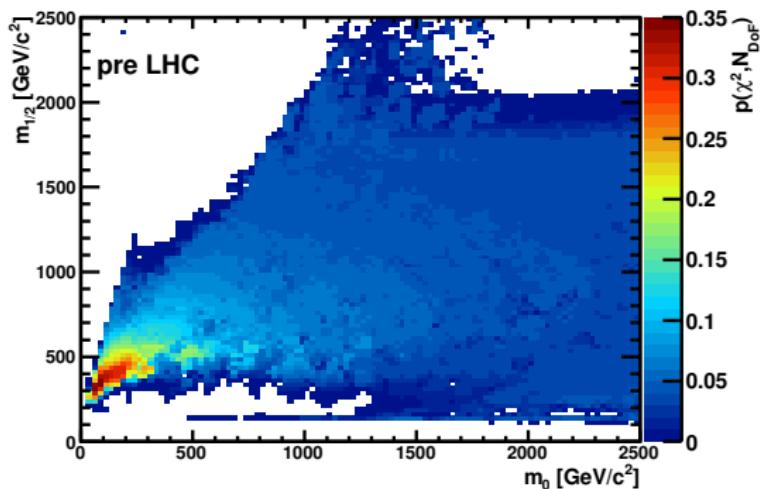
The LHC has taken a big bite out of SUSY parameter space.


universität bonn

Jets (and/or leptons) + E_T^{miss}

The strongest constraints come from multi-jet (perhaps with leptons) and missing energy events, which come from squark and gluino production followed by (possibly long) decay chains.

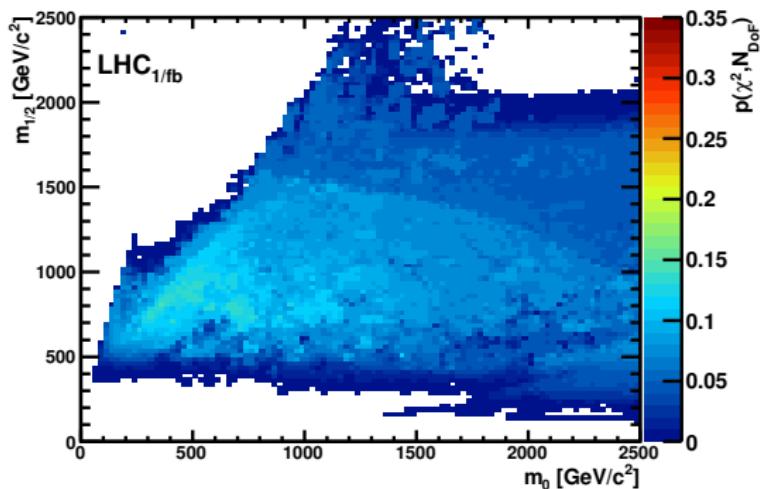
Jets (and/or leptons) + E_T^{miss}



These events also provide mass measurements via kinematical endpoints like:

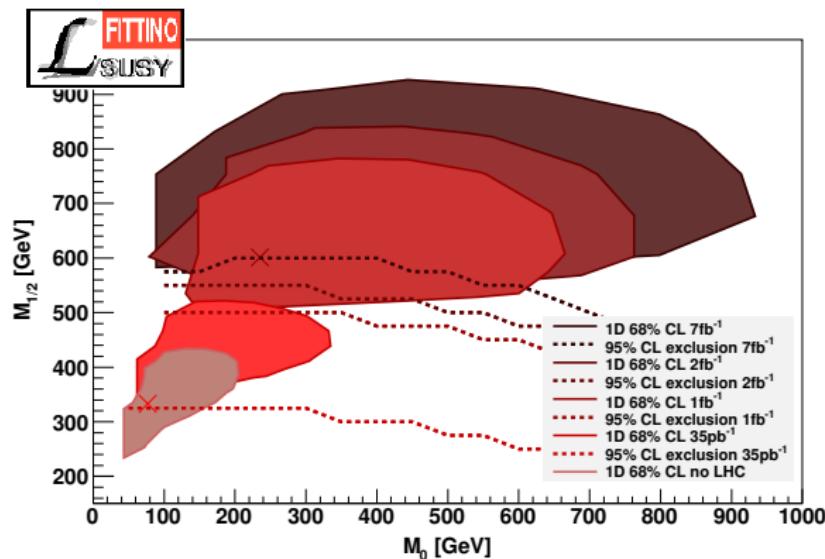
$$(m_{\ell\ell}^2)^{\text{edge}} = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}_R}^2\right) \left(m_{\tilde{\ell}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{\ell}_R}^2}$$

SUSY Fits


These measurements (and others) can be used as inputs into a parameter fit.

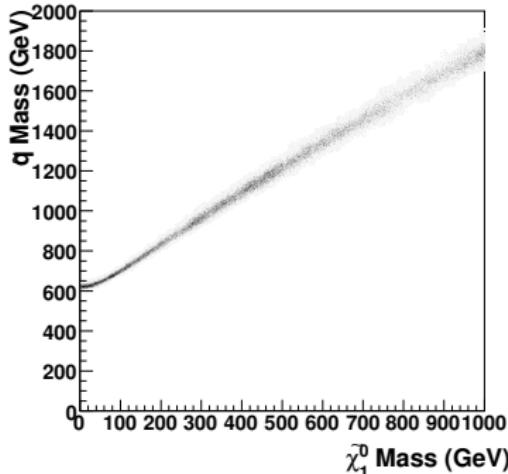
[Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Martinez Santos, Olive, Rogerson, Ronga & Weiglein 1110.3568]

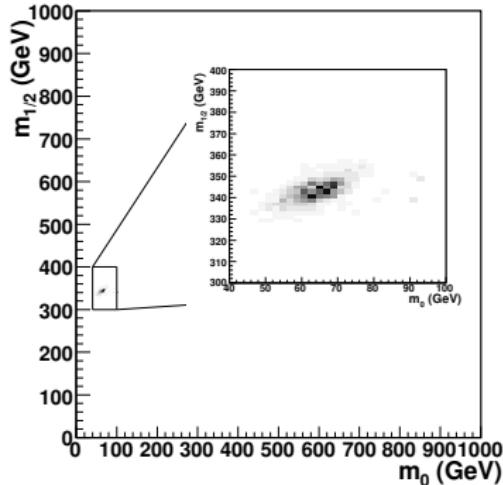
SUSY Fits


These measurements (and others) can be used as inputs into a parameter fit.

[Buchmueller, Cavanaugh, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Martinez Santos, Olive, Rogerson, Ronga &
Weiglein 1110.3568]

SUSY Fits


These measurements (and others) can be used as inputs into a parameter fit.


