
Bethe Forum on LHC, Dark Matter and Unification, Bonn, November 2011

SUSY fits at the LHC
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From the motivation for a recent SUSY meeting at ICL:

The non-observation of SUSY-like signatures in the first fb−1

collected by ATLAS and CMS is in tension with the expected
ranges of the parameters of constrained SUSY models like the
CMSSM/mSUGRA or non-universal Higgs models. If no
evidence of a missing energy signature is found by the end of
the run year 2011, these constrained models will essentially be
ruled out, while a very large volume of the parameter space of
simple SUSY will be excluded.
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SUSY searches: past, present, future

I past: EWK & flavour observables, collider limits, ΩDM

I present: ⊕ LHC SUSY and Higgs exclusions

I future: ⊕ LHC discoveries. . .
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Indirect SUSY searches

There is a wealth of precision measurements

from B/K physics, (g − 2), astrophysics (DM) and collider limits

which show sensitivity to supersymmetry, in particular

I (g − 2)µ

I DM relic abundance
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Indirect SUSY searches: (g − 2)µ

3.6/2.4σ discrepancy between experimental data and SM prediction

Davier, Hoecker, Malaescu, Zhang, arXiv:1010.4180v1
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→ SUSY loops: aSUSY
µ ∼ sgn(µ) tanβM−2

SUSY
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µ ∼ sgn(µ) tanβM−2

SUSY
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Dark matter relic abundance ΩDM

ΩDM is too large for large parts of the CMSSM parameter space, special
annihilation mechanisms are needed
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SUSY framework: the constrained MSSM

Indirect SUSY searches are often interpreted in the constrained MSSM,

where the breaking is universal at the GUT scale

I universal scalar masses: M2
Q̃

, M2
Ũ

, M2
D̃

, M2
L̃
, M2

Ẽ
→ M2

0 at MGUT

I universal gaugino masses: M1, M2, M3 → M1/2 at MGUT

I universal trilinear couplings Ae
ij ,A

d
ij ,A

u
ij → A · he

ij ,A · hd
ij ,A · hu

ij at MGUT

In addition we have tanβ, and we fix sign(µ) = +

In the CMSSM the sparticle masses are strongly correlated, e.g.

Mg̃ ' 3Mχ̃± ' 3Mχ̃0
2
' 6Mχ̃0

1

and
m2

ũL ' M2
0 + 6.3 M2

1/2 + DũL

m2
ẽL ' M2

0 + 0.5 M2
1/2 + DẽL

where Df̃L
= M2

Z cos(2β)(T3f − Qf sin(2θW ))
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The Fittino CMSSM fits

I For the calculation of non-LHC observables we have used

– the spectrum generator SPheno;

– the Mastercode compilation for (g − 2)µ, flavour and electroweak
precision observables;

– MicrOMEGAs for the DM relic densities;

– HiggsBounds for the Higgs limits.

I We require that χ̃0
1 is the LSP.

I We then calculate and minimize

χ2 = (~Oobs − ~Oth(~P))T cov−1
M (~Oobs − ~Oth(~P)) + limits

for each point ~P in the CMSSM parameter space using the Fittino

package.
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The Fittino CMSSM fits

Our best fit point without LHC exclusions. . .
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SUSY searches: past, present, future

I past: EWK & flavour observables, collider limits, ΩDM

I present: ⊕ LHC SUSY and Higgs exclusions

I future: ⊕ LHC discoveries. . .
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SUSY particle production at the LHC

SUSY particles would be produced at the LHC via QCD processes

[Beenakker, Brensing, MK, Laenen, Kulesza, Niessen ’09]
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SUSY particle production at the LHC

SUSY particles would be produced at the LHC via QCD processes
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SUSY searches at hadron colliders

Powerful MSSM signature at the LHC: cascade decays with ET,miss

Generic signature for many new physics models which address

– the hierarchy problem
– the origin of dark matter

→ predict spectrum of new particles at the TeV-scale
with weakly interacting & stable particle (← discrete parity)
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Squark and gluino searches at the LHC

ATLAS limits (1 fb−1)

