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Heterotic toroidal orbifolds

Heterotic toroidal orbifolds

Overview:

@ Geometry of toroidal orbifolds
@ Shift embedding and discrete Wilson lines
@ Twisted orbifold states

@ MSSM-like models
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Heterotic toroidal orbifolds

Geometry of toroidal orbifolds
A toroidal T ®/Zy orbifold is defined by:
@ Some complex coordinates u = (ug, Uy, uz),

@ Atorus lattice At := {n; e;,n; € Z} defining periodicity conditions:
u~u-+42, Le M.
(We will take At factorized, e.g. A3 for T6/Z3.)

@ Orbifold twist 6:
6 : (up,up,uz) — (ezml ug, e2™Vz u,, 23 Us)
where the v, are quantized in units of 1/N, i.e. v4 = na/N; ng, € Z.

@ To preserve target space supersymmetry: > v, =0 mod 2 .
a
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Heterotic toroidal orbifolds

Shift embedding and discrete Wilson lines

To define a heterotic orbifold we have to specify the gauge degrees of
freedom; we take them to be 16 complex fermions ', 1 = 1,...,16.

Their orbifold boundary conditions are defined by:
@ A gauge shift embedding V = (V1,..., V)
: (\L,... A1) (eZ”‘Vl AL L. g2V )\16>
@ Some Wilson lines W; = (W!,... W1®):
e : ()\1’ o 7)\16) s (eZﬂiWil AL ’ezniwilﬁ )\16)
All the entries of V and W; are quantized in units of 1/N.
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Heterotic toroidal orbifolds

Modular invariance

The one loop partition function has to be invariant under modular
transformations.

This results in a set of stringent consistency conditions on the gauge
shift and Wilson lines:

;(VZ—VZ)EO, gWiZEO,

where “=" means equal up to integers.
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Heterotic toroidal orbifolds

Twisted orbifold states

An orbifold supports untwisted and twisted states.
Dixon,Harvey,Vafa,Witten'85, Ibanez,Nilles,Quevedo’87

An r—twisted state, e.g. [T;) = |pr, Pr), &% ;alpr, Pr), is
characterized by:

@ a right-moving shifted momentum:
pr=p+rv, peSO(8)vector weight lattice;
@ a left-moving shifted momentum:
Pr=P+rV, P €Egx Egroot lattice;

@ and possible oscillators, e.g. G2 .., with V* = rv® mod integers.
r
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Heterotic toroidal orbifolds

MSSM-like models

Given that the input data of heterotic orbifolds is rather limited, it is
possible to perform systematic searches for interesting models:

@ The T®/Zg_, orbifold gives rise to a large pool of possible
so—called mini—Iandscape MSSMs. Buchmuller,Hamaguchi,Lebedev,Ratz’04,

Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz,Vaudrevange,Wingerter'07

@ Onthe T%/Z,,_, also MSSM-like models were constructed.
Kim?,Kyae’'07

@ The MSSM-like models on T6/Zz x Z; break the GUT via freely
acting Wilson line. Blaszczyk,SGN,Ratz,Ruhle, Trapletti,Vaudrevange’09
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Heterotic Calabi—Yau compactifications

Calabi—Yau compactifications of the heterotic string

Overview:

@ Smooth Calabi—Yau spaces
@ Vector bundles

@ Torsional manifolds
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Heterotic Calabi—Yau compactifications

Smooth Calabi—Yau spaces

Smooth compactifications requires the target space to be a
Calabi-Yau (CY) space to preserve N’ = 1 4D supersymmetry.

A CY space X is defined by the following properties:
@ a complex manifold, i.e. admit global complex coordinates,
@ which is Kahler, i.e. its fundamental form J is closed:

JZ ::caaé(jza A\dzé', dJZ == 0

@ and with vanishing first Chern class, i.e. ¢;(X) = [trR;] =0 .
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Heterotic Calabi—Yau compactifications

Smooth Calabi—Yau spaces

The topology of X is uniquely specified by its cohomology:
@ the number, hq », of harmonic (2,1)-forms,
@ the number, hq 1, of harmonic (1,1)-forms w(Al,l)’

@ and their intersections numbers:

dasc = /W(Al,l) A W?lyl) A w&l) ’
X

The fundamental (K&hler) form J, can be expanded as
Jo =) anuy
A

where a, are called the Kahler moduli.
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Heterotic Calabi—Yau compactifications

Divisors and curves

A CY space may possess various subspaces:
@ Divisors (four—cyles), D, are 4D real closed hyper surfaces of X.
@ Curves, C, are 2D real closed hyper surfaces of X.
Poincaré duality:
divisor D «—— (1,1)-form wayl)’

curve C =DD'  «—  (2,2)-form f ) =wf ) Al ).