[Bechtle, Desch, Dreiner, Kramer, O'Leary, Robens, Sarrazin & Wienemann 1105.5398]

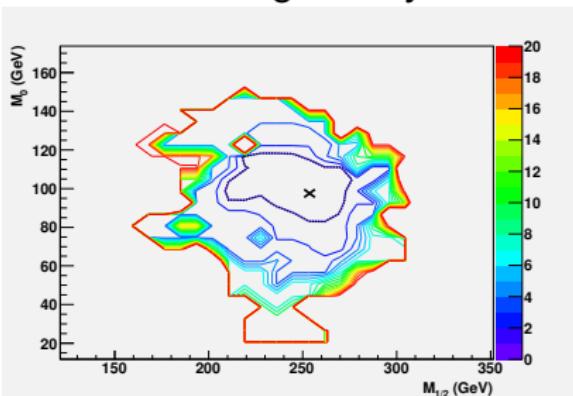
Including cross sections with standard Monte Carlo

Kinematical edges only:

Including cross sections:

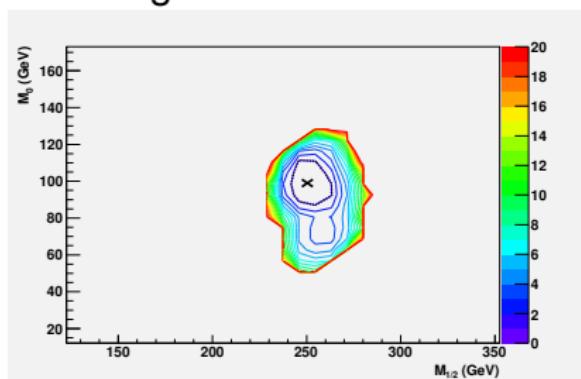
[Lester, Parker & White hep-ph/0508143]

Cross sections can drastically improve fit results. Unfortunately, when estimated by generating events with standard tools, cross sections are very costly to compute.



universität bonn

Including cross sections in fits the fast way


Recently, a technique was developed to estimate cross sections as quickly as kinematical endpoints.

Kinematical edges only:

[Dreiner, Krämer, Lindert & O'Leary 1003.2648]

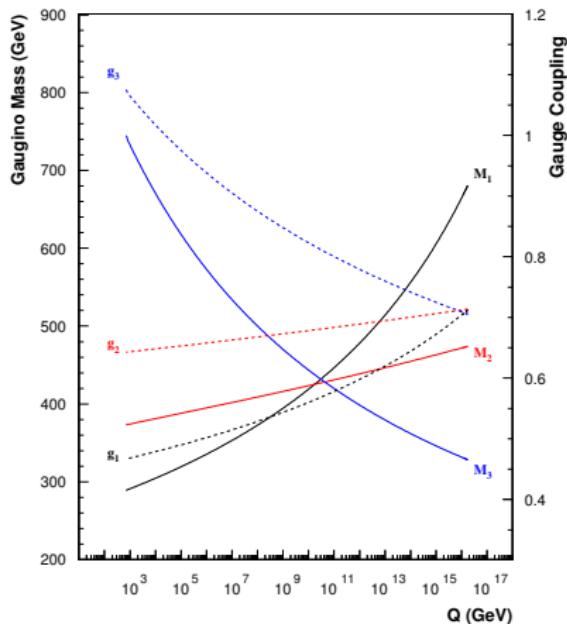
Including cross sections:

Which high scale model do we fit to?

There are many common SUSY breaking scenarios. Which one should we fit? Can fit tell us if we've chosen the wrong one?

Model	parameters	$\chi^2/\text{d.o.f}$	$p\text{-value}$
CMSSM	$m_0 = 92.1 \text{ GeV}$, $m_{1/2} = 300.6 \text{ GeV}$ $A_0 = 984 \text{ GeV}$, $\tan \beta = 12.3$	0.22/1	0.64
mAMSB	$m_{aux} = 28.46 \text{ TeV}$, $m_0 = 255.5 \text{ GeV}$ $\tan \beta = 22.4$	52/2	$< 10^{-10}$
mGMSB	$M_{mess} = 1.0 \cdot 10^{14} \text{ GeV}$, $\Lambda = 1.78 \cdot 10^4 \text{ GeV}$ $N_5 = 5$, $\tan \beta = 22.2$	0.36/2	0.83
LVS	$m_0 = 359 \text{ GeV}$, $\tan \beta = 4.75$	44.2/3	1.4×10^{-9}

[Allanach & Dolan 1107.2856 — SUSY with prejudice]


Maybe, maybe not.

Mixed modulus-anomaly mediated SUSY breaking (MMAMSB)

- Significant gravity (modulus) and anomaly mediation contributions
- Gaugino masses appear to unify at intermediate scale (“mirage” mediation)
- Can be realized in KKLT-type string models [\[Kachru, Kallosh, Linde & Trivedi hep-th/0301240\]](#)
- Alleviates gravitino and moduli decay problems

ZMW: $\alpha=6$, $m_{3/2}=11.5$ TeV, $\tan\beta=10$, $\mu > 0$, $m_t=175$ GeV

[Baer, Park, Tata, & Wang hep-ph/0604253]

Fitting MMAMSB at the LHC

Our goal here is to see if we can use prospective LHC measurements to perform a fit to MMAMSB and measure the parameters of the model. We would like to answer:

- How well can the MMAMSB parameters be determined using LHC measurements?
- Can the MMAMSB be distinguished from other SUSY breaking scenarios?
- Does including cross sections help address these questions?

Outline

1 Introduction

2 MMAMSB

3 Fit procedure

4 Fit results

MMAMSB: parameters and soft SUSY breaking terms

$$\begin{aligned} M_a &= \frac{m_{3/2}}{16\pi^2} [\alpha + b_a g_a^2], \\ A_{ijk} &= \frac{m_{3/2}}{16\pi^2} [(n_i + n_j + n_k - 3)\alpha + (\gamma_i + \gamma_j + \gamma_k)], \\ m_i^2 &= \left(\frac{m_{3/2}}{16\pi^2} \right)^2 [(1 - n_i)\alpha^2 + 4\alpha\xi_i - \dot{\gamma}_i]. \end{aligned}$$

[Choi, Falkowski, Nilles, Olechowski & Pokorski hep-th/0411066; Choi, Jeong & Okumura hep-ph/0504037; Falkowski, Lebedev & Mambrini hep-ph/0507110]

Parameters:

- α : interpolates between pure modulus ($\alpha \rightarrow \infty$) and pure anomaly ($\alpha \rightarrow 0$, with $\alpha m_{3/2}$ const.) breaking
- n_i : modular weight = 0, 1, 1/2 if i^{th} matter field located on $D3$, $D7$, $D3$ - $D7$ brane intersection
- $m_{3/2}$: gravitino mass
- $\tan \beta$

MMAMSB: parameters and soft SUSY breaking terms

$$\begin{aligned}M_a &= \frac{m_{3/2}}{16\pi^2} [\alpha + b_a g_a^2], \\A_{ijk} &= \frac{m_{3/2}}{16\pi^2} [(n_i + n_j + n_k - 3)\alpha + (\gamma_i + \gamma_j + \gamma_k)], \\m_i^2 &= \left(\frac{m_{3/2}}{16\pi^2}\right)^2 [(1 - n_i)\alpha^2 + 4\alpha\xi_i - \dot{\gamma}_i].\end{aligned}$$

[Choi, Falkowski, Nilles, Olechowski & Pokorski hep-th/0411066; Choi, Jeong & Okumura hep-ph/0504037; Falkowski, Lebedev & Mambrini hep-ph/0507110]

Constants:

- g_a is the gauge coupling and b_a the 1-loop beta function coefficient for the gauge group a
- γ_i is the anomalous dimension, and $\dot{\gamma}_i$ the logarithmic derivative of the anomalous dimension of the i^{th} matter field
- ξ_i are mixed anomaly-modulus contributions

Gaugino mass pattern

The gaugino mass pattern provides a hallmark signature of many SUSY breaking scenarios [Choi & Nilles hep-ph/0702146]

Gravity: $M_1 : M_2 : M_3 \simeq 1 : 2 : 6$

Also characteristic of many GMSB models as well as gaugino mediation and large volume type IIB string compactifications.

