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Heterotic toroidal orbifolds

Geometry of toroidal orbifolds

A toroidal T 6/ZN orbifold is defined by:

Some complex coordinates u = (u1,u2,u3),

A torus lattice ΛT := {ni ei ,ni ∈ Z} defining periodicity conditions:

u ∼ u + ℓ , ℓ ∈ ΛT .

(We will take ΛT factorized, e.g. A3
2 for T 6/Z3.)

Orbifold twist θ:

θ : (u1,u2,u3) 7→
(

e2πiv1 u1,e
2πiv2 u2,e

2πiv3 u3

)

where the va are quantized in units of 1/N, i.e. va = na/N; na,∈ Z.

To preserve target space supersymmetry:
∑
a

va = 0 mod 2 .
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Heterotic toroidal orbifolds

Shift embedding and discrete Wilson lines

To define a heterotic orbifold we have to specify the gauge degrees of
freedom; we take them to be 16 complex fermions λI , I = 1, . . . ,16.

Their orbifold boundary conditions are defined by:

A gauge shift embedding V = (V 1, . . . ,V 16):

θ : (λ1, . . . , λ16) 7→
(

e2πiV 1
λ1, . . . ,e2πiV 16

λ16
)

Some Wilson lines Wi = (W 1
i , . . . ,W

16
i ):

ei : (λ1, . . . , λ16) 7→
(

e2πiW 1
i λ1, . . . ,e2πiW 16

i λ16
)

All the entries of V and Wi are quantized in units of 1/N.
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Heterotic toroidal orbifolds

Modular invariance

The one loop partition function has to be invariant under modular
transformations.

This results in a set of stringent consistency conditions on the gauge
shift and Wilson lines:

N
2

(
V 2 − v2

)
≡ 0 ,

N
2

W 2
i ≡ 0 ,

where “≡” means equal up to integers.

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 6 / 66



Heterotic toroidal orbifolds

Twisted orbifold states

An orbifold supports untwisted and twisted states.
Dixon,Harvey,Vafa,Witten’85, Ibanez,Nilles,Quevedo’87

An r–twisted state, e.g. |Tr 〉 = |pr ,Pr 〉, α̃a
−ṽa

r
|pr ,Pr 〉, is

characterized by:

a right-moving shifted momentum:

pr = p + r v , p ∈ SO(8) vector weight lattice;

a left-moving shifted momentum:

Pr = P + r V , P ∈ E8 × E8 root lattice;

and possible oscillators, e.g. α̃a
−ṽa

r
, with ṽa

r = rva mod integers.

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 7 / 66



Heterotic toroidal orbifolds

MSSM–like models

Given that the input data of heterotic orbifolds is rather limited, it is
possible to perform systematic searches for interesting models:

The T 6/Z6–II orbifold gives rise to a large pool of possible
so–called mini–landscape MSSMs. Buchmuller,Hamaguchi,Lebedev,Ratz’04,

Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz,Vaudrevange,Wingerter’07

On the T 6/Z12–I also MSSM–like models were constructed.
Kim2,Kyae’07

The MSSM–like models on T 6/Z2 × Z2 break the GUT via freely
acting Wilson line. Blaszczyk,SGN,Ratz,Rühle,Trapletti,Vaudrevange’09
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Heterotic Calabi–Yau compactifications
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Heterotic Calabi–Yau compactifications

Smooth Calabi–Yau spaces

Smooth compactifications requires the target space to be a
Calabi–Yau (CY) space to preserve N = 1 4D supersymmetry.

A CY space X is defined by the following properties:

a complex manifold, i.e. admit global complex coordinates,

which is Kähler, i.e. its fundamental form J is closed:

J2 = Gaa dza ∧ dz̄a , dJ2 = 0 ,

and with vanishing first Chern class, i.e. c1(X ) = [trR2] = 0 .
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Heterotic Calabi–Yau compactifications

Smooth Calabi–Yau spaces

The topology of X is uniquely specified by its cohomology:

the number, h1,2, of harmonic (2,1)–forms,

the number, h1,1, of harmonic (1,1)–forms ωA
(1,1),

and their intersections numbers:

dABC :=

∫

X

ωA
(1,1) ∧ ωB

(1,1) ∧ ωC
(1,1) .

The fundamental (Kähler) form J2 can be expanded as

J2 =
∑

A

aA ω
A
(1,1) ,

where aA are called the Kähler moduli.
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Heterotic Calabi–Yau compactifications

Divisors and curves

A CY space may possess various subspaces:

Divisors (four–cyles), D, are 4D real closed hyper surfaces of X .

Curves, C, are 2D real closed hyper surfaces of X .

Poincaré duality:

divisor D ←→ (1,1)–form ωD
(1,1),

curve C = DD′ ←→ (2,2)–form ωC
(2,2) = ωD

(1,1) ∧ ωD′

(1,1).

Therefore, we often write D = ωD
(1,1) and let the context decide whether

the hyper surface or the (1,1)–form is meant.
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Heterotic Calabi–Yau compactifications

Kähler cone

The Kähler cone of X is the subspace of the Kähler moduli space such
that the volumes

vol(X ) =
1
3!

∫

X
J3

2 > 0 ,

vol(D) =
1
2!

∫

D
J2

2 =
1
2!

∫

X
J2

2 ω
D
(1,1) > 0 ,

vol(C) =

∫

C
J2 =

∫

X
J2 ω

C
(2,2) > 0 ,

of X , all its divisors D and all its curves C are positive.
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Heterotic Calabi–Yau compactifications

Vector bundles

In order that a gauge background is compatible with N = 1 SUSY in
4D, it has to satisfy the Hermitean Yang–Mills (HYM) equations

Fab = Fa b = 0 , Gaa Faa = 0 .