→ mq̃ ≈ mg̃ ∼> 980 GeV
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Squark and gluino searches at the LHC

CMS limits (1 fb−1)
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Direct SUSY searches at the LHC: expected limits

The LHC is probing the preferred region of SUSY parameter space
Bechtle, Desch, Dreiner, MK, O’Leary, Robens, Sarrazin, Wienemann, arXiv:1102.4693 [hep-ph]
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Direct SUSY searches at the LHC: expected limits

But what if we do not see any SUSY signal at the LHC?
Bechtle, Desch, Dreiner, MK, O’Leary, Robens, Sarrazin, Wienemann, arXiv:1102.4693 [hep-ph]
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Direct SUSY searches at the LHC: expected limits

We have considered the SUSY search in the 4 jets + ET ,miss signature

with Meff =
∑

i pT ,i + ET ,miss:

ATL-PHYS-PUB-2010-10
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Direct SUSY searches at the LHC: expected limits

I We have calculated the CMSSM signal for a grid in (m0,m1/2) using

– the spectrum generator SPheno;

– the MC generator Herwig++;

– NLO+NLL K-factors;

– the fast detector simulation Delphes.

I We consider ten bins in the range 0 < Meff < 4 TeV and calculate the
χ2 from the number of signal and background events in each bin of
the Meff distribution.

I The SM background is taken from the ATLAS simulation. We assign
30% systematic uncertainty to the SUSY signal cross-section, and 20%
systematic uncertainty to the background.
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Direct SUSY searches at the LHC: expected limits

We find good agreement with the ATLAS simulation:

FITTINO 4 jets 0 lepton LO

FITTINO 4 jets 0 lepton NLO
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Direct SUSY searches at the LHC: expected limits

The 4 jets +ET ,miss signature is rather independent of tanβ and A0:
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Global SUSY fits with projected LHC exclusions: results

Low-energy observables, DM, no LHC exclusions
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Global SUSY fits with projected LHC exclusions: results

Low-energy observables, DM and LHC exclusions with 1 fb−1
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Global SUSY fits with projected LHC exclusions: results

Low-energy observables, DM and LHC exclusions with 2 fb−1
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Global SUSY fits with projected LHC exclusions: results

Low-energy observables, DM and LHC exclusions with 7 fb−1
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Global SUSY fits with projected LHC exclusions: is there a tension?

→ LEOs prefer low mass scales (for non-coloured sector)

→ LHC prefers high mass scales (for coloured sector)

Is there a tension building up?

Let us look at the best fit points:

M0 M1/2 A0 tanβ χ2/ndf

no LHC 77+114
−31 333+89

−87 426+70
−735 13+10

−8 19/20

35 pb−1 126+189
−54 400+109

−40 724+722
−780 17+14

−9 20/21

1 fb−1 235+389
−103 601+148

−63 627+1249
−717 31+19

−18 24/21

2 fb−1 254+456
−128 647+157

−74 771+1254
−879 30+20

−19 24/21

7 fb−1 403+436
−281 744+142

−150 781+1474
−918 43+11

−33 25/21

→ even the CMSSM would ”survive” the 2011/2012 LHC run
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Global SUSY fits with projected LHC exclusions: is there a tension?
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Why do tan β and M1/2 move to larger values?

I mainly due to aSUSY
µ ∼ sgn(µ) tanβM−2

SUSY and ΩDM

I ΩDM is too large for large parts of the CMSSM parameter space,
special annihilation mechanisms are needed
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Why do tan β and M1/2 move to larger values?
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Global SUSY fits with projected LHC exclusions: individual pulls
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Global SUSY fits with projected LHC exclusions: individual pulls
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Global SUSY fits with projected LHC exclusions: individual pulls

-11 fb
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Global SUSY fits with projected LHC exclusions: individual pulls

-12 fb
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Global SUSY fits with projected LHC exclusions: individual pulls

-17 fb
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Global SUSY fits with projected LHC exclusions: mass spectrum

Low-energy observables, DM and LHC exclusions with 1 fb−1
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Global SUSY fits with projected LHC exclusions: mass spectrum

Low-energy observables, DM and LHC exclusions with 2 fb−1
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Global SUSY fits with projected LHC exclusions: mass spectrum

Low-energy observables, DM and LHC exclusions with 7 fb−1
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What is the role of the Higgs sector?