Anomaly: $M_1 : M_2 : M_3 \simeq 3.3 : 1 : 9$

Requires that SUSY-breaking sector is sequestered from the visible sector.

MMAMSB: $M_1 : M_2 : M_3 \simeq (\alpha + 3.3) : (2\alpha + 1) : (6\alpha - 9)$

Requires α large enough to avoid tachyonic sleptons typical of AMSB (which are solved in mAMSB with ad hoc m_0). KKLT predicts $\alpha = 5$.

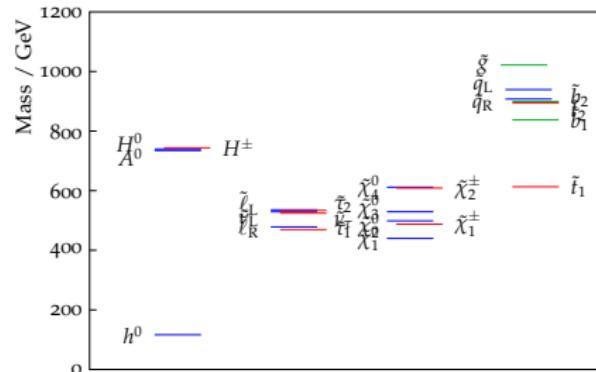
MMAMSB benchmark model selection

Existing constraints must be satisfied

Dark matter density and direct detection, flavor and precision measurements, collider (LEP and early LHC) searches

α in interesting range

Not too close to gravity or anomaly limits, close to KKLT-preferred value


LHC measurements must be feasible

$\tilde{q} \rightarrow q \tilde{\chi}_2^0 \rightarrow q \ell^\pm \tilde{\ell}_R^\pm \rightarrow q \ell^+ \ell^- \tilde{\chi}_1^0$ decay chain must be present with sufficiently large branching ratio, mass splittings, and production cross section

MMAMSB benchmark model parameters

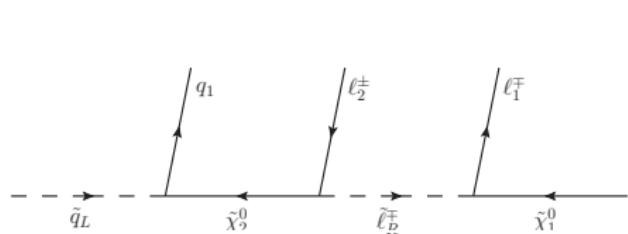
- If n_i same for all matter fields, then constraints require $n_i \equiv n = 1/2$.
- We choose $\tan \beta = 10$ and $\text{sign}(\mu) = +1$.
- Relic density then requires $\alpha \simeq 4.8$, $m_{3/2} \gtrsim 15 \text{ TeV}$.

Parameter	Value
α	4.8
$m_{3/2}$	21 TeV
$\tan \beta$	10
$\text{sign}(\mu)$	+1
n	0.5

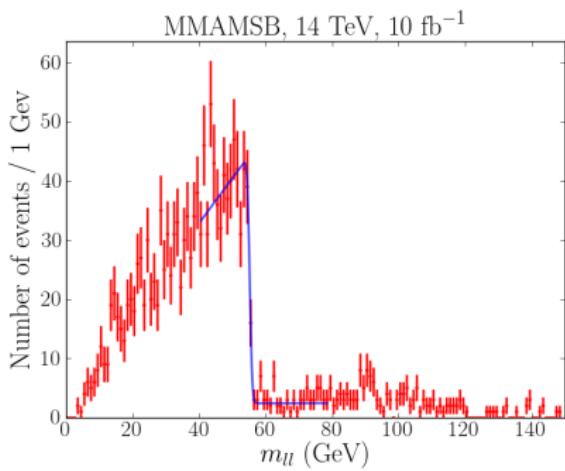
In this model, $M_1 : M_2 : M_3 \simeq 1 : 1.2 : 2.2$

Outline

1 Introduction


2 MMAMSB

3 Fit procedure


4 Fit results

Kinematical observables

Conventionally, the primary inputs to SUSY parameter fits have been the edges and endpoints of kinematical distributions.

$$(m_{\ell\ell}^2)^{\text{edge}} = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\ell}_R}^2\right)\left(m_{\tilde{\ell}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{\ell}_R}^2}$$

In order to perform a fit using these observables, we implement MMAMSB in the fitting program **Fittino**, which efficiently samples the parameter space using Markov chain Monte Carlo.

[Bechtle, Desch, Uhlenbrock, Wienemann 0907.2589], <http://www-flc.desy.de/fittino/>

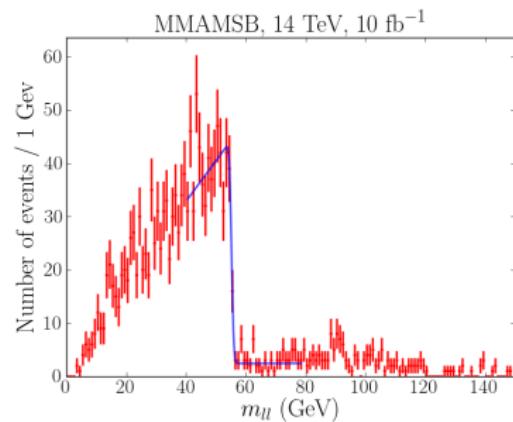
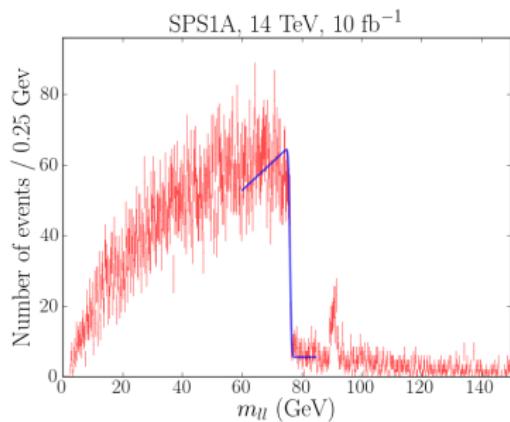
Our fit: “Group I” observables

This group includes standard kinematical edges built from the “golden” decay chain shown previously. These are observable already at 7 TeV and/or lower luminosity.

