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The Standard Model

<1973: theoretical foundations of the SM PARTI

- renormalizability of SU(2)xU(l) with Higgs mech. for EWSB

- asymptotic freedom, QCD as gauge theory of strong force
- KM description of CP violation

Followed by more than 30 years of consolidation

Measuremen t Fit  lo™#_0fgmea
0 2 3

m,[GeV] 91.1875=0.0021 91.1874

- experimental verification via discovery of
- gauge bosons: gluon,W, Z T renenr b

- matter fermions: charm, 3rd family ey Covensoes o =
- experimental precision measurements e T
- EWV radiative corrections Moo ormesooom oren

- running of the strong coupling micen s o =
- CP violation in the 3rd generation

m, [GeV] 1733+ 1.1 173.4

o 1 2 3

- technical theoretical advances (higher-order calculations...)

Only missing piece: the Higgs ?

NB: Unitaritg tells us that the dgnamics of EWSB
should become aPParent around the TeV scale.
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...and beyond

The Standard Model is tremendously successful,
nevertheless it can’t be the ultimate theory. Too many open questions.

- Why are there 3 generations of quarks and leptons?

- What is the origin of flavour mixing an CP violation!?

- Why is the SM anomaly free?

- Can the different interactions (and matter fields) be unified?
- What stabilizes the electroweak scale!?

Attempts to answer these questions, in particular regarding
the naturalness and hierarchy problem, let us expect new
physics at TeV energies.

(another) genuine motivation to build the LHC

Besides, the experimental evidences of neutrino masses,
dark matter and the baryon asymmetry tell us that we
are missing something fundamental.
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Supersymmetry

The beauties of SUSY:

Unique extension of space-time symmetries
Solution to the gauge hierarchy problem
Gauge coupling unification

Radiative EWVSB, light Higgs

Cold dark matter candidate

Very rich collider phenomenology

= Most popular and best-studied BSM theory

“Provided superpartners exist
at or around the TeV scale”
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Before LHC turn-on

Very optimistic view: if SUSY is light (as we expect...!) it will be

discovered early on.
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Much easier than discovering the Higgs...
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Now
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Squark-gluino-neutralino model, m(x1) =0 GeV
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Looks grim :-( ?
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LHC results put supersymmetry theory 'on

the spot'

Results from the Large Hadron Collider
(LHC) have all but Kkilled the simplest
version of an enticing theory of sub-atomic
physics.

Researchers failed to find evidence of so-called
"supersymmetric” particles, which many
physicists had hoped would plug holes in the
current theory.

Theorists working in the field have told BBC
News that they may have to come up with a
completely new idea.

By Pallab Ghosh
acience correspondent, BBC MNews

supersymmetry predicts the existence of
mysterious super particles.

This looks grim!
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Let’s reconsider

f N
Arguments for weak-scale SUSY HQ O
H_MN_ o
® Solution to the gauge hierarchy problem iy = (o) ey () e
Needs light stops, light higgsinos, somewhat light gluino = O(L) mi—m

® Gauge coupling unification
80.70 [ experimental errors 68% CL:
TeV-scale fermionic states — could be split SUSY i

LEP2/Tevatron (today)

Tevatron/LHC

80.60

® Radiative EWSB, light Higgs
heavy top effect

mn>1 15 GeV prefers heavy stops (finetuning prize of LEP) 80.40
electroweak precision measurements prefer heavy SUSY

80.50

M,, [GeV]

80.30

Heinemeyer, Hollik, Stockinger, Weber, Weiglein 10
o b b

® Cold dark matter candidate

TeV-scale LSP could do the job, just needs some e o s e
efficient annihilation mechanism, e.g. higgsino LSP

® Very rich collider phenomenology
Well, this entirely depends on phase-space ... ™

and for the time being we are just running at 1/2 force vapid anniilation

- ‘l“l_::h‘h_)w funnel ;

= Still great, but more “honest” prospects ]

Charged LSP
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Interplay with dark matter searches

Ve

Fit to the recent Xenon |00 data and its implications for Dark Matter scenarios,
taking into account Tevatron and LHC (1.1fb"!) limits
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Farina et al., arXiv:1104.3572v3
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Beyond CMSSM limits:
simplified model spectra

A simplified model is defined by an effective Lagrangian describing the
interactions of a small number of new particles. Simplified models can
equally well be described by a small number of masses and cross-sections.
These parameters are directly related to collider physics observables, making
simplified models a particularly effective framework for evaluating searches
and a useful starting point for characterizing positive signals of new physics.