By the Donaldson-Uhlenbeck-Yau theorem solutions to these
equations exist for any vector bundle V that is

holomorphic,

stable, i.e. for any subsheaf with rk(F) < rk(V ): µJ(F) < µJ(V ),

and has slope zero: µJ(V ) = 0.

The slope µJ(V ) is defined as µJ(V ) =
1

rk(V )

∫

X
J2 c1(V ) .

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 14 / 66



Heterotic Calabi–Yau compactifications

Examples of stable vector bundles

The construction of stable holomorphic vector bundles is in general
very complicated. But there are two simple examples:

Standard embedding: F2 = R2:

This SU(3) bundle is obtained by setting the gauge connection A1

equal to the spin–connection ω1.

Line bundles: F2 = (VA)I ωA
(1,1)HI:

These Abelian bundles are parameterized by line bundle vectors
VA that encode the embedding in Cartan subalgebra {HI}.

For the latter one needs to ensure that it is slope zero, i.e.

µJ(F ) =
1
2

∫

X
J2

2 F2 = 0 .
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Heterotic Calabi–Yau compactifications

Torsional manifolds

The non–integrated Bianchi identity for the gauge invariant field
strength H3 of the Kalb–Ramond two–form B2 reads: Strominger’86

dH3 = α′
(

trR2
2 − trF 2

2 ) , H3 = i(∂̄ − ∂)J2 .

Integrated over a four–cycle D:
∫

D

(
trR2

2 − trF 2
2 ) = 0 .

Hence, unless trR2
2 = trF 2

2 , as in the standard embedding, any vector
bundle in a heterotic compactification

leads to torsion, i.e. H3 6= 0,

and X is no longer Kähler: dJ2 6= 0.
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Resolutions of orbifold singularities

Toric geometry

A toric space X = (CN − Zex)/(C
∗)n is defined by

complex coordinates z = (z1, . . . , zN) ∈ C
N ,

some exclusion set Zex,

and n independent C
∗ = C− {0} scalings:

C
∗
r : (z1, . . . , zN) ∼

(
λ

(qr )1
r z1, . . . , λ

(qr )N
r zN

)
, λr ∈ C

∗ .

The divisors of X are identified by the equations Di := {zi = 0}, with
linear equivalence relations among them.

Many topological properties are encoded in the exclusion set Zex:

In particularly it determines which curves exist.
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Resolutions of orbifold singularities

Non–compact toric resolutions

The idea of toric resolutions of C
3/ZN singularities is to replace the

orbifold action θ by one or more C
∗–scalings.

To keep the dimension the same we need to introduce for each C
∗
r an

exceptional coordinate xr ∈ C.

We can then distinguish between:

ordinary divisors: Da := {za = 0},

and exceptional divisors: Er := {xr = 0}.

The their intersections and exclusion set Zex are determined from the
so–called toric diagram.
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Resolutions of orbifold singularities

Example: Resolution of C3/Z3

The resolution of C
3/Z3 is obtained by replacing

θ : (z1, z2, z3) 7→
(

e2πi/3 z1,e
2πi/3 z2,e

2πi/3 z3

)

by

C
∗ : (z1, z2, z3, x) 7→

(
λ z1, λ z2, λ z3, λ

−3 x
)
, λ ∈ C

∗.

Hence we have ordinary divisors Da := {za = 0} and single
exceptional one E := {x = 0}.

E

D1 D2

D3 Exclusion set:
Zex := {z1 = z2 = z3 = 0},

Non–zero intersections:

D1D2E = D1D3E = D2D3E = 1.
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Resolutions of orbifold singularities

Example: Resolutions of C3/Z2 × Z2

In this case we need to replace three orbifold actions

θ1 : (z1, z2, z3) 7→ (z1,−z2,−z3) ,

θ2 : (z1, z2, z3) 7→ (−z1, z2,−z3) ,

θ3 : (z1, z2, z3) 7→ (−z1,−z2, z3) ,

by C
∗–scalings:

C
∗
1 : (z1, z2, z3, x1, x2, x3) 7→

(
z1, λ z2, λ z3, λ

−2 x1, x2, x3

)
,

C
∗
2 : (z1, z2, z3, x1, x2, x3) 7→

(
λ z1, z2, λ z3, x1, λ

−2 x2, x3

)
,

C
∗
3 : (z1, z2, z3, x1, x2, x3) 7→

(
λ z1, λ z2, z3, x1, x2, λ

−2 x3

)
.

Exceptional divisors Er := {xr = 0}, r = 1,2,3.
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Resolutions of orbifold singularities

C3/Z2 × Z2 toric diagrams

E2

E3D1

D3

E1

D2

triangulation “S”

E2

E3

E1

D3

D2D1

triangulation “E1”

E2

E3

E1

D3

D2D1

triangulation “E2”

E2

E3

E1

D3

D2D1

triangulation “E3”

Flop transitions:

“S” −→ “E1”:

curve E2E3 removed;
curve D1E1 appeared.

“S” −→ “E2”:

curve E1E3 removed;
curve D2E2 appeared.

“S” −→ “E3”:

curve E1E2 removed;
curve D3E3 appeared.

The different triangulations have different exclusion sets and lead to
different intersection numbers.
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Resolutions of orbifold singularities

Compact orbifold resolutions

The formal construction of compact orbifold resolutions is done on the
level of abstract divisors: Denef,Douglas,Florea,Grassi,Kachru’05,

Lust,Reffert,Scheidegger,Stieberger’06

Identify the global set of divisors:

Ra inherited divisors from the original torus T 6,

Er exceptional divisors inside the orbifold singularities,

Dai ordinary divisors needed in the integral cohomology.