- $m_{\ell\ell}^{\max}$, the dilepton invariant mass edge
- $m_{q\ell\ell}^{\max}$, the jet dilepton invariant mass edge
- $m_{q\ell}^{\text{low}}$, the jet-lepton low invariant mass edge
- $m_{q\ell}^{\text{high}}$, the jet-lepton high invariant mass edge

[Gjelsten, Miller & Osland [hep-ph/0410303](#)]

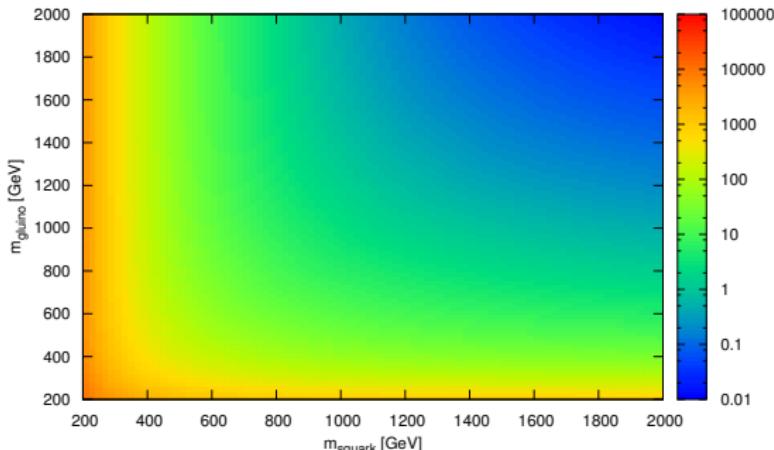
Our fit: “Group II” observables



These provide additional information, e.g. on 3rd generation sparticle properties, but require 14 TeV and at least 10 fb^{-1} .

- $m_{q\ell\ell}^{\text{thr}}$, the jet-dilepton threshold invariant mass edge [Gjelsten, Miller & Osland [hep-ph/0410303](#)]
- $m_{\tilde{q}}^{T2}$, the squark transverse mass [Lester & Summers [hep-ph/9906349](#); Barr, Lester & Stephens [hep-ph/0304226](#)]
- $m_{\tau\tau}^{\text{max}}$, the di-tau invariant mass edge^{a,b}
- m_{tb}^W , the weighted top-bottom invariant mass edge^b
- $\Delta m_{\tilde{g}\tilde{\chi}_1^0}$, the mass difference between the gluino and the LSP^{a,b}
- $m_{(\tilde{\chi}_4^0)\ell\ell}^{\text{max}}$, the dilepton invariant mass edge from the decay of a $\tilde{\chi}_4^0$ ^{a,b}
- $r_{\tilde{\ell}\tilde{\tau}}^{\text{BR}}$, the ratio of selectron (smuon) to stau mediated $\tilde{\chi}_2^0$ decays^b

[^aLHC/ILC Study Group [hep-ph/0410364](#); ^bBechtle, Desch, Uhlenbrock, Wienemann 0907.2589]

Estimating uncertainties


One of the most important ingredients in a fit is the uncertainty on each observable.

- We extrapolate the uncertainties from the thorough study of SPS1a [LHC/ILC Study Group [hep-ph/0410364](#)] to our MMAMSB model
- We checked that this is reasonable for $(m_{\ell\ell})^{\text{edge}}$ by generating events and explicitly fitting this endpoint for MMAMSB

Rate observables

Rates are extremely sensitive to the SUSY mass scale.

- Including rates in the fit should improve parameter determination and model discrimination—by how much?
- We need a clever way to estimate rates quickly enough to use them in the fit.

Observable values and uncertainties

Observable	Nominal value	Uncertainty					
		10 fb^{-1} 7 TeV	1 fb^{-1} 14 TeV	10 fb^{-1} 14 TeV	100 fb^{-1} 14 TeV	LES	JES
Group I							
$m_{\max}^{\ell\ell}$	55.45	6.01	4.25	1.34	0.43	0.05	-
$m_{q\ell\ell}^{\max}$	373.4	70.2	49.6	15.7	4.96	-	3.7
$m_{q\ell}^{\text{low}}$	223.3	38.0	26.8	8.5	4.40	-	2.2
$m_{q\ell}^{\text{high}}$	311.9	26.0	18.4	5.8	4.70	-	3.1
Group II							
$m_{q\ell\ell}^{\text{thr}}$	145.5	-	-	29.6	9.37	-	1.5
$m_{\tilde{q}}^{T2}$	662.0	-	-	28.2	8.91	-	7.0
$m_{\tilde{q}}^{\max}$	58.94	-	-	15.9	5.04	-	0.6
$m_{tb}^{\tau\tau}$	494.1	-	-	43.0	13.6	-	4.9
$\Delta m_{\tilde{g}\tilde{\chi}_1^0}$	582.0	-	-	48.5	15.3	-	5.8
$m_{(\tilde{\chi}_4^0)\ell\ell}^{\max}$	168.6	-	-	9.96	3.15	0.17	-
$r_{\tilde{\ell}\tilde{\tau}}^{\text{BR}}$	0.457	-	-	0.0114	0.0036	-	-

- Group I observables reasonably measured at 7 TeV and/or low luminosity.
- At high luminosity and 14 TeV, Group I observables are extremely accurately determined.
- Group II observables can be fairly well measured at high luminosity and 14 TeV.

Rates: implementation

[Dreiner, Krämer, Lindert & O'Leary 1003.2648], https://github.com/b4lrog/dev_LHC-FASER

Included channels

- $R_{jj\neq E_T}$: two hard jets and missing energy
- $R_{\ell\ell jj\neq E_T}$: two hard jets and missing energy with a pair of opposite sign, same flavor leptons

Method for fast calculation of rates

- The NLO cross section for squark/gluino production is interpolated from a stored grid, generated using Prospino.
<http://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino&visible=tools>
- The decay table computed by a spectrum calculator is used to determine the branching ratios of the relevant decay chains.
- The acceptance—the fraction of events that passes cuts—is calculated using a novel semi-analytical technique.

Rate observable values and uncertainties

Observable	7 TeV		14 TeV	
	Value (fb)	Uncertainty	Value (fb)	Uncertainty
$R_{jj\ell\ell}$	113	23	2780	556
$R_{\ell\ell jj\ell\ell}$	11.8	3.5	245	49

- Conservative 20% systematic uncertainty is assigned to rate estimation.
- To validate the rate estimation for MMAMSB we compare with a full simulation including parton shower and hadronization using Herwig++ [\[Bahr et al. 0803.0883\]](#).

Fit details

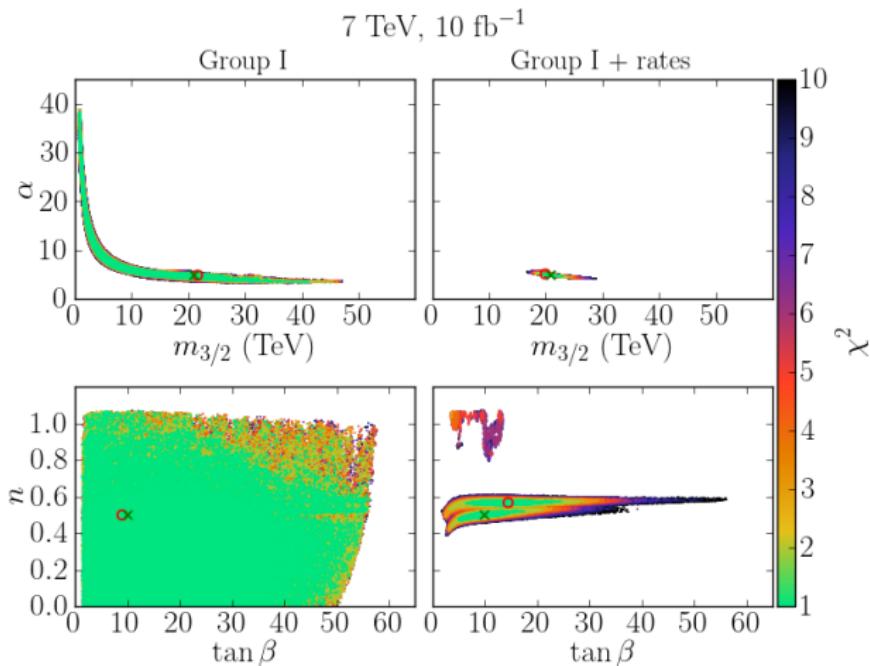
MMAMSB fits

- We fit MMAMSB to our benchmark model using LHC observables (only) for 10 fb^{-1} at 7 TeV and 1 fb^{-1} , 10 fb^{-1} , and 100 fb^{-1} at 14 TeV.
- We start with Group I observables, and show the effect of adding Group II observables, and of adding rates.