Therefore, we often write D = wa 1) and let the context decide whether
the hyper surface or the (1,1)—form is meant.
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Heterotic Calabi—Yau compactifications

Kahler cone

The Kéahler cone of X is the subspace of the Kahler moduli space such

that the volumes
(X 1 J 0,
vol(X) = 3/ %2>

1 1
vol(D) = 2|/J§ o XJ§w871)>O,

of X, all its divisors D and all its curves C are positive.
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Heterotic Calabi—Yau compactifications

Vector bundles

In order that a gauge background is compatible with A/ = 1 SUSY in
4D, it has to satisfy the Hermitean Yang—Mills (HYM) equations

Fab:FQQ:07 GQaFaQZO-

By the Donaldson-Uhlenbeck-Yau theorem solutions to these
equations exist for any vector bundle V that is

@ holomorphic,
@ stable, i.e. for any subsheaf with rk(F) < rk(V): u3(F) < py(V),

@ and has slope zero: p3(V) = 0.

The slope 13(V) is defined as 13 (V) = rk(1V) / J2cy (V).
X
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Heterotic Calabi—Yau compactifications

Examples of stable vector bundles

The construction of stable holomorphic vector bundles is in general
very complicated. But there are two simple examples:

@ Standard embedding: F, = Ry:

This SU(3) bundle is obtained by setting the gauge connection A;
equal to the spin—connection wj.

@ Line bundles: F, = (Va)' w(ALl) H,:

These Abelian bundles are parameterized by line bundle vectors
V, that encode the embedding in Cartan subalgebra {7, }.

For the latter one needs to ensure that it is slope zero, i.e.
1
uJ(F)zz/JZZFQ:O.
X
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Heterotic Calabi—Yau compactifications

Torsional manifolds

The non—integrated Bianchi identity for the gauge invariant field
strength Hz of the Kalb—Ramond two—form B, reads: stromingerge

dHs = o (tng —tF}), H3=i(—-9)J;.

Integrated over a four—cycle D:
/ (tng —tF2)=0.
D

Hence, unless trR% = trFZ?, as in the standard embedding, any vector
bundle in a heterotic compactification

@ leads to torsion, i.e. Hz # 0,

@ and X is no longer Kahler: dJ, # 0.

Stefan Groot Nibbelink (ASC,LMU) Heterotic orbifold resolutions and GLSMs Bethe Forum, 2011 16/ 66



Resolutions of orbifold singularities

Resolutions of orbifold singularities

Overview:

@ Toric geometry

@ Non-compact toric resolutions

@ Compact orbifold resolutions

@ Twisted state VEVs and line bundle fluxes

@ Blow—-ups of MSSM-like orbifold models
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Resolutions of orbifold singularities

Toric geometry
A toric space X = (CN — Z¢y)/(C*)" is defined by

@ complex coordinates z = (z1,...,zy) € CN,
@ some exclusion set Zgy,

@ and n independent C* = C — {0} scalings:
Cr: (z1,...,2n) ~ ()\Eqr)l 21, .., AN ZN) , A€ C*.
The divisors of X are identified by the equations D; := {z; = 0}, with

linear equivalence relations among them.

Many topological properties are encoded in the exclusion set Zgy:
In particularly it determines which curves exist.
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Resolutions of orbifold singularities

Non—compact toric resolutions
The idea of toric resolutions of C2/Zy singularities is to replace the
orbifold action # by one or more C*—scalings.

To keep the dimension the same we need to introduce for each C; an
exceptional coordinate x, € C.

We can then distinguish between:
@ ordinary divisors: D, := {za = 0},
@ and exceptional divisors: E; := {x; = 0}.
The their intersections and exclusion set Z.y are determined from the

so—called toric diagram.
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Resolutions of orbifold singularities

Example: Resolution of C3/Z3

The resolution of C3/Z3 is obtained by replacing

0: (z1,22,23) — (ezﬂi/s 2, e27/3 7, @2ri/3 23)
by
c*: (217227237)() — ()\Zl,)\Zz,)\Z37)\_3x> ., A€ C*.

Hence we have ordinary divisors D, := {z = 0} and single
exceptional one E := {x = 0}.
Ds @ Exclusion set:
Zex == {21 = 22 = 23 = 0},
@ Non-zero intersections:
5. b, D;D,E = D;D3E = D,D3E = 1.
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Resolutions of orbifold singularities

Example: Resolutions of C3/Z, x Z;
In this case we need to replace three orbifold actions
01: (21,22,23) — (21, —22,—23) ,
0r: (21,22,23) — (—21,22,—23) ,
O3 : (21,22,23) — (—21,—25,23) ,
by C*-scalings:
Ci: (21,22,23,X1,X2,X3) (zl,)\zz,/\23,)\‘2 xl,xz,x3> ,

. -2
C; . (217227237X17X27X3) = <A217227)‘Z37X17)‘ X27X3) )

. 2
C3: (z1,22,23,%X1,X2,X3) — <A217A22723,X1,X2,A Xs) .