Determine the set of linear equivalence relations, schematically:

na Dai ∼ Ra +
∑

r

na,i ;r Er .

Determine the intersection numbers from auxiliary polyhedra.
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Resolutions of orbifold singularities

Line bundle fluxes and twisted state VEVs

To build blow–ups of heterotic models we also have to specify which
gauge bundle we want to use. SGN,Klevers,Ploger,Trapletti,Vaudrevange’08,

SGN, Held,Ruehle,Michele Trapletti,Vaudrevange’09

Only for line bundles we have a systematic characterization:

F = (Vr )
I Er HI ←→ Pr = rV + P

Blow-up
Er

The bundle vectors Vr are determined by the left–moving shifted
momenta Pr of twisted state VEVs 〈Tr 〉 that generate the blow–up.
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Resolutions of orbifold singularities

Blow–ups of MSSM–like orbifold models

Along these lines one can for a given heterotic orbifold model we can
select a number of twisted states with non–vanishing VEVs and
construct the corresponding heterotic resolution models.

We constructed line bundle blow–ups for

mini–landscape MSSMs based on T 6/Z6–II,
SGN,Held,Rühle,Trappletti,Vaudrevange’08

heterotic MSSMs based on T 6/Z2 × Z2.
Blaszczyk,SGN,Rühle,Trappletti,Vaudrevange’10

There are various physical, practical and conceptual issues with these
constructions...
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Resolutions of orbifold singularities

Fate of hyper charge in full blow–up

In the mini-landscape MSSMs the hyper charge gets broken in full
blow–up: SGN,Held,Rühle,Trappletti,Vaudrevange’08

From the smooth Calabi-Yau perspective, because the hyper
charge is not perpendicular to all the bundle vectors.

(U(1)Y is part of the structure group. Distler,Greene’88 )

From the orbifold perspective in full blowup, because there are
fixed points with only SM charged twisted states.

Two possible ways to avoid this:

Do not blow–up the singularities with only SM charged states.

Use orbifold models in which the GUT breaking is performed by a
freely acting Wilson line, e.g. the heteroticT 6/Z2 × Z2 MSSMs.
Blaszczyk,SGN,Ratz,Rühle,Trappletti,Vaudrevange’09
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Resolutions of orbifold singularities

Triangulation dependence

The intersection numbers of the divisors affect e.g.

the Bianchi identities

the spectrum of massless states

the volumes of divisors and curves

The intersection numbers are extremely sensitive to the triangulation
chosen. And the number of possible triangulations is huge:

T 6/Z6–II: almost 2 million triangulations,

T 6/Z2 × Z2: order of 1033 triangulations.

Is there an appropriate choice for triangulation of the blow–up? What
decides this choice? What physics is behind this?
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Resolutions of orbifold singularities

Difference regions of moduli space

The matching of orbifold and resolution models is difficult: we are
comparing different descriptions at very different moduli space regions:
Aspinwall,Greene,Morrison’93

In the orbifold regime we can study perturbations of the CFT.

In the SUGRA regime we can perform a large volume analysis.

But in the overlapping region neither of them is reliable.

We need a worldsheet description that smoothly interpolate
between the different regimes...
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(2,2) Gauged Linear Sigma Models

(2,2) Gauged Linear Sigma Models (GLSMs)

Overview:

(2,2) Superspace in two dimensions

Superpotential and Fayet–Iliopoulos terms

Non–compact GLSM resolutions
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(2,2) Gauged Linear Sigma Models

Supersymmetries on the heterotic worldsheet

The heterotic string has at least (1,0) worldsheet supersymmetry.

When the worldsheet possesses: Hull,Witten’85

(2,2) supersymmetry:

The target space is a Kähler manifold,

and describes standard embedding only.

(2,0) supersymmetry:

The target space is a complex manifold,

which is generically equipped with torsion,

and can describe generic holomorphic vector bundles.
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(2,2) Gauged Linear Sigma Models

(2,2) Superspace in two dimensions

2D (2,2) Superspace is the dimensional reduced version of 4D N = 1
Superspace. Witten’93

I.e. it describes

worldsheet coordinates σ = σ0+σ3
2 , σ̄ = σ0−σ3

2 ,

and two complex Grassmann variables θ+, θ−.

Essentially, the only difference between (2,2) superspace in 2D and
N = 1 superspace in 4D is that the Lorentz group is reduced from
SO(1,3) to SO(1,1):

This allows new types of superfields,

e.g. twisted–chiral superfields.
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(2,2) Gauged Linear Sigma Models

(2,2) Superfields

We can recycle the 4D N = 1 multiplet in (2,2) superspace:

Chiral multiplet: D+Z = D−Z = 0:

components: Z = (z, ψ+, ψ−,Fz) and charge q.

Vector multiplet: V † = V :

components: V = (A,Aσ,Aσ̄, λ+, λ−,D) with A = A1 + iA2.

The reduced Lorentz group allows for novel multiplets:

Twisted–chiral multiplet: D+Σ = D−Σ = 0:

E.g. super field strength: Σ = D+D−V .
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(2,2) Gauged Linear Sigma Models

What is linear in GLSM

In GLSMs one take take the kinetic action to be quadratic in the chiral
superfield Z:

Skin, Z =

∫
d2σd4θZe2q VZ ,

and vector superfield V :

Skin, V =

∫
d2σd4θ

1
e2 ΣΣ .