CMSSM and mAMSB fits

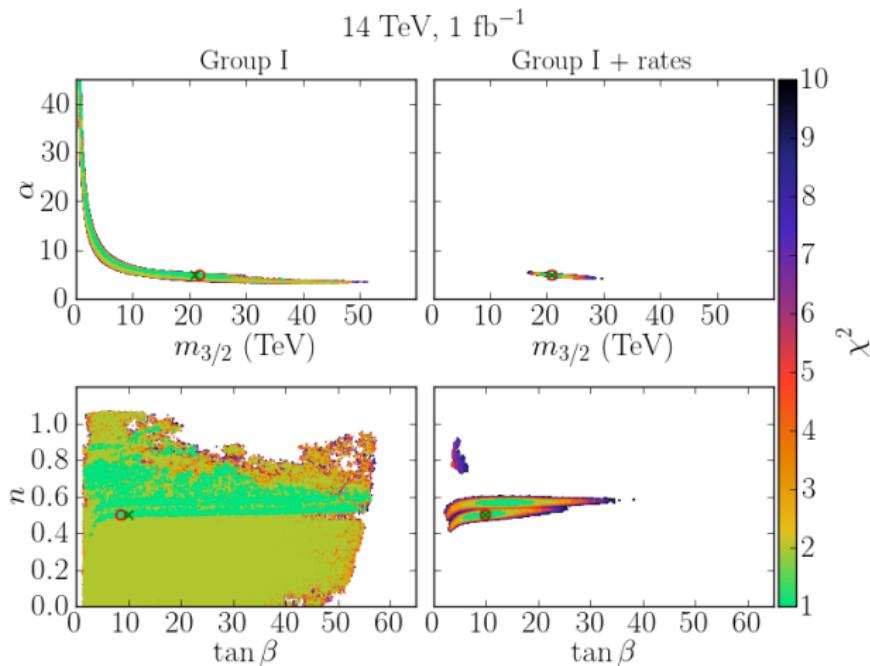
- We also try fitting two other SUSY breaking scenarios to our MMAMSB benchmark point:
 - ▶ The constrained MSSM (CMSSM)
 - ▶ Minimal anomaly mediated SUSY breaking (mAMSB)
- From these fits, we can see how well MMAMSB can be distinguished from other models.
- We will also look at the impact of the different observables, especially rates, in these fits.

Outline

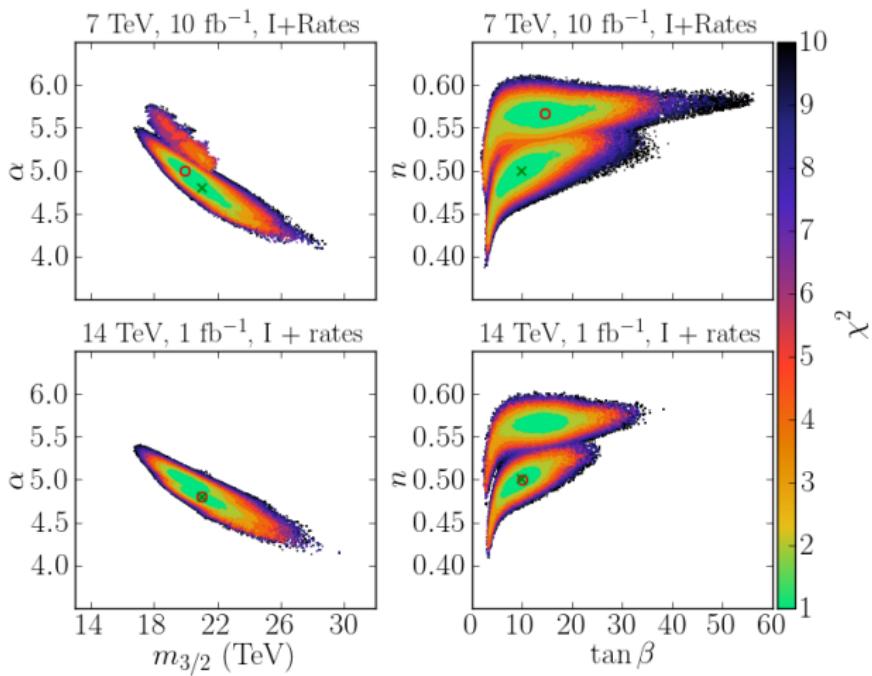

1 Introduction

2 MMAMSB

3 Fit procedure


4 Fit results

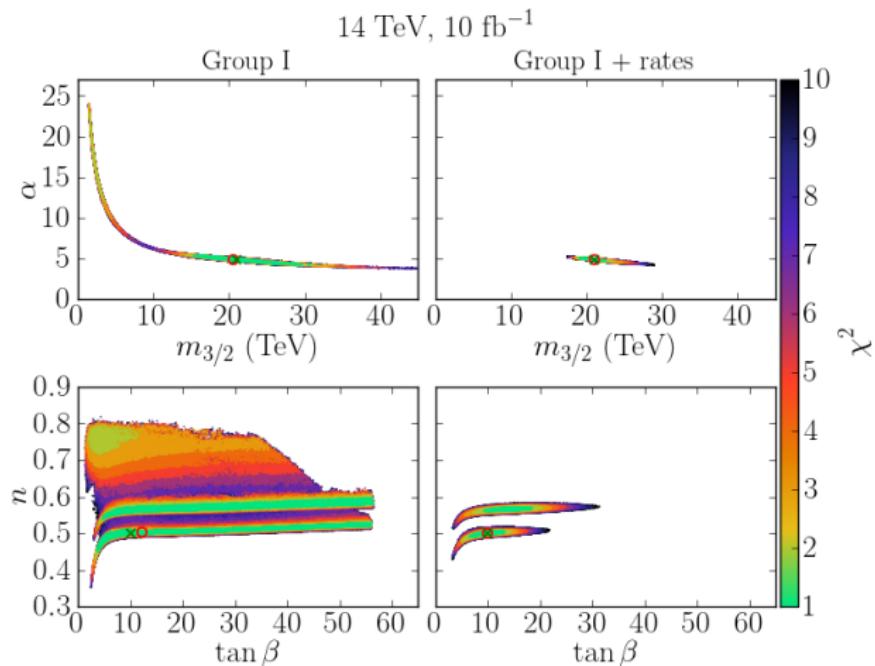
MMAMSB: 7 TeV, 10 fb^{-1} , Group I observables


At 7 TeV, rate information necessary to have any constraint on parameter space.