D.Alves et al., arXiv:1105.2838
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ATLAS-CONF-2011-155

ATLAS jets+MET search

— interpretation in simplified models: squarks —

Direct decay,qq = qqf?ja 1 Step Decay,Am(f,X?) /Am(a,i?) =1/2: aLaL = quW)EE’gE?
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Exclusion limits in the squark-LSP mass plane for direct [left] and one-step [right] squark decays.

NB: In the case of direct decays, the cross-section for squark_{L,R} production is assumed, however, squark_R production
is neglected for the one-step cascade grids, effectively halving the production cross-section. This only applies to the limit
contours. For the one-step cascade grids, the nominal cross-sections are too low for any model points to be excluded at
95% C.L., hence no limit contours are drawn.
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LSP mass [GeV]

ATLAS-CONF-2011-155

ATLAS jets+MET search

— interpretation in simplified models: gluino —

Direct decay,gg = qqqqf?f?
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Exclusion limits in the gluino-LSP mass plane for direct and one-step gluino decays.
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CMS results for simplified model spectra

CMS preliminary

Ranges of exclu5|on I|m|ts for gluinos and squarks, varylng m(x°)

T1 _
- 1.1 5!, gluino
T2
G 1.1 o', squark
T1bbbb _
I 1.1 5!, gluino
Tlinu _
i aqvt 0.98 ', gluino
TiLh _
PRI 0.98 /b !, gluino
T5zz _
i gl 0.98 fb', gluino
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For limits on m(g),m(g) > >m(g) (and vice versa). ¢"? =¢"L0~QCD

m(x") is varied from 0 GeV/c* (dark blue) to m(3)—200 GeV/c* (light blue).

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
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So what does this imply for SUSY in general?
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Interpreting LHC SUSY searches in the
phenomenological MSSM

S.Sekmen, SK, |. Lykken, S. Moortgat, S. Padhi, L. Pape,
M. Pierini, H.B. Prosper, M. Spiropulu

® We interpret within the phenomenological MSSM (pMSSM) the results of
SUSY searches published by the CMS collaboration based on the first | fb-1
of data taken during the 2011 LHC run at 7 TeV.

® The pMSSM is a |9-dimensional parametrization of the MSSM that captures
most of its phenomenological features. It encompasses and goes beyond, a
broad range of more constrained SUSY models.

® Performing a global Bayesian analysis, we obtain posterior probability
densities of parameters, masses and derived observables.

® |n contrast to constraints derived for particular SUSY breaking schemes,
such as the CMSSM, our results provide more generic conclusions on how
the current data constrain the MSSM.

arXiv:1 1095119
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pMSSM

® |9-dimensional parametrization of the R-parity conserving MSSM with
parameters defined at the SUSY scale

e the gaugino mass parameters M, My, Ms;
e the ratio of the Higgs VEVs tan 8 = vy /v1;
e the higgsino mass parameter 4 and the pseudo-scalar Higgs mass m4;

e 10 sfermion mass parameters mz, where F' = Q1,Uy, D1, L1, E1,Q3,Us, D3, L3, E3
(imposing mea, =mg,, Mi, =My, etc.),

e 3 trilinear couplings A;, A, and A,

Assumptions: no new CP phases, flavor-diagonal sfermion mass matrices and trilinear couplings,
| st/2nd generation degenerate and A-terms negligible, lightest neutralino is the LSP.

® Pioneering studies:

“SUSY without prejudice” [C.F. Berger et al.,arXiv:0812.0980]

“Fitting the phenomeological MSSM” [S.S.AbdusSalam et al., arXiv:0904.2548]
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“The pMSSM leads to a much broader set of predictions
for the properties of the SUSY partners as well as for a
number of experimental observables than those found in
any of the conventional SUSY breaking scenarios such as

mMSUGRA [CMSSM]. This set of models can easily lead to
atypical expectations for SUSY signals at the LHC."

from the conclusions of arXiv:0812.0980
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Method

® Sample the pMSSM parameter space by a Markov-Chain Monte Carlo (MCMC)
technique which through a likelihood function incorporates various pre-LHC
measurements (b—sy, g-2, ...).

® For a random subset of 500K points, simulate 10K events per point and
calculate the signal yields for 3 disjoint CMS SUSY analyses for ~Ifb-! of data
(X1 hadronic, same-sign dilepton, opposite-sign dilepton)

® Use Bayesian statistics with flat prior to obtain posterior probability
distributions for masses, parameters, etc.

® |n practice: re-weight the pre-LHC likelihood of these 500K points with the
“CMS likelihood” (since the analyses are disjoint, the total likelihood is the
product of the individual Ls).