This can of course be easily extended to multiplet chiral superfields Zi ,
X , C and vector multiplets Vr , etc.

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 33 / 66



(2,2) Gauged Linear Sigma Models

Superpotential

We can introduce a superpotential term:

Ssuper =

∫
d2σd2θ C P(Z) + h.c.

Here P(Z) is a homogeneous polynomial of the chiral superfields
Z = (Zi).

Gauge invariance of the superpotential demands: −qc + q(P(Z)) = 0.
(We take the charges of Zi positive and of C negative.)

The F–term of C leads to the constraint

Fc = P(z) = 0 .

Hence using a superpotential we can implement hyper surface
constraints in the effective target space geometry.
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(2,2) Gauged Linear Sigma Models

Fayet–Iliopoulos term

We can introduce a Fayet–Iliopoulos(FI) term:

SFI =

∫
d2σdθ̄−dθ+ ρΣ + h.c.

The complex FI–parameter ρ = b + iβ corresponds to

an axion β,

and a real Kähler parameter b.

The D–term constraint, e.g.

D =
∑

i

qi |zi |2 − b = 0

results in various phases, i.e. target space topologies.
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(2,2) Gauged Linear Sigma Models

Example: C3/Z3 GLSM resolution

The resolution of C
3/Z3 is obtained by promoting

θ : (z1, z2, z3) 7→
(

e2πi/3 z1,e
2πi/3 z2,e

2πi/3 z3

)

to superfields Za,X with charges:

U(1) charge Z1 Z2 Z3 X
E 1 1 1 −3

The D–term

|z1|2 + |z2|2 + |z3|2 − 3 |x |2 = b

leads two phases:

Orbifold phase: b < 0: x 6= 0 leaves a Z3 action on the za’s.

Blow–up phase: b > 0: there is a four–cycle with a radius set by b.
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(2,2) Gauged Linear Sigma Models

Phases of C3/Z2×Z2 GLSM resolutions
Similarly the C

3/Z2×Z2 orbifold leads to the charge assignment:

U(1) charge Z1 Z2 Z3 X1 X2 X3

E1 0 1 1 −2 0 0

E2 1 0 1 0 −2 0

E3 1 1 0 0 0 −2

This leads the D–term potential:

V =
e2

1

2

(
|z2|2 + |z3|2−2 |x1|2−b1

)2

+
e2

2

2

(
|z1|2 + |z3|2−2 |x2|2−b2

)2

+
e2

3

2

(
|z1|2 + |z2|2−2 |x3|2−b3

)2

The divisor E1:={x1=0} exists if:

V
∣∣∣
E1

= 0 ⇒ b1 ≥ 0

The curve D1E1 exists when:

V
∣∣∣
D1E1

= 0 ⇒ b1 ≥ 0 ,

b1− b2 − b3 ≥ 0
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(2,2) Gauged Linear Sigma Models

Phases of C3/Z2×Z2 GLSM resolutions

Divisor exists when

D1 always

D2 always

D3 always

E1 b1 ≥ 0

E2 b2 ≥ 0

E3 b3 ≥ 0

Curve exists when

D1D2 b3 ≤ 0

D1D3 b2 ≤ 0

D2D3 b1 ≤ 0

Curve exists when

E1E2 b1,b2 ≥ 0 , b3 ≤ b1 + b2

E2E3 b2,b3 ≥ 0 , b1 ≤ b2 + b3

E1E3 b1,b3 ≥ 0 , b2 ≤ b1 + b3

D1E1 b1 ≥ 0 , b1 ≥ b2 + b3

D2E2 b2 ≥ 0 , b2 ≥ b1 + b3

D3E3 b3 ≥ 0 , b3 ≥ b1 + b2

D1E2,3 b2 ≥ 0 , b3 ≥ 0

D2E1,3 b1 ≥ 0 , b3 ≥ 0

D3E1,2 b1 ≥ 0 , b2 ≥ 0
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(2,2) Gauged Linear Sigma Models

Phases of C3/Z2×Z2 GLSM resolutions

orbifold phase:
no exceptional divisors

b1 ≤ 0
b2 ≤ 0
b3 ≤ 0

D3

D2D1

partial resolution:
one exceptional divisor

b1 ≥ 0
b2 ≤ 0
b3 ≤ 0

E1

D3

D2D1

partial resolution:
two exceptional divisors

b1 ≥ b2 ≥ 0

b3 ≤ 0

E2 E1

D3

D2D1

b2 ≥ b1 ≥ 0

b3 ≤ 0

E2 E1

D3

D2D1

full resolution: three exceptional divisors

b1, b3 ≥ 0

b2 ≥ b1 + b3

E2

E3

E1

D3

D2D1

b1 + b2 ≥ b3 ≥ 0
b1 + b3 ≥ b2 ≥ 0
b2 + b3 ≥ b1 ≥ 0

E2

E3D1

D3

E1

D2
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Toroidal orbifold resolution GLSMs

Toroidal orbifold resolution GLSMs

Overview:

Global toroidal orbifold resolutions

Different types of resolution GLSMs

Moduli space of orbifold resolution models

Partially resolvable GLSMs
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Toroidal orbifold resolution GLSMs

Global toroidal orbifold resolutions

To obtain GLSM resolutions for compact orbifolds T 6/ZN we proceed
as follows: Blaszczyk,SGN,Rühle’11

Start from a factorized T 6 = T 2
1 × T 2

2 × T 2
3 .

Describe each two–torus T 2
a as a hyper surface in a weighted

projective space with homogeneous coordinates zai .