MMAMSB: 14 TeV, 1 fb^{-1} , Group I observables

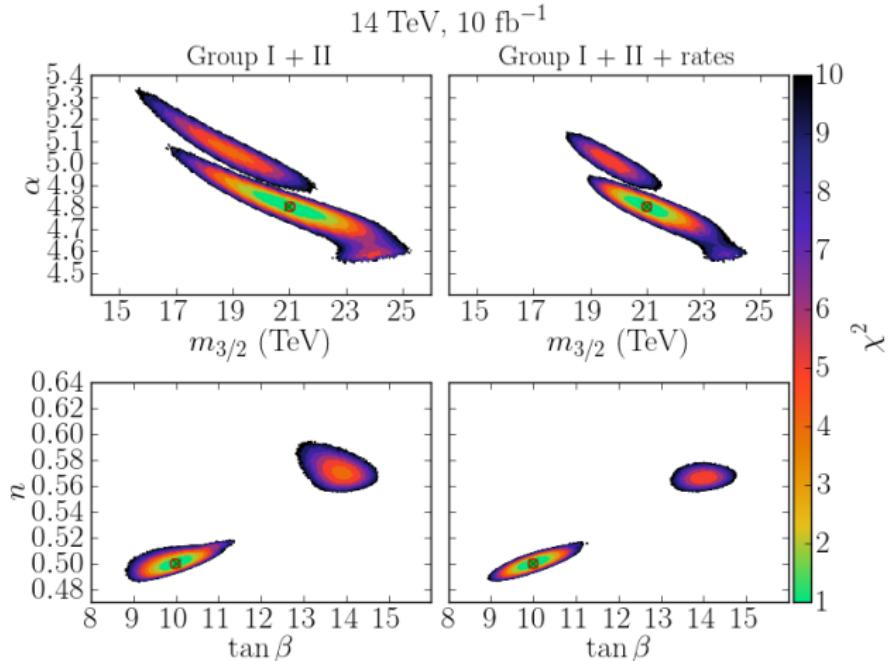
At 14 TeV but with low luminosity, can also begin to measure parameters only if rates are included.

Closer look at fits with rates


With rates, α and $m_{3/2}$ can be measured to within 10-15%.

Why rates are so important

- The soft breaking terms all have leading pieces proportional to $m_{3/2}\alpha$.
- Since rates are sensitive to the absolute SUSY mass scale (unlike kinematic edges, which are sensitive to mass differences), they constrain this combination effectively.
- n is also fairly well constrained, because of its contribution to the soft breaking terms.
- A measurement of $\tan\beta$, on the other hand, requires observables sensitive to third generation particles (as we will see).



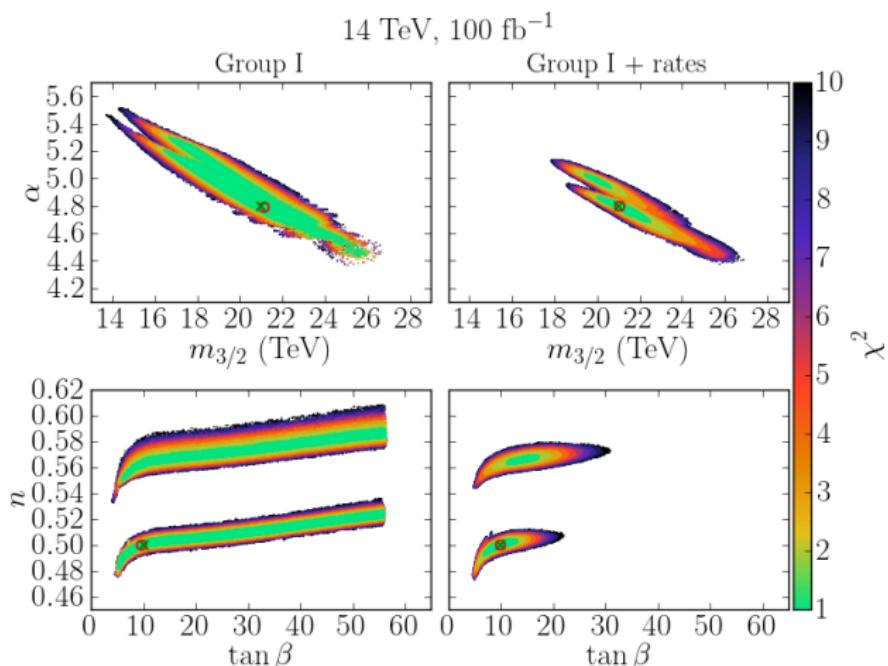
MMAMSB: 14 TeV, 10 fb^{-1} , Group I observables

Again, rates necessary to have a decent measurement of parameters, though some degeneracy remains. $\tan \beta$ remains especially poorly constrained.

MMAMSB: 14 TeV, 10 fb^{-1} , Group I & II observables

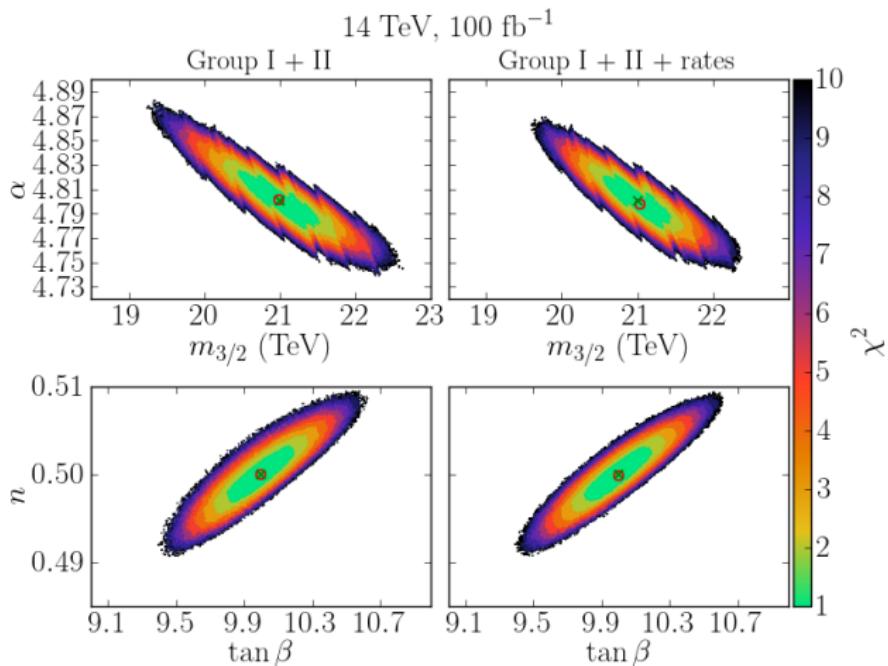
- In Group II, $r_{\tilde{\ell}\tilde{\tau}}^{\text{BR}}$ and $m_{\tau\tau}$ can measure $\tan \beta$.
- With high luminosity, Group II (esp. $m_{\tilde{q}}^{T2}$ and m_{qll}^{thr}) can constrain α and $m_{3/2}$, but rates do better.