® The main result are posterior distributions.
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Tools

® SUSY spectrum calculation: SOFTSUSY 3.1

® | ow energy observables: Superlso 3.0

® Relic density, DD cross sections: micrOMEGAs 2.4
® SUSY mass limits: micrOMEGAs 2.4

® Higgs mass limits: HiggsBounds 2.0.0

® Decays: SUSYHIT (SDECAY |.3b, HDECAY3.4)

® SUSY event generation: PYTHIA 6.4

® |nterfacing: SUSY Les Houches Accord

® (Generic detector simulation: DELPHES 1.9

PS. needed lots of fixes to make everything work....

S. Kraml, Implications of LHC results for supersymmetry
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Analysis setup

1 Observable Experimental result Likelihood function
L D; L(D;| )
1| BR(b— sv) (3.5540.34) x 1074 Gaussian
2 | BR(Bs — pp) <4.7x107% % 1/(1+ exp(%))
3| R(B,— Tv) 1.66 £+ 0.54 Gaussian
4 Aay, (28.7 £ 8.0) x 10710 [ete] Weighted Gaussian average
(19.5 £8.3) x 1071V [taus]
5 my 173 + 1.1 GeV Gaussian
6 mp(mp) 41(}J_r8(1)2 GeV Two-sided Gaussian
7 as(Mz) 0.1176 4+ 0.002 Gaussian
8 mp LEP&Tevatron Lg = 1 if allowed. Lg = 1077 if :rn..;]_
(HiggsBounds) sampled from Gauss(myp, 1.5)
is excluded.
9 sparticle LEP Ly =1 if allowed
masses (micrOMEGASs) Lo = 1077 if excluded

*) we re-weight a posteriori with the new limit BR(Bs—= pp)<1.08 at 95% CL

Markov-Chain Monte Carlo sampling of pMSSM parameter space

|M;| <3 TeV
| <3 TeV
ma < 3 TeV
mg <3 TeV
(A pr <7 TeV
2 <tan g < 60

® We use a flat prior for parameters and sample 1.5x107 points 0

® Distribution of points maps the total likelihood, L, .11nc = Z L;

® Draw a random subset of 5x10° points for simulation
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CMS analysesand likelihood - |

We consider the following 3 public disjoint CMS SUSY analyses
using ~1 fb*! 7 TeV 2011 data:

* Hadronic a; (RA1 — CMS-SUS-11-003) 1.1 fb™: 22 jets and

a, > 0.55, where a, is designed to distinguish between real and
fake E;™*=. Shape analysis that gives results in 8 disjoint H; bins.
We use all.

» Same sign (SS) dilepton (RAS - CMS-SUS-11-010) 0.98 fb:
Opposite sign dilepton analysis. 8 correlated analysis regions. We
use H, > 400, E,™= > 120.

* Opposite sign (OS) dilepton (RA6 — CMS-SUS-11-011) 0.98 fb:
Same sign dilepton analysis. 2 correlated analysis regions. We
use H, > 300, E,™= > 275.

Slide from Sezen’s talk, 30-08-1 | at LHC2TeV workshop, CERN
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CMS results used

7 | Analysis and search region Observed | Data-driven SM

(values in GeV) event count BG estimate
() (B; £0B;)

1 | ar hadronic, 275 < Hy < 325 782 787.4%5575

2 | ar hadronic, 325 < Hp < 375 321 3104157,

3 | ag hadronic, 375 < Hp < 475 196 202.175¢

4 | ap hadronic, 475 < Hp < 575 62 6().44131:%

5 | «ap hadronic, 575 < Hp < 675 21 2{).32:?

6 | ag hadronic, 675 < Hyp < 775 6 77

7 | ar hadronic, 775 < Hyp < 875 3 3.2103

8 | «ar hadronic, 875 < Hr 1 _JSJ_FS%

9 | SS 2/, Hp > 400, B > 120 1 2.3+1.2

10 | OS 24, Hy > 300, Iy > 275 8 4.2+1.3

Assume a Poisson likelihood Poisson(NV;|s; + b;) with expected count s; + b;
and compute the marginal likelihood L; = p(N,|s;) by integrating over the
expected background b,
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CMS analysesand likelihood - Il

Likelihood:
Loyvs = p(Nls. b, ob)
10 takes into account the
— 1_[ Poisson(N;|s; + b;)p(b;|db;)  uncertainty in the BG
i—1 estimate
10 .‘ —(8;4b; ) {-“':’ + h:-}-'ﬂ""rr I,._'i".hl {JL';IIJ;' ](J,
- i=1 Ni! I'Q; +1)

where Q: = (B;/dB;)*
k; = B;/6B?