Use the local GLSM resolution procedure to resolve the
singularities at the fixed points z1i = z2j = z3k = 0.

We will illustrate this in some detail for T 6/Z3 next.
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Toroidal orbifold resolution GLSMs

Two–torus T 2(Z3) possessing a Z3 symmetry

A two–torus possessing a Z3 orbifold symmetry can be described as
an algebraic torus, i.e. a hyper surface in the projective space P

2
111[3]:

U(1) charge Z1 Z2 Z3 C
R 1 1 1 −3

W = C(Z3
1 + Z3

2 + Z3
3 )

Their D– and F–terms

|z1|2 + |z2|2 + |z3|2 − 3 |c|2 = a , c z2
i = 0 , z3

1 + z3
2 + z3

3 = 0 ,

leads two phases:

Non–geometrical phase: the target space is a point.
a < 0: c 6= 0⇒ zi = 0

Geometrical phase: the target space is a two–torus of radius
√

a.
a > 0: ∃zi 6= 0⇒ c = 0
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Toroidal orbifold resolution GLSMs

Two–tori as hyper surfaces in projective spaces

Torus Projective hyper surface U(1) charges of

Superpotential Z1 Z2 Z3 Z4 C C′

T 2(Z3) P2
1,1,1[3] 1 1 1 – -3 –

W = C(Z3
1 + Z3

2 + Z3
3 )

T 2(Z4) P2
1,1,2[4] 1 1 2 – -4 –

W = C(Z4
1 + Z4

2 + Z2
3 )

T 2(Z6) P2
1,2,3[6] 1 2 3 – -6 –

W = C(Z6
1 + Z3

2 + Z2
3 )

T 2(Z2) P3
1,1,1,1[2,2]/Z2

2 1 1 1 1 -2 -2

W = C(κZ2
1 +Z2

2 + Z2
3 ) + C′(Z2

1 +Z2
2 + Z2

4 )
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Toroidal orbifold resolution GLSMs

Minimal fully resolvable GLSM for T 6/Z3

The GLSM description of T 6 = T 2
1 (Z3)× T 2

2 (Z3)× T 2
3 (Z3) can be

extended with one exceptional gauging to: Aspinwall,Plesser’11

U(1) charge Z1i Z2j Z3k C1 C2 C3 Xijk

R1 1 0 0 −3 0 0 0

R2 0 1 0 0 −3 0 0

R3 0 0 1 0 0 −3 0

E111 δ1i δ1j δ1k 0 0 0 −3 δ1iδ1jδ1k

with the superpotential:

W =
∑

a

Ca

(
Z3

a1X111 + Z3
a2 + Z3

a3

)
.

This GLSM has phases describing both the T 6/Z3 and its resolution.
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Toroidal orbifold resolution GLSMs

Minimal fully resolvable GLSM

In the orbifold and blow–up regimes (where ca = 0) the D– and
F–terms reduce to: Aspinwall,Plesser’11, Blaszczyk,SGN,Rühle’11

|za1|2 + |za2|2 + |za3|2 = aa , z3
a1x111 + z3

a2 + z3
a3 = 0 ,

|z11|2 + |z21|2 + |z31|2 − 3 |x111|2 = b111 , a = 1,2,3 .

Orbifold phase: b111 < 0 < aa: x111 6= 0 induces a Z3 action:

θ111 : (z11, z21, z31) 7→ (ζ z11, ζ z21, ζ z31) which has fixed points,
z11 = z21 = z31 = 0, at the 27 roots of

z3
a2 + z3

a3 = 0 , a = 1,2,3 .

Blow–up phase: 0 < b111 < aa: fixed points are gone;

E111 = {x111 = 0} has 27 components with size b111.
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Toroidal orbifold resolution GLSMs

GLSM phases correspond to target space topologies

The following topology changes can be described by GLSM phase
transitions:

i) Modification of the intersection properties of divisors:

E.g. the so–called flop transitions, where in one phase two divisors
intersect, while in the next they do not anymore.

ii) Appearance or disappearance of divisors:

E.g. exceptional cycles that appear in blow–up process of orbifold
singularities.

iii) Alteration of the target space dimension:

E.g. the transition of the algebraic torus from the geometrical to the
non–geometrical regime.
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Toroidal orbifold resolution GLSMs

Phases of resolution GLSMs:

1. Non–geometrical regime (a,b < 0):

The target space is just a point.

2. Orbifold regime (b < 0 < a):

Conventional orbifold: Torus modded by discrete rotations.

3. Blow–up regime (0 < b < a):

All exceptional cycles have finite size, but smaller than the torus cycles.

4. Critical blow–up regime (0 < a < b < 3 a):

The exceptional and torus cycles have comparable sizes.

5. Over–blow–up regime (0 < 3 a < b):

The roles of blow–up and torus cycles have become interchanged.

6. Singular over–blow–up regime (a < 0 < b):

The torus cycles disappeared inducing target space singularities.
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Toroidal orbifold resolution GLSMs

Maximal fully resolvable GLSM
In the minimal fully resolvable model we had one Kähler parameter
that sets the sizes of all 27 exceptional cycles simultaneously.

In the maximal fully resolvable model:

U(1) charges Z1i Z2j Z3k C1 C2 C3 Xijk

R1 1 0 0 −3 0 0 0

R2 0 1 0 0 −3 0 0

R3 0 0 1 0 0 −3 0

Ei ′j ′k ′ δi ′i δj ′j δk ′k 0 0 0 −3 δi ′iδj ′ jδk ′k

each fixed point gets its own U(1)Eijk
and coordinate xijk for all

i , j , k = 1,2,3.