Double minimum

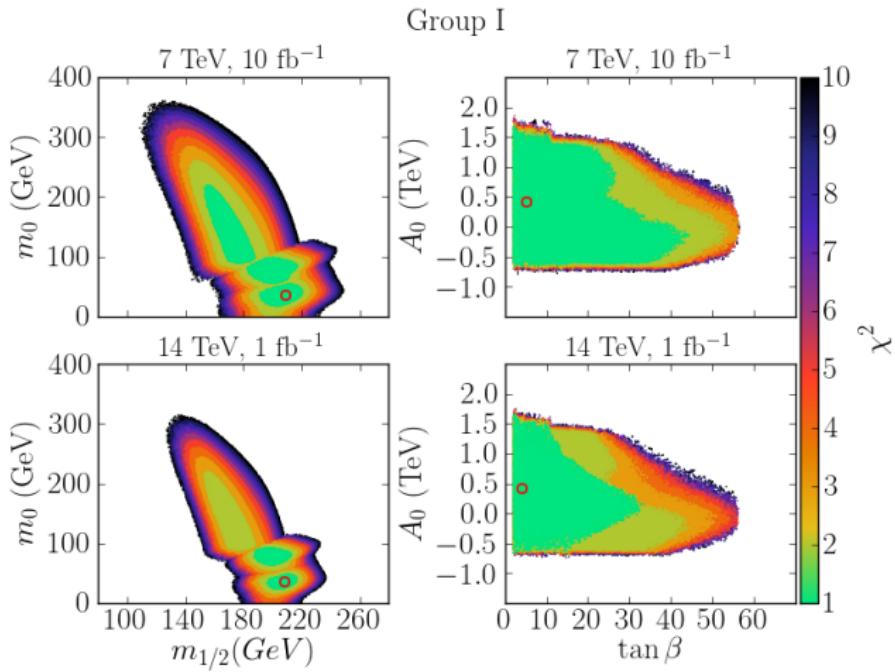

Why a double minimum in the $\tan \beta - n$ plane?

- Functional forms for m_{qll}^{\max} , m_{ql}^{low} and m_{ql}^{high} depend on mass ordering of sparticles in cascade
- In the correct minimum we have $2m_{\tilde{\ell}}^2 > m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0}m_{\tilde{\chi}_2^0}$
- In the second minimum, order switches to $m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0}m_{\tilde{\chi}_2^0} > 2m_{\tilde{\ell}}^2$, the functional forms change, and so different spectrum can lead to similar values of the observables.

How to break the degeneracy?


- Measure the $\tilde{\chi}_1^0$ mass accurately at a linear collider [\[Martyn hep-ph/0406123; Gjelsten, Miller & Osland hep-ph/0507232; JC, Dreiner & Wienemann 1110.1287\]](#)
- Measure the shape of the invariant mass distributions [\[Miller, Osland & Raklev hep-ph/0510356; Gjelsten, Miller, Osland & Raklev hep-ph/0611080\]](#)

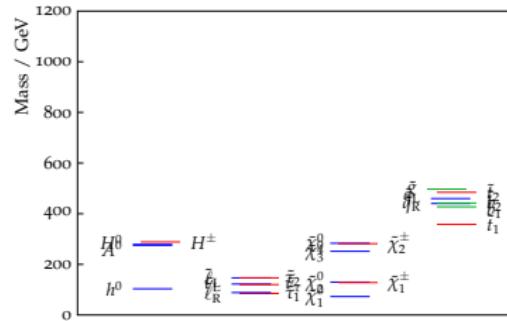
MMAMSB: 14 TeV, 100 fb^{-1} , Group I


- Mass edges alone can now constrain most parameters.
- Adding rates significantly improves measurements.

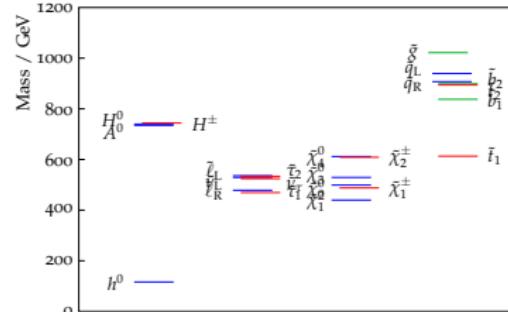
MMAMSB: 14 TeV, 100 fb^{-1} , Group I & II

All parameters measured to within 5%, and degeneracy broken
(by $m_{\tau\tau}^{\text{max}}$).

CMSSM: 7 TeV, 10 fb^{-1} , Group I



At 7 TeV, with no rate information, the CMSSM can fit our MMAMSB model well.


CMSSM: 7 TeV, 10 fb⁻¹, adding rates

At 7 TeV, 10 fb⁻¹ with only Group I, CMSSM best-fit spectrum is light.

CMSSM best-fit, Group I

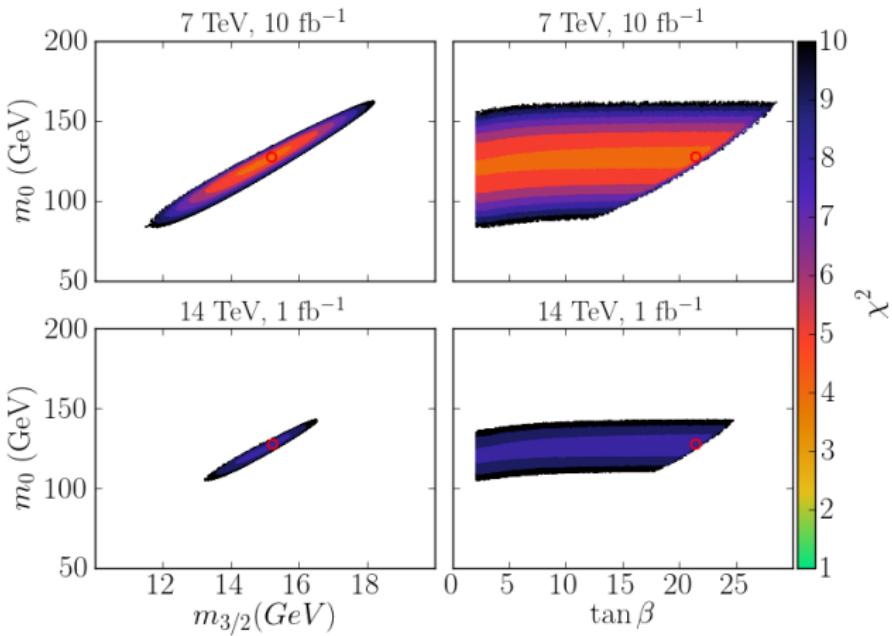
MMAMSB benchmark

Adding rates leads to exclusion

- When we add rates, they try to pull mass scale up.
- Mass edges continue to prefer low mass scale.
- Tension between them yields new best-fit point with $\chi^2/\text{d.o.f.} = 216/21$!
- At best-fit point, m_{qI}^{high} is 13σ high, while $R_{jjE_T^{\text{miss}}}$ is 5.3σ high.