Exceptional divisors E, := {x, =0},r =1,2,3.
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Resolutions of orbifold singularities

C3/Z, x 7 toric diagrams

D; D3 Flop transitions:
E, E, E, E, S” — "Eq™:
curve E>E3 removed;
curve D; E; appeared.
Dl E3 D2 Dl E3 DZ
triangulation “S” triangulation “E;” || «g» “E,"
Ds Ds curve E;E3 removed;
curve D,E, appeared.
E, E, E, E, 2E2 app
HS” HE3H:
D; Es D, D; Es D, curve E;E, removed;
triangulation “E»” triangulation “E3” curve D3;E; appeared.

The different triangulations have different exclusion sets and lead to
different intersection numbers.
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Resolutions of orbifold singularities

Compact orbifold resolutions

The formal construction of compact orbifold resolutions is done on the
level of abstract divisors: Denef,Douglas,Florea,Grassi,Kachru’05,
Lust,Reffert,Scheidegger,Stieberger'06

@ Identify the global set of divisors:

Ra inherited divisors from the original torus TS,
E; exceptional divisors inside the orbifold singularities,

D, ordinary divisors needed in the integral cohomology.

@ Determine the set of linear equivalence relations, schematically:

Na Dai ~ Ra"‘zna,i;r Er.
r

@ Determine the intersection numbers from auxiliary polyhedra.
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Resolutions of orbifold singularities

Line bundle fluxes and twisted state VEVsS

To build blow—ups of heterotic models we also have to specify which
gauge bundle we want to use. SGN Klevers,Ploger,Trapletti,Vaudrevange'08,
SGN, Held,Ruehle,Michele Trapletti,Vaudrevange'09

Only for line bundles we have a systematic characterization:

A A

Blow-up

The bundle vectors V, are determined by the left—-moving shifted

momenta P, of twisted state VEVs (T, ) that generate the blow—up.
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Resolutions of orbifold singularities

Blow—ups of MSSM-like orbifold models

Along these lines one can for a given heterotic orbifold model we can
select a number of twisted states with non—vanishing VEVs and
construct the corresponding heterotic resolution models.

We constructed line bundle blow—ups for

@ mini—landscape MSSMs based on T8 /Zg_y,
SGN,Held,Ruhle, Trappletti,Vaudrevange’'08

@ heterotic MSSMs based on T®/Z, x Z,.
Blaszczyk,SGN,Rihle, Trappletti,Vaudrevange’10

There are various physical, practical and conceptual issues with these
constructions...
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Resolutions of orbifold singularities

Fate of hyper charge in full blow—up

In the mini-landscape MSSMs the hyper charge gets broken in full
bIow—up: SGN,Held,Ruhle, Trappletti,Vaudrevange’'08

@ From the smooth Calabi-Yau perspective, because the hyper
charge is not perpendicular to all the bundle vectors.

(U(1)y is part of the structure group. Distler,Greene’ss )
@ From the orbifold perspective in full blowup, because there are
fixed points with only SM charged twisted states.
Two possible ways to avoid this:
@ Do not blow-up the singularities with only SM charged states.

@ Use orbifold models in which the GUT breaking is performed by a
freely acting Wilson line, e.g. the heteroticT ©/Z, x Z, MSSMs.

Blaszczyk,SGN,Ratz,Riihle, Trappletti,Vaudrevange'09
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Resolutions of orbifold singularities
Triangulation dependence
The intersection numbers of the divisors affect e.g.

@ the Bianchi identities
@ the spectrum of massless states

@ the volumes of divisors and curves

The intersection numbers are extremely sensitive to the triangulation
chosen. And the number of possible triangulations is huge:

@ T6/Zg_: almost 2 million triangulations,
@ T6/7Z, x Z,: order of 10 triangulations.

Is there an appropriate choice for triangulation of the blow—-up? What
decides this choice? What physics is behind this?
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Resolutions of orbifold singularities

Difference regions of moduli space

The matching of orbifold and resolution models is difficult: we are

comparing different descriptions at very different moduli space regions:
Aspinwall,Greene,Morrison’93

. 0 .
string geometry | classical geometry

b,
|
urbative ’ SUGRA
- ! ]
0 orbifold M,
limit

@ In the orbifold regime we can study perturbations of the CFT.
@ In the SUGRA regime we can perform a large volume analysis.
@ But in the overlapping region neither of them is reliable.