W = C1

∑

i

Z3
1i

∏

j ,k

Xijk + C2

∑

j

Z3
2j

∏

i ,k

Xijk + C3

∑

k

Z3
3k

∏

i ,j

Xijk .
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Toroidal orbifold resolution GLSMs

Partially resolvable and non–factorized GLSMs

We can construct many other GLSMs associated to the T 6/Z3 orbifold
by only using subsets of the maximal number of gaugings

U(1) charges Z1i Z2j Z3k C1 C2 C3 Xijk

R1 1 0 0 −3 0 0 0

R2 0 1 0 0 −3 0 0

R3 0 0 1 0 0 −3 0

Ei ′j ′k ′ δi ′i δj ′j δk ′k 0 0 0 −3 δi ′iδj ′ jδk ′k

This allows us to build:

Partially resolvable GLSMs:

in which subsets of fixed points cannot be resolved

Resolutions of non–factorized orbifolds:

on non–factorized torus lattices
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Toroidal orbifold resolution GLSMs

Partially resolvable and non–factorized GLSMs

Overview of all partially resolvable and non–factorized T 6/Z3 we can
obtain by using a subset of all possible exceptional gaugings:

Exceptional Discrete FP Sets
Lattice

Fully resolvable
coordinates Group Groups Singular by adding

x111 – 1× 27 0 A2 × A2 × A2 –

x111, x211

Z3 3× 9 9
A2 × A2 × A2 x311

x111, x221 F4 × A2 x331

x111, x222 E6 x333

x111, x211, x121

Z
2
3 9× 3 18

A2 × A2 × A2
x131, x221, x231,
x311, x321, x331

x111, x221, x112 F4 × A2
x113, x222, x223,
x331, x332, x333

x111, x221, x212 no Lie lattice
x123, x133, x232,
x313, x322, x331

x111, x211, x121, x112 Z
3
3 27× 1 23 A2 × A2 × A2 rest
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Toroidal orbifold resolution GLSMs

GLSM resolvable toroidal T 6/ZN orbifolds

Using our GLSM methods we treat the following orbifolds:

Point Orbifold twist T 6 torus Exceptional Invisible moduli Indistinguishable

group vector lattice gaugings h1,1
off–diag h1,2

twisted fixed points/tori

Z3
1
3(1,1,−2) A3

2 27 6 0 0

1
4(1,1,−2)

D2
2 × A2

1 23 2 6 1× 2 FT

Z4 D2 × A1 × A3 6 2 2 2× 8 FP, 2× 2 FT

A2
3 8 2 0 4× 4 FP

Z6−I
1
6(1,1,−2) G2

2 × A2 17 2 5 1× 3 FT , 1× 2 FP

Z6−II
1
6(1,2,−3) G2 × A2 × A2

1 32 0 10 0

as they can all defined starting from factorized six–tori.

But none of the Z7,Z8–I,Z8–II,Z12–I and Z12–II orbifolds and the Z6–II

orbifold on non–factorizable lattices.

In addition...
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Toroidal orbifold resolution GLSMs

GLSM resolvable toroidal T 6/ZM × ZN orbifolds
Point Orbifold twist T 6 torus Exceptional Invisible moduli Indistinguishable

group vectors lattice gaugings h1,1
off–diag h1,2

twisted fixed points/tori

Z2 × Z2

1
2(1,−1,0),

A6
1 48 0 0 0

1
2(0,1,−1)

Z2 × Z4

1
2(0,1,−1),

D2
2 × A2

1 57 0 0 1× 2 FT
1
4(1,−1,0)

Z2 × Z6−I

1
2(0,1,−1),

G2 × A2 × A2
1 26 0 0 3× 3 FT , 1× 2FP

1
6(1,1,−2)

Z2 × Z6−II

1
6(1,−1,0),

G2
2 × A2 46 0 2 1× 3 FT

1
2(0,1,−1)

Z3 × Z3

1
3(1,−1,0),

A3
2 81 0 0 0

1
3(0,1,−1)

Z3 × Z6

1
3(0,1,−1),

G2
2 × A2 65 0 1 2× 2 FT , 3× 2 FP

1
6(1,−1,0)

Z4 × Z4

1
4(1,−1,0),

D3
2 87 0 0 0

1
4(0,1,−1)

Z6 × Z6

1
6(1,−1,0),

G3
2 80 0 0 1× 2 FP

1
6(0,1,−1)
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(2,0) Gauged Linear Sigma Models

(2,0) Gauged Linear Sigma Models (GLSMs)

Overview:

(2,0) Superspace in two dimensions

Worldsheet gauge anomaly conditions

GLSMs corresponding to twisted state VEVs
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(2,0) Gauged Linear Sigma Models

(2,0) Superspace in two dimensions

(2,0) supersymmetric worldsheet theories are needed to describe

generic holomorphic vector bundles

on a complex manifold with torsion.

2D (2,0) Superspace is spanned by: Dine,Seiberg’86

worldsheet coordinates σ = σ0+σ3
2 , σ̄ = σ0−σ3

2 ,

and a single complex Grassmann variable θ+.