CMSSM: 14 TeV, 10 fb⁻¹

Adding Group II excludes CMSSM


- With only Group I, best-fit has $\chi^2 = 2.1$
- With Group II included, best-fit is excluded at $\chi^2/\text{d.o.f.} = 122/7$
- Exclusion dominated by $m_{\tilde{q}}^{T2}$ which is 8.9σ away from the measured value
- $m_{\tilde{q}}^{T2} \propto \sqrt{m_{\tilde{q}}^2 - 2m_{\tilde{\chi}_1^0}^2}$, so sensitive to squark mass and tries to pull mass scale up

Rates give far more convincing exclusion

- At best-fit point from Group I fit, $R_{jjE_T^{\text{miss}}}$ is 218σ from the measured value!
- The fit done at 7 TeV and 10 fb⁻¹ with only Group I excludes the CMSSM at greater significance ($\chi^2/\text{d.o.f.} = 216/2$) than the fit done at 14 TeV and 10 fb⁻¹ using Group I and II ($\chi^2/\text{d.o.f.} = 122/7$).

mAMSB: 7 TeV, 10 fb^{-1} , Group I

Group I

- Mass edges alone can disfavor mAMSB, because gaugino mass splitting is larger than in MMAMSB or the CMSSM.
- Adding rates can exclude mAMSB with $\chi^2/\text{d.o.f.} = 238/3$.

mAMSB: comparing rates with Group II

Group II at 14 TeV and 10 fb^{-1}

- Best-fit point is excluded with $\chi^2/\text{d.o.f.} = 330/8$
- Exclusion dominated by $m_{\tilde{q}}^{T^2}$ which is 12σ away from the measured value
- Again, $m_{\tilde{q}}^{T^2}$ tries to pull mass scale up, while edges try to pull it down

Effectiveness of rates

- At best-fit point from Group I + II fit, $R_{jjE_T^{\text{miss}}}$ is 953σ from the measured value!
- Rates, again, are far more sensitive to the mass scale than transverse mass.

Conclusions

- The MMAMSB is a theoretically and phenomenologically interesting fusion of gravity and anomaly mediation.
- Fits using LHC observables can determine the MMAMSB parameters accurately.
- Using rate observables, especially at lower energies and luminosities, is crucial to the success of the fit.
- The MMAMSB can be distinguished from the CMSSM and mAMSB, especially if rate information is used.

For future work, this type of analysis can be extended to more general models to see if their parameters can be determined using fits with rates.

MMAMSB: summary of fits

MMAMSB	α	$m_{3/2}$ (TeV)	$\tan \beta$	n
	4.8	21	10	0.5
7 TeV and 10 fb^{-1}				
I	$4.8^{+33.5}_{-1.4}$	22^{+19}_{-21}	9^{+48}_{-8}	$0.5^{+0.5}_{-0.5}$
I + rates	$4.99^{+0.15}_{-0.42}$	$20.0^{+2.9}_{-1.0}$	15^{+10}_{-10}	$0.56^{+0.02}_{-0.10}$
14 TeV and 1 fb^{-1}				
I	$4.8^{+41.0}_{-0.8}$	22^{+15}_{-21}	9^{+48}_{-7}	$0.5^{+0.5}_{-0.1}$
I + rates	$4.80^{+0.31}_{-0.13}$	$21.0^{+1.5}_{-2.1}$	10^{+9}_{-4}	$0.50^{+0.08}_{-0.02}$
14 TeV and 10 fb^{-1}				
I	$4.8^{+0.5}_{-0.6}$	21^{+10}_{-5}	12^{+44}_{-9}	$0.50^{+0.09}_{-0.05}$
I + rates	$4.80^{+0.26}_{-0.12}$	$21.0^{+1.5}_{-1.9}$	10^{+9}_{-3}	$0.50^{+0.07}_{-0.01}$
I + II	$4.80^{+0.07}_{-0.05}$	$21.0^{+1.2}_{-1.3}$	$10.0^{+0.4}_{-0.3}$	$0.500^{+0.005}_{-0.004}$
I + II + rates	$4.80^{+0.04}_{-0.04}$	$21.0^{+0.7}_{-0.7}$	$10.0^{+0.4}_{-0.3}$	$0.500^{+0.005}_{-0.004}$
14 TeV and 100 fb^{-1}				
I	$4.8^{+0.3}_{-0.4}$	21^{+5}_{-4}	10^{+47}_{-4}	$0.50^{+0.09}_{-0.02}$
I + rates	$4.80^{+0.24}_{-0.12}$	$21.0^{+1.5}_{-1.6}$	10^{+7}_{-3}	$0.500^{+0.069}_{-0.008}$
I + II	$4.801^{+0.024}_{-0.023}$	$21.0^{+0.5}_{-0.5}$	$9.99^{+0.19}_{-0.19}$	$0.500^{+0.003}_{-0.003}$
I + II + rates	$4.798^{+0.023}_{-0.019}$	$21.0^{+0.4}_{-0.5}$	$10.00^{+0.19}_{-0.19}$	$0.500^{+0.003}_{-0.003}$

CMSSM: summary of fits

CMSSM	m_0 (GeV)	$m_{1/2}$ (GeV)	$\tan \beta$	A_0 (GeV)	$\chi^2/\text{d.o.f.}$
7 TeV and 10 fb$^{-1}$					
I	36^{+189}_{-21}	210^{+12}_{-58}	5^{+40}_{-3}	405^{+1256}_{-1056}	0.12/0
I + rates	78	413	7.8	649	216/2
14 TeV and 1 fb$^{-1}$					
I	35^{+59}_{-12}	208^{+10}_{-21}	$4^{+29}_{-1.0}$	409^{+1237}_{-1038}	0.23/0
I + rates	69	379	7.6	580	334/2
14 TeV and 10 fb$^{-1}$					
I	$35.3^{+47.8}_{-4.8}$	$208.4^{+3.2}_{-10.1}$	5^{+27}_{-2}	373^{+801}_{-742}	2.1/0
I + rates	59	331	9.4	538	1643/2
I + II	39	210	8.0	364	122/7
I + II + rates	57	328	6.5	531	1806/9
14 TeV and 100 fb$^{-1}$					
I	$33.6^{+2.5}_{-2.1}$	$207.3^{+2.1}_{-2.4}$	$4.7^{+2.2}_{-1.2}$	365^{+112}_{-105}	11.8/0
I + rates	51	319	8.0	542	2533/2
I + II	38	203	8.1	354	907/7
I + II + rates	173	311	5.8	502	4043/9

mAMSB: summary of fits

mAMSB	m_0 (GeV)	$m_{3/2}$ (TeV)	$\tan \beta$	$\chi^2/\text{d.o.f.}$
7 TeV and 10 fb^{-1}				
I	127^{+14}_{-21}	$15.2^{+1.2}_{-1.8}$	21^{+2}_{-19}	3.8/1
I + rates	317	32	33	238/3
14 TeV and 1 fb^{-1}				
I	127^{+10}_{-16}	$15.2^{+0.8}_{-1.4}$	21^{+2}_{-10}	7.6/1
I + rates	316	32	4.7	397/3
14 TeV and 10 fb^{-1}				
I	124	15	21	72/1
I + rates	316	32	25	3084/3
I + II	116	14	16	330/8
I + II + rates	316	32	9	4135/10
14 TeV and 100 fb^{-1}				
I	126	15	21	275/1
I + rates	292	30	11	4591/3
I + II	100	13	16	1886/8
I + II + rates	292	30	9	13678/10