We need a worldsheet description that smoothly interpolate

between the different regimes...
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(2,2) Gauged Linear Sigma Models

(2,2) Gauged Linear Sigma Models (GLSMs)

Overview:

@ (2,2) Superspace in two dimensions
@ Superpotential and Fayet—Illiopoulos terms

@ Non-compact GLSM resolutions
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(2,2) Gauged Linear Sigma Models

Supersymmetries on the heterotic worldsheet

The heterotic string has at least (1,0) worldsheet supersymmetry.
When the worldsheet possesses: Hull,witten's5
@ (2,2) supersymmetry:
@ The target space is a Kahler manifold,
@ and describes standard embedding only.
® (2,0) supersymmetry:

@ The target space is a complex manifold,
@ which is generically equipped with torsion,
@ and can describe generic holomorphic vector bundles.
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(2,2) Gauged Linear Sigma Models

(2,2) Superspace in two dimensions

2D (2,2) Superspace is the dimensional reduced version of 4D N = 1
Superspace. witten'93

|.e. it describes

@ worldsheet coordinates o = ”°J2r”3, =%

@ and two complex Grassmann variables 6,0,

Essentially, the only difference between (2,2) superspace in 2D and

N = 1 superspace in 4D is that the Lorentz group is reduced from
SO(1,3) to SO(1,1):

@ This allows new types of superfields,

e.g. twisted—chiral superfields.
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(2.2) Gauged Linear Sigma Models
(2,2) Superfields
We can recycle the 4D A/ = 1 multiplet in (2,2) superspace:
@ Chiral multiplet: D, Z =D_Z = 0:
components: Z = (z,v¢4,v_,F;) and charge qg.
@ Vector multiplet: VI = V:

components: V = (A, Ay, Az, Ay, A\_,D) with A = A; +iA;.

The reduced Lorentz group allows for novel multiplets:
@ Twisted—chiral multiplet: D, ¥ = D_¥. = 0:

@ E.g. super field strength: ¥ =D, D_V.
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(2,2) Gauged Linear Sigma Models

What is linear in GLSM

In GLSMs one take take the kinetic action to be quadratic in the chiral
superfield Z:

Skin,Z = /d%d“@?ezqu ,
and vector superfield V.
Sknv = [ Rod'9 =T
kin,v — g ? .

This can of course be easily extended to multiplet chiral superfields Z;,
X, C and vector multiplets V;, etc.
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(2,2) Gauged Linear Sigma Models

Superpotential

We can introduce a superpotential term:

Here P(Z) is a homogeneous polynomial of the chiral superfields
Z=(2).

Gauge invariance of the superpotential demands: —qc + q(P(2)) = 0.
(We take the charges of Z; positive and of C negative.)

The F—term of C leads to the constraint

Hence using a superpotential we can implement hyper surface
constraints in the effective target space geometry.
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(2,2) Gauged Linear Sigma Models

Fayet—Iliopoulos term
We can introduce a Fayet—lliopoulos(FI) term:
Sp = /dzade‘—d9+ p¥ +h.c.

The complex Fl-parameter p = b + i3 corresponds to

@ an axion g,

@ and a real Kahler parameter b.

The D—term constraint, e.g.
D=) qz]®-b=0
i

results in various phases, i.e. target space topologies.
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(2,2) Gauged Linear Sigma Models

Example: C3/Z3; GLSM resolution
The resolution of C3/Z3 is obtained by promoting
0: (z1,22,23) — (ez’“/?’ z,,e2m/8 7, g2mi/3 23)

to superfields Z,, X with charges:

‘U(l)chargeHZl Z5 23‘2(‘
. E [t 1 1]-3]

The D—term
[2? + (22 + |z3* = 3[x|* = b
leads two phases:
@ Orbifold phase: b < 0: x # 0 leaves a Z3 action on the z;’s.

@ Blow—up phase: b > 0: there is a four—cycle with a radius set by b.
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(2,2) Gauged Linear Sigma Models

Phases of C3/Z, x Z, GLSM resolutions

Similarly the C3/7Z, x Z, orbifold leads to the charge assignment:

‘ U(l) Charge H Z1 Zp Z3 H X1 A A

E; 0O 1 14-2 0 O
= 1 0 140 -2 O
Es 1 1 0|0 0 -2

This leads the D—term potential:

2 The divisor E1:={x;=0} exists if:
e 2 1 1
V =2 (12 + 23 -2 [xa by )

VI =0 = by >0

Ey

2
€5 2 2 2 2
+ > <|Zl\ + |z3|" =2 [x2| _b2> The curve D, E; exists when:

=0 = by >0,
D1E;
b —b,—-b3>0
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Phases of C3/Z, x Z, GLSM resolutions

(2,2) Gauged Lin

ear Sigma Models

Divisor exists when Curve exists when

D1 always E.E> by,bo >0, b3<b;+hb
D, always E,>E3 bo,b3 >0, by <by+bs
D3 always E1E3 by,b3 >0, by <b;+Dbs
E1 b; >0 D,E; by >0, by >by+bs
= b >0 D,E, b, >0, by >by+bs
= b3 >0 D3Es b3 >0, bz>b;+b,
Curve exists when

D.D> b3 <0 DiE>3 b, >0, b3 >0

D1D3 b, <0 D2E;3 by >0, b3>0

D2oD3 b, <0 D3E12 by >0, b, >0
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(2,2) Gauged Linear Sigma Models