I.e. (2,0) superspace can be obtained from (2,2) superspace by
dimensional reducing the Grassmann variable θ−.
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(2,0) Gauged Linear Sigma Models

Matter multiplets: Chiral & chiral-Fermi superfields

Superfield U(1) Bos. DOF Ferm. DOF
type symbol charge on off on off

chiral Ψa (qr )a za - ψa -
chiral-Fermi ΛI (Qr )

I - hI λI -

za, a = 0, . . . ,3 are the complex target space coordinates,

ψa, a = 0, . . . ,3 are their right–moving superpartners,

λI , I = 1, . . . ,16 are the left–moving fermions that generate the
target space gauge degrees of freedom (DOF)

The worldsheet action of the free heterotic string reads

Shet =

∫
d2σd2θ+

{ i
2

Ψa∂̄Ψa −
1
2

ΛIΛI
}
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(2,0) Gauged Linear Sigma Models

Bosonic gaugings & Fayet-Iliopoulos terms

Superfield Bos. DOF Ferm. DOF
type symbol charge on off on off

gauge (V ,A)r 0 Ar
σ,A

r
σ̄ D̃r φr -

The actions of the gauge multiplets Witten’93, Distler,Kachru’93

Sgauge =
1

2e2

∫
d2σd2θ+ FF

SFI =

∫
d2σdθ+ ρ(Ψ) F + h.c.

are expressed in terms of

the (2,0) gauge superfield strength F = −1
2D+

(
A− i ∂̄V

)

and the complex FI–parameter ρ.

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 56 / 66



(2,0) Gauged Linear Sigma Models

Non–Abelian bundles as fermionic gaugings

Superfield U(1) Bos. DOF Ferm. DOF
type symbol charge on off on off

Fermi-gauge Σi 0 si - ϕi -

The holomorphic functions M I
i(Ψ) define the monad bundle V:

Witten’93,Blumenhagen,Wisskirchen’96

0 −→ V −→ ONΣ
M−→ ⊗

I
O(QI

1, . . . ,Q
I
NV

) −→ 0 .
∈ ∈

Ξ Λ

This can realized by fermionic gaugings Distler’92

ΛI → ΛI + M I
i(Ψ)Ξi , Σi → Σi + Ξi ,

with chiral–Fermi parameters Ξi , i = 1, . . . ,NΣ.

The standard embedding: Ma
r (Ψ) = (Qr )

a
bΨb.
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(2,0) Gauged Linear Sigma Models

Some consistency requirements on a (2,0) GLSM

No pure or mixed gauge anomalies:

∀r , s :
∑

I

(Qr )
I (Qs)

I =
∑

a

(qr )a (qs)a  c2(V) = c2(TX )

No divergent FI-terms on the worldsheet:
(Otherwise the FI–parameters flow to ±∞ in the IR)

∀r :
∑

a

(qr )a = 0  c1(TX ) = 0

Distler’93
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(2,0) Gauged Linear Sigma Models

Bianchi identities versus GLSM anomaly cancellation
on resolutions of C3/Z2 × Z2

The Bianchi identities on triangulation “E1” read: SGN,Ha,Trapletti’08

Q2
2 + Q2

3 = 3 , Q2
2 − 2 Q1 ·Q3 = 1 , Q2

3 − 2 Q1 ·Q2 = 1

and on triangulation “S”:

Q2
1 + 2 Q2 ·Q3 = 2 , Q2

2 + 2 Q1 ·Q3 = 2 , Q2
3 + 2 Q1 ·Q2 = 2

The pure and mixed GLSM anomaly cancellations require: SGN’10

Q2
1 = Q2

2 = Q2
3 =

3
2
, Q1 ·Q2 = Q2 ·Q3 = Q3 ·Q1 =

1
4

Hence the GLSM anomaly conditions ensure that the Bianchi identities
in any triangulation are fulfilled.
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(2,0) Gauged Linear Sigma Models

Twisted state VEVs generate the blow–up

〈Tr 〉 6= 0⇒ Blow-up
Er

An r–twisted state |Tr 〉 = |pr ,Pr 〉, α̃a
−ṽa

r
|pr ,Pr 〉, has

right– and left–moving shifted momenta:

pr = p + rv , p ∈ SO(8) vector weight lattice;

Pr = P + rV , P ∈ SO(32) root lattice;

and Ñr excitations α̃a
−ṽa

r
. (Ñr counted in units ṽa

r = rva mod integers.)

The level matching condition reads:

P2
r = 1 + p2

r − 2 Ñr
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(2,0) Gauged Linear Sigma Models

Shifted momenta and GLSM charges

|pr , Pr〉 → (qr , Qr)

blow down large volume
br →∞-∞← br

charge assignment

Gauge Bundle
on CY

GLSM
CFT

Orbifold

This charge assignment has to be such that:

the number of DOF is as in the free theory

the sum of charges zero

The left-moving momenta define the charges of Ψa: SGN’10

(qr )a = (pr )a =
(nr )a

N

∑

a

(nr )a = N

And we introduce a new chiral superfield Ψr with charge (qr )r = −1.
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(2,0) Gauged Linear Sigma Models

Non–oscillatory blow–up modes

|pr , Pr〉 → (qr , Qr)

blow down large volume
br →∞-∞← br

charge assignment

Gauge Bundle
on CY

GLSM
CFT

Orbifold

We set the charges (Qr )
I of the chiral-Fermi superfields ΛI: SGN’10

(Qr )
I = (Pr )

I

The level matching condition ensures pure anomaly cancellation:

Q2
r = P2

r = 1 + p2
r = q2

r

for twisted states without oscillator excitations (Ñr = 0).
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(2,0) Gauged Linear Sigma Models

Oscillatory blow–up modes

When a twisted state that has oscillator excitations, e.g.:

|Tr 〉 = α̃a
−ṽr
|pr ,Pr 〉 , α̃a

−ṽr
α̃b
−ṽr
|pr ,Pr 〉

Setting Qr = Pr , we encounter a pure anomaly cancellation:

Q2
r = P2

r = 1 + p2
r − 2 Ñr 6= 1 + p2

r = q2
r ,

as Ñr 6= 0. To remove the anomaly we propose to: SGN’10

add some integers the entries Pr to define Qr

and include an extra chiral-Fermi multiplet Λr with charge −1

But this forces us to introduce a fermionic gauging: Distler’95

δrΛ
I = βI

r a Ψa Ξr + βI
r ab ΨaΨb Ξr + . . . , δr Λ

r = −Ψr Ξr ,

to preserve the number of fermionic DOF.
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(2,0) Gauged Linear Sigma Models A C
3/Z4 orbifold resolution

A C3/Z4 Model:

v =
`
0, 1

4
2
, − 1

2

´

V =
` 1

4
2
,− 1

2 , 013´

SO(26) × U(2) × U(1)

Choi,SGN,Trapletti’04

Nilles et al’06

a, b, A, B = 1, 2

α, β = 1, . . . 13

state representation in 4D Q(ΛI , Λ3, Λα; Λ-1, Λ-2)

1st twisted sector: eN1 = 0, P2
1 = 11

8˛̨
p1

` 1
4

2 1
2 012

±1
´¸

(26, 1) - 1
2 , - 1

8
X

` 1
4

2 1
2 012

±1; 0 0
´

˛̨
p1

`
- 3

4
2

- 1
2 013´¸

(1, 1)
1, - 1

8
X

`
- 3

4
2

- 1
2 013; 0 0

´

eN1 = 1
4 , P2

1 = 7
8

α̃a
−

1
4

˛̨
p1

` 1
4 - 3

4
1
2 013´¸

2R(1, 2)
0, - 3

8
X

` 1
4

2 1
2 013; -1 0

´

eN1 = 1
2 , P2

1 = 3
8

α̃3
−

1
2

˛̨
p1

` 1
4

2
- 1

2 013´¸
(1, 1)

0, 3
8

X
` 1

4
2 1

2 013; -1 0
´

α̃
3

−
1
2

˛̨
p1

` 1
4

2 - 1
2 013´¸

(1, 1)′
0, 3

8
X

` 1
4

2 1
2 013; -1 0

´

α̃a
−

1
4

α̃b
−

1
4

˛̨
p1

` 1
4

2
- 1

2 013´¸
3R(1, 1)

0, 3
8

X
` 1

4
2 1

2 013; -1 0
´

2nd twisted sector: eN2 = 0, P2
2 = 3

2˛̨
p2

` 1
2

2 0 012
±1

´¸
(26, 1) - 1

2 , 1
4

X
` 1

2
2 0 012

±1 ; 0 0
´

˛̨
p2

`
- 1

2
2 1 013´¸

(1, 1)
0, - 3

4
X

`
- 1

2
2 1 013 ; 0 0

´

˛̨
p2

`
- 1

2
2

-1 013´¸
(1, 1)

1, 3
4

X
`

- 1
2

2
-1 013 ; 0 0

´

˛̨
p2

`
- 1

2
2

0 012
±1

´¸
(26, 1) 1

2 , - 1
4

x
`

- 1
2

2
0 012

±1 ; 0 0
´

˛̨
p2

` 1
2

2 -1 013´¸
(1, 1)

0, 3
4

x
` 1

2
2 -1 013 ; 0 0

´

˛̨
p2

` 1
2

2 1 013´¸
(1, 1) -1, - 3

4
x

` 1
2

2 1 013 ; 0 0
´

eN2 = 1
2 , P2

2 = 1
2

α̃a
−1/2

˛̨
p2

` 1
2 - 1

2 0 013´¸
2R(1, 2)0,0 X

` 1
2

2 0 013 ; 0 -1
´

α̃
a
−1/2

˛̨
p2

` 1
2 - 1

2 0 013´¸
2R(1, 2)0,0 x

` 1
2

2 0 013 ; 0 -1
´
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(2,0) Gauged Linear Sigma Models A C
3/Z4 orbifold resolution

Non-Abelian Bundles from Oscillator States

We consider a GLSM associated to the C
3/Z4 orbifold with charges

Ψ0 Ψa Ψ3 Ψ -1 Ψ -2 ΛA Λ3 Λα Λ-1 Λ-2

q1,Q1 0 1
4

2 1
2 −1 0 1

4
2 1

2 0 −1 0

q2,Q2 0 1
2

2
0 0 −1 1

2
2

0 0 0 −1

First twisted oscillatory blow-up modes give:

δ1Λ
A = β1

A
a Ψa Ξ1 , δ1Λ

3 = (β1 Ψ3 + 1
2β1 ab ΨaΨb)Ξ1 ,

δ1Λ
-1 = −Ψ -r Ξ1 , δ1Λ

α = δ1Λ
-2 = 0

Second twisted oscillatory blow-up modes give:

δ2Λ
A = β2

A
a Ψa Ξ2 , δ2Λ

-2 = −Ψ -2 Ξ2 , δ2Λ
α = δ2Λ

3 = δ2Λ
-1 = 0

Standard embedding: β1
A

a = 1
4 δ

A
a , β1 = 1

2 , β2
A

a = 1
2 δ

A
a and β1 ab = 0
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Outlook

Outlook: What is next?

Precise mapping between compact orbifold CFTs with twisted and
untwisted VEVs and (2,0) GLSMs

Systematic construction of vector bundles in the GLSM language.

Computational tools to determine the effective (massless) 4D
spectrum in any GLSM phase.

Model building on compact GSLM resolutions
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