Slide from Sezen’s talk, 30-08-1 | at LHC2TeV workshop, CERN
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Results: posterior densities
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Probability density
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Dark matter implications
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Implications for dark matter searches
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“Implications of LHC Searches on SUSY Particle Spectra:
The pMSSM Phase Space with Neutralino Dark Matter”

A.Arbey, M. Battaglia, F Mahmoudi

® Study the implications of LHC searches on SUSY particle spectra using flat scans of
the |19-parameter pMSSM phase space.

® Apply 20 constraints from flavour physics, g-2, dark matter and earlier LEP and
Tevatron searches.

® The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is
assessed by reproducing with fast simulation the recent CMS analyses after validation
on benchmark points.

® Present results in terms of the fraction of pMSSM points compatible with all the
constraints which are excluded by the LHC searches with | fb-' and 15 fb"! as a
function of the mass of strongly and weakly interacting SUSY particles.

® Discuss the suppression of Higgs production cross sections for the MSSM points not
excluded and contrast the region of phase space tested by the LHC data with the
constraints from dark matter direct detection experiments.

arXiv:1110.3726
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® Fraction of accepted points from flat random scan arXiv:1110.3726
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® Fraction of accepted points excluded by CMS

Fraction of Excluded pMSSM Points
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® |nterplay with direct dark matter detection
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® Prediction for light Higgs searches
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Natural SUSY endures

M. Papucci, . T. Ruderman, A.Weiler

From the requirement of naturalness

= stops & left sbottom below 500—700 GeV

= higgsinos below 200—350 GeV

= a not too heavo gluino, 900— 1500 GeV
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natural SUSY
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Conclusions

® | HC results are pushing squark and gluino mass limits to ~| TeV;
expectations for early discoveries were too optimistic

® Current searches are not (yer) sensitive to

* Small mass differences — soft jets, low Er™iss
* Compressed spectra in general

* Mainly electroweak production

* Mainly stop/sbottom production

® Plenty of room where SUSY can hide
besides, EWV fits and flavor physics actually prefer heavy SUSY

ol S

no need for this

e SUSY DM stays compelling case

interesting complementarity between LHC and DD

® We definitely need [the means] to interpret LHC results in terms
of a wide range of models, including pMSSM.

Needs communication between experimentalists (collaborations!) and theorists
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Implications of LHC results for TeV-scale physics

from 29 August 2011 to 02 September 2011 (Europe/Zurich) |

Europe/Zurich timezone

Overview
Timetable

Registration

.. Registration Form
List of registrants
Video Services

Arrival Information

This Workshop, which takes place during the last week of the 2011 TH/LPCC Institute on LHC physics, will
be the first in a series of meetings devoted to evaluating the implications of recent results from the LHC,

and elsewhere, for TeV-scale physics, and to discuss the impact of these results on the future strategy for
particle physics.

The Workshop continues the activity of the 2009 TH Institute "From the LHC to a Future Collider”,
https://indico.cern.ch/conferenceDisplay.py?confld=40437, whose findings were documented
in http://arXiv.org/abs/0909.3240.

The results will be summarised in a document, to be submitted as input to the planned 2012 update of the
European Strategy for Particle Physics. The participation and input of all those interested, experimentalists
and theorists, is welcome and encouraged!

The workshop activities will be focused around three working groups investigating different aspects of
TeV-scale physics, namely

+ Signals of electroweak symmetry breaking (conveners: S.Heinemyer, M.Kado, C.Mariotti,
G.Weiglein, A.Weiler)

+ Signatures with missing energy {(conveners: R.Cavenaugh, J.Hewett, S.Kraml, G.Polesello)

+« Other signatures of possible BSM physics (conveners: C.Grojean, D.Martinez, J.Santiago Perez,
P.Savard, S.Worm)

The task of the working groups is to assess the possible interpretations of the experimental results in view
of their implications for the future strategy of particle physics.

The charge for the first meeting is to summarise the experimental situation at this time, to start the
discussion of possible interpretations, and to define the lines of work that should be carried out. We
expect this to be followed by more informal meetings of the working groups, leading to a final plenary
meeting, foreseen to take place in May or June 2012, such that the final document will be ready in time
for the ‘Orsay-type’ meeting of the European Strategy update. The precise dates will be decided once the
timeline of the Strategy process is finalized by CERN Council.

Next plenary meeting after Moriond (week of March 26) at CERN
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Requiring Qh2<0.136
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