Phases of C3/Z, x Z, GLSM resolutions

orbifold phase: partial resolution:
no exceptional divisors two exceptional divisors
D3
by <0 Ds
b, <0 by >b, >0 E, E,
bs <0 Dy D, b3 <0
D, D,
partial resolution:
one exceptional divisor Ds
Dy bo>b; >0 o g,
b1 >0
= E <
b2 <0 bs <0 o b,
b; <0 5,
full resolution: three exceptional divisors
Dy D,
b17 b3 2 0 E, E, bl + b2 Z b3 2 0 E, E,
bi+bs>hby >0
bz > by + bs b, +bs>by >0
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Toroidal orbifold resolution GLSMs

Toroidal orbifold resolution GLSMs

Overview:

@ Global toroidal orbifold resolutions
@ Different types of resolution GLSMs
@ Moduli space of orbifold resolution models

@ Partially resolvable GLSMs
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Toroidal orbifold resolution GLSMs

Global toroidal orbifold resolutions

To obtain GLSM resolutions for compact orbifolds T8 /Zy we proceed
as follows: Blaszczyk,SGN,Riihle’11

@ Start from a factorized T® = T2 x T2 x T2.

@ Describe each two—torus T2 as a hyper surface in a weighted
projective space with homogeneous coordinates z;.

@ Use the local GLSM resolution procedure to resolve the
singularities at the fixed points z;; = z,; = z3¢ = 0.

We will illustrate this in some detail for T8 /Z3 next.
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Toroidal orbifold resolution GLSMs

Two—torus T?(Z3) possessing a Zz symmetry

A two—torus possessing a Zs orbifold symmetry can be described as
an algebraic torus, i.e. a hyper surface in the projective space P, [3]:

‘U(l)charge H 2z 2 Zg‘ C‘
. R 1 1 1]-3]

W =c(z3+23+ 23

Their D— and F—terms

212 + |22 + |23 - 3|c|?=a, cz?=0, Zi+Zi+Zi=0,

leads two phases:

@ Non—-geometrical phase: the target space is a point.
a<0:c#0=2=0

@ Geometrical phase: the target space is a two—torus of radius /a.
a>0:3z;#0=c¢c=0
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Toroidal orbifold resolution GLSMs

Two—tori as hyper surfaces in projective spaces

Torus Projective hyper surface U(1) charges of
Superpotential Z1| 2| 23| Z4|C |

T2(Z5) 1135171[3] 1 |1 |1 |- |-3]|-
W =C(23 + 23 + 23)

T%(Z4) || P2 ,[4] 1 |1 |2 |- |-4]|-
W =C(Z} + 23 + 23)

T2(Zg) || P§, 4[6] 1 |2 |3 |- |-6]|-
W =C(2% + 23 + 23)

T2(Z)) 113117171[2,2]/2% 1 |1 (1 |1 |-2]-2
W =C(kZ2+Z2+ Z2)+C/(22 + Z2 + Z2)
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Toroidal orbifold resolution GLSMs

Minimal fully resolvable GLSM for T°/Z3

The GLSM description of T® = T2(Z3) x T2(Z3) x T2(Z3) can be
extended with one exceptional gauging to: Aspinwall,Plesser'11

(u@)charge [ 2 [ Z [Za [ [ [ G [ Xy |
R, 1 0 0 -3 0 0 0
R, 0 1 0 0 |-3| 0 0
R3 0 0 1 0 0 | -3 0
Eir | ou [ oy [ou | 0] 0] 0[] —3650,0u

with the superpotential:
w=Yc (zgl X1+ 23, + 233) .
a

This GLSM has phases describing both the T8/Z3 and its resolution.
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Toroidal orbifold resolution GLSMs

Minimal fully resolvable GLSM

In the orbifold and blow—up regimes (where c, = 0) the D— and
F—terms reduce to: Aspinwall,Plesser1l, Blaszczyk,SGN,Riihle’11

Za1|? + |Za2|? + |Za3]? = aa, 23 X1 + 23 +235 =0,

211 |% + |221|* + |231|* — 3 |X111/? = b111, a=123.

@ Orbifold phase: b1 < 0 < aa: X111 # 0 induces a Z3 action:
(9111 : (le, Z21, 231) — (C 2117C221,CZ31) which has fixed points,
Z11 = Zo1 = Z31 = 0, at the 27 roots of

23, +25=0,a=1,23.