A few comments:

I the Higgs sector is strongly constrained in the CMSSM;

I in our CMSSM fits, the light Higgs is very SM-like, and the heavy
Higgses are beyond current (future?) reach;
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What is the role of the Higgs sector?

A few more comments:

I the Higgs sector is strongly constrained in the CMSSM;

I in our CMSSM fits, the light Higgs is very SM-like, and the heavy
Higgses are beyond current (future?) reach;

I the exclusion of a Higgs with mh ∼< 140 GeV would probably be the
only way to exclude the MSSM;

I SM Higgs searches may, however, not be sufficient to exclude a light
MSSM Higgs, e.g. because of invisible decays h→ χ̃χ̃;

I the Higgs sector will play a crucial role for the assessment of SUSY
in the near future!
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Future SUSY searches beyond MET

I flavour constraints, e.g. Bs → µµ (LHCb)

I direct dark matter searches (see e.g. Aprile et al: arXiv:1104.2549)
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Comparison of global CMSSM fits with and without LHC exclusions

There has been a lot of activity recently (see e.g. arXiv:1109.3859v1)
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Global SUSY fits: the χ2 of the LHC exclusions
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Global SUSY fits: the χ2 of the LHC exclusions

Let us look at the χ2 of the LHC exclusions along the red line:
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Global SUSY fits: the χ2 of the LHC exclusions

We find a non-trivial shape of the LHC χ2:
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Global SUSY fits: the χ2 of the LHC exclusions

When we vary m0 and m1/2, both the SUSY rate as well as the shape of
the Meff distribution change; SUSY signals with larger rate may become
more background-like and thus harder to observe.
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Global SUSY fits: the χ2 of the LHC exclusions

When we vary m0 and m1/2, both the SUSY rate as well as the shape of
the Meff distribution change; SUSY signals with larger rate may become
more background-like and thus harder to observe.
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Comparison of global CMSSM fits with LHC exclusions

I There is too wide a spread in global CMSSM fits with LHC exclusions.

The different groups use different

I LHC signatures;

I levels of sophistication in the implementation of LHC limits.

We should compare the LHC χ2 maps between the different groups
and identify problematic regions.

I How can we optimize the LHC sensitivity?

We observe

I a reduced sensitivity when going from our analysis based on the Meff

distribution to the more recent analysis of ATLAS-CONF-2011-086 (prel.);

I limitations of the sensitivity due to the systematic uncertainties of signal
and background.

We should compare the impact of different analyses (Meff , αT etc.) on
global SUSY fits and include a combination of various LHC constraints.
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SUSY searches: past, present, future

I past: EWK & flavour observables, collider limits, ΩDM

I present: ⊕ LHC SUSY and Higgs exclusions

I future: ⊕ LHC discoveries. . .
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SUSY parameter determination at the LHC

Mass measurements from cascade decays, e.g.

→ kinematic endpoints sensitive to masses:
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SUSY parameter determination with cross sections

How well could we do at 7 TeV and 1 fb−1? [Dreiner, MK, Lindert, O’Leary]

[cf. Baer et al., Altunkaynak et al., . . . ]
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→ m0 = 99± 9 GeV

m1/2 = 250± 7 GeV

tanβ = 11± 6

→ cross sections are crucial to determine BSM parameters
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SUSY parameter determination with cross sections

Beyond mSUGRA: explore mirage mediation models
[Choi, Nilles, Falkowski, Ratz, Loewen and many others]

→ characteristic pattern of soft SUSY-breaking terms

M1 : M2 : M3 ' (1 + 0.66α) : (2 + 0.2α) : (6− 1.8α)

→ relative size of modulus and anomaly mediation controlled by α

How well can we determine α from future LHC data?

Assume LHC @ 14 TeV with 1 fb−1

kinematic edges only

[Conley, Dreiner, Glaser, MK, Tattersall]

kinematic edges ⊕ cross sections

→ α = 5± 0.3
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