@ Blow—up phase: 0 < by1; < ay: fixed points are gone,;
E111 = {X111 = 0} has 27 components with size bj1.
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Toroidal orbifold resolution GLSMs

GLSM phases correspond to target space topologies

The following topology changes can be described by GLSM phase
transitions:
i) Modification of the intersection properties of divisors:

E.g. the so—called flop transitions, where in one phase two divisors
intersect, while in the next they do not anymore.

i) Appearance or disappearance of divisors:

E.g. exceptional cycles that appear in blow—up process of orbifold
singularities.

iii) Alteration of the target space dimension:

E.g. the transition of the algebraic torus from the geometrical to the
non—geometrical regime.
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Toroidal orbifold resolution GLSMs

Phases of resolution GLSMs:

1. Non—geometrical regime (a,b < 0):
The target space is just a point.

2. Orbifold regime (b < 0 < a):
Conventional orbifold: Torus modded by discrete rotations.
3. Blow—up regime (0 < b < a):
All exceptional cycles have finite size, but smaller than the torus cycles.
4. Critical blow—up regime (0 < a < b < 3a):
The exceptional and torus cycles have comparable sizes.
5. Over—blow—up regime (0 < 3a < b):
The roles of blow—up and torus cycles have become interchanged.
6. Singular over—blow—-up regime (a < 0 < b):
The torus cycles disappeared inducing target space singularities.
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Toroidal orbifold resolution GLSMs

Maximal fully resolvable GLSM

In the minimal fully resolvable model we had one Kéhler parameter
that sets the sizes of all 27 exceptional cycles simultaneously.

In the maximal fully resolvable model:

‘ U(l) charges H Z4j ‘ Zgj ‘ Zak H C1 ‘ Co ‘ C3 H -Xijk
Ry 1ol o]-3[0o]o 0
R, ol 1] o0 ol-3]o0 0
Rs olo |l 1]o]lo]-3 0
Eirjrk | i [ 65 o] 0] 0] o[ 360

each fixed point gets its own U(l)Eijk and coordinate Xy for all
i,k =1,23.

W = ClZZfi HXijk +szZ§j HXijk +CszZ§’k H?t’ijk-
i ik i ik K i
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Toroidal orbifold resolution GLSMs

Partially resolvable and non—factorized GLSMs

We can construct many other GLSMs associated to the T®/Z3 orbifold
by only using subsets of the maximal number of gaugings

‘ U(l) charges H Z1i ‘ Zgj ‘ ng H Cl ‘ Cz ‘ Cg H 'Xijk
R 1]o]lo|-3[o]o 0
R» o/1]ofo]-3]o 0
Rs o/o/1]ofo]-3 0
Eie || 0 | 0 [d | 0 ] 0 | 0 [ =360k

This allows us to build:

@ Partially resolvable GLSMs:

in which subsets of fixed points cannot be resolved

@ Resolutions of non—factorized orbifolds:

on non—factorized torus lattices
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Toroidal orbifold resolution GLSMs

Partially resolvable and non—factorized GLSMs

Overview of all partially resolvable and non—factorized T ¢/Z3 we can
obtain by using a subset of all possible exceptional gaugings:

Exceptional Discrete FP Sets L attice Fully resolvable
coordinates Group | Groups \ Singular by adding
X111 | - [1x27] 0 [AxAxA - |
X111, X211 Ap X Ap x Ay X311
X111, X221 Z3 3x9 9 Fa x Az X331
X111, X222 Es X333
X131, X221, X231,
X111, X211, X121 Ay x Ap x Ay ’ '
X311, X321, X331
X113, X222, X223,
X111, X221, X112 z3 9x3 18 Fa x Ay 118 7222, 7223
X331, X332, X333
. . X123, X133, X232,
X111, X221, X212 no Lie lattice 123, 7133, 7232
X313, X322, X331
X111, X211, X121, X112 H Zg 27 x 1 23 Ao x Ay x Ay rest
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Toroidal orbifold resolution GLSMs

GLSM resolvable toroidal T®/Zy orbifolds

Using our GLSM methods we treat the following orbifolds:

Point Orbifold twist T6 torus Exceptional | Invisible moduli Indistinguishable
group vector lattice gaugings hé;fl_diag hin',izs‘ed fixed points/tori
Zs 1(1,1,-2) A3 27 6 0 0
D2 x A2 23 2 6 1x2FT
Za 3(1,1,-2) | D2 x Ag x Ag 2 2 2x8FP,2x 2FT
A2 2 0 4 x 4FP
Ze_| i(1,1,-2) G3 x Ay 17 2 5 1x3FT,1x2FP
Zg—n 3(1,2,-3) | Gax Ay x A2 32 0 10 0

as they can all defined starting from factorized six—tori.

But none of the Zv, Zg_,, Zg_y1, Z15— and Zq,_;, orbifolds and the Zg
orbifold on non—factorizable lattices.

In addition...
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Toroidal orbifold resolution GLSMs

GLSM resolvable toroidal T®/Zy x Zy orbifolds

Point Orbifold twist T6 torus Exceptional | Invisible moduli | Indistinguishable
rou vectors lattice augings hl‘{ . hi?2 fixed points/tori

9 p gauging off-diag twisted p
1
5(1,-1,0

Zo X 7o 21( ’ ) AS 48 0 0 0
5(0,1,-1)
1
5(0,1,-1),

Zo X Ty 21( 1), D2 x A? 57 0 0 1x2FT
7(1,-1,0)

7 %(071771)' 2

axZe | 4 Gy x Ap x A2 26 0 0 3x3FT,1x 2FP

3(1,1,-2)
2 i(1,-1,0), )

2 X Ze_11 1 Gs x Ay 46 0 2 1x3FT
5(0,1,-1)
1
5(1,-1,0),

Z3 % L3 31( ’ ) A3 81 0 0 0
£(0,1,-1)
1(0,1,-1), )

Z3 X ZLg ) G35 x Ay 65 0 1 2x2FT,3x2FP
§(1,-1,0)
1
z(1,-1,0),

Ty X L 41( ' ) D3 87 0 0 0
7(0,1,-1)
i@,-1,0

Ze x L 61(' 0 G3 80 0 0 1x2FP
5(0,1,-1)
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(2,0) Gauged Linear Sigma Models

(2,0) Gauged Linear Sigma Models (GLSMs)

Overview:

@ (2,0) Superspace in two dimensions
@ Worldsheet gauge anomaly conditions

@ GLSMs corresponding to twisted state VEVs
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(2,0) Gauged Linear Sigma Models

(2,0) Superspace in two dimensions

(2,0) supersymmetric worldsheet theories are needed to describe

@ generic holomorphic vector bundles

@ on a complex manifold with torsion.

2D (2,0) Superspace is spanned by: Dine,Seiberg'8e

@ worldsheet coordinates o = ”°J2r”3,5 = 2%

@ and a single complex Grassmann variable 0.

l.e. (2,0) superspace can be obtained from (2,2) superspace by
dimensional reducing the Grassmann variable 6.
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(2,0) Gauged Linear Sigma Models

Matter multiplets: Chiral & chiral-Fermi superfields

Superfield U(1) | Bos. DOF | Ferm. DOF

type symbol || charge | on  off on off
Chlral \Ua (qr)a Za = Q/Ja =
chiral-Fermi Al Q) | - n A

o Za,

@ t)a,

o )\,

a=_0,...,3 are the complex target space coordinates,

a=_0,...,3 are their right-moving superpartners,

I =1,...,16 are the left-moving fermions that generate the
target space gauge degrees of freedom (DOF)

The worldsheet action of the free heterotic string reads

i 1
Shet = / oo™ {5 Val¥a - 3 /\'/\'}
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(2,0) Gauged Linear Sigma Models

Bosonic gaugings & Fayet-lliopoulos terms

Superfield Bos. DOF | Ferm. DOF
type symbol || charge on off on off

gauge (V,AY [ o JALAL D'| ¢ - |

The actions of the gauge multiplets witten'93, Distler,Kachru’93

1 _
Sgauge = 2e2 /d20d29+ FF

Sp = / d?0dd™ p(W)F + h.c.
are expressed in terms of
@ the (2,0) gauge superfield strength F = —1D (A —idV)

@ and the complex Fl-parameter p.
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(2,0) Gauged Linear Sigma Models

Non—Abelian bundles as fermionic gaugings

Superfield U(1) | Bos. DOF | Ferm. DOF
type symbol || charge | on  off on off
| Fermi;gauge ¥ || 0 | R

The holomorphic functions M'; (W) define the monad bundle V:
Witten’93,Blumenhagen,Wisskirchen'96

M

0 — V — oM o ®O(QI17"'7QII\IV) — 0.
|

w
A

This can realized by fermionic gaugings Dpistler92

N €

AN = A+ M) Y oY 4=
with chiral-Fermi parameters =',i = 1,...,Ny.

The standard embedding: M3, (V) = (Q;)%p Vy.
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(2,0) Gauged Linear Sigma Models

Some consistency requirements on a (2,0) GLSM

No pure or mixed gauge anomalies:

vr,s: Z:(Qr)I (Qs)' = Z(Qr)a (Gs)a ~

| a

No divergent FI-terms on the worldsheet:
(Otherwise the Fl-parameters flow to +cc in the IR)

vr o Z(qr)a =0 ~

a

Distler'93
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(2,0) Gauged Linear Sigma Models

Bianchi identities versus GLSM anomaly cancellation
on resolutions of C3/Z;, x Z;

The Bianchi identities on triangulation “E1” read: SGN,Ha,Trapletti'08

Q2+Q3=3, Q3-2Q:-Qs=1, Q3-2Q;- Q=1

and on triangulation “S”:

Qf +2Q2-Q=2, Q3+2Q1-Q3=2, Q5+2Q1- Q=2

The pure and mixed GLSM anomaly cancellations require: scN'10

3 1
Qf=0Qf=0f=5, Q'Q=0Q=0Q Q=4

Hence the GLSM anomaly conditions ensure that the Bianchi identities
in any triangulation are fulfilled.
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(2,0) Gauged Linear Sigma Models

Twisted state VEVs generate the blow—up

@ Er
. <Tr> 75 0= & Blow-up

An r—twisted state [T;) = |pr, Pr), 4% galpr, Pr), has

@ right— and left-moving shifted momenta:
Pr=p+rv, p € SO(8) vector weight lattice;

Pr=P+1V, P € SO(32) root lattice;
@ and Nr excitations a2 ;.. (N, counted in units V2 = rv® mod integers.)

The level matching condition reads:
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(2,0) Gauged Linear Sigma Models

Shifted momenta and GLSM charges

charge assignment

Orbifold blow down GLSM large volume Gauge Bundle
—_———————— —_—
CFT -00 + by by — 00 on CY

This charge assignment has to be such that:
@ the number of DOF is as in the free theory

@ the sum of charges zero

The left-moving momenta define the charges of W&: scnio

@a=)="02 (e =N

And we introduce a new chiral superfield W, with charge (q,)r = —1.
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(2,0) Gauged Linear Sigma Models

Non—oscillatory blow—up modes

charge assignment

3 Ipr, Pr) — (ar, Qr) V
Orbifold blow down GLSM large volume Gauge Bundle
—_—————— —_——
CFT -00 « by b, — o0 on CY

We set the charges (Q;)' of the chiral-Fermi superfields A': sen10
(Q)' = (Pr)
The level matching condition ensures pure anomaly cancellation:
QF = P?=1+p? =g
for twisted states without oscillator excitations (Nr = 0).
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(2,0) Gauged Linear Sigma Models

Oscillatory blow—up modes
When a twisted state that has oscillator excitations, e.g.:

ITy) = da_v,‘prapr> 3 digrdb Ipr, Pr)

—¥r

Setting Q; = P;, we encounter a pure anomaly cancellation:
QP =P?=1+pf—2N #1+pf =07,

as N; # 0. To remove the anomaly we propose to: sGN'10

@ add some integers the entries P, to define Q;

@ and include an extra chiral-Fermi multiplet A" with charge —1

But this forces us to introduce a fermionic gauging: Distler9s

SN = VaZ + B VaVp S + ..., &GN =V, =,

to preserve the number of fermionic DOF.
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(2,0) Gauged Linear Sigma Models

A C3/Z4 orbifold resolution

A (C3/Z4 Mode|: state | representation  in 4D | Q(/\',/\3,/\‘°‘;/\'1,/\'2)
) 1st twisted sector: Ny =0, P2=1
v=(0,3%-3) pp (37302 £1)) [ (26,1).4 1 v (3% 10 +1,00)
2’ 8
2 2
V= (3% -4.09) o (300 | @y g (-3% 1 0%%00)
RN
S0(26) x U(2) x U(1) _ . 5
O‘a_%h)l (G-330%) | %(L2), 3 4 (3% 305 10
. . N, =2 p2=3
Choi,SGN, Trapletti'04 3 | (12 1113)2>* 1~ 8 (12 — )
a&” q|pp1 (7 =30 (1,1), 3 1c2o0% 10
Nilles et al'06 ;% 12 i i 0.3 iZi "
A ’
&4lP (372 07)) | (L) s (321 0% 10)
2« 2 2
a*‘_%ab_%lpl(% -3 01)) 3R(171)0’% v (3% 1 0% 10)
2nd twisted sector: N =0, PZ =3
b2 (37002 £1)) [ (26,1) 1 1 v | (3700 £1;00)
7°7
‘Pz ('Z 1013)> (1,1)0’_% v (_%21013; OO)
2
Ipz 47 0%) | (), g v (-3 -10%; 00)
P 002 1 26,1 X 17002 +1; 00
2 ( 1.1 2
\pz 12 .1 013)) (1,1), 3 x (4% -108;00)
P2 (3% 10%)) 1), 3 x (3210%2; 00)
PESNCES:
a,b,AB=1,2 &il/z|p2 (3 -3005)) 2r(1,2)0,0 v (%20013: 0-1)
a,B=1,...13 &%, ,lp2 (3 -300%)) | Zr(L.2)o,0 X (37000
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(2,0) Gauged Linear Sigma Models A C3/Z4 orbifold resolution

Non-Abelian Bundles from Oscillator States
We consider a GLSM associated to the C3/Z, orbifold with charges

| || \UO g \U3 | \U_l \U_Z || /\A /\3 X | /\-l /\-2 |

wQ:llo ¥ Ll-1 olf¥ L of-1 o0
Q|| 0 2 o]0 -1]% o o]0 -1

First twisted oscillatory blow-up modes give:
SN = B1R VRS, 1A% = (B V3 + 281 VAUP)S,
SNt =—VTZ . SN =8A2=0
Second twisted oscillatory blow-up modes give:

N = BPa WSy, NP =W, AT = 6N =6A =0

Standard embedding: 51, = 765, 51 =

a’

) ﬂZAa:%(SaA and Brap =0

NI
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Outlook

Outlook: What is next?

@ Precise mapping between compact orbifold CFTs with twisted and
untwisted VEVs and (2,0) GLSMs

@ Systematic construction of vector bundles in the GLSM language.

@ Computational tools to determine the effective (massless) 4D
spectrum in any GLSM phase.

@ Model building on compact GSLM resolutions
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