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Threshold corrections at GUT scale depend on
sparticle masses (i.e. via threshold corrections at 0\, )
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ki QQ; Qe Ly + iU U D, E,

r(p — K*E) > 2.3x10% years

i (b?) < 107 GeV™
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W= YJH,LE; +YJH,Q D, +YH,QU,
+uH H, +c@H LH, L

,Ll term: Need ,Ll << MG

K(O) term: Weinberg operator for
1] neutrino mass
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Michael Ratz - proton decay and mu
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Testing SUSY GUTs ~ by example
Minimal <SOU0) SUKSY fModel
3™ family only
consistent soft breaKing
S0U0) + Family Symmetry
3 Tamily model

Conclusions
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Yukawa Unification € Soft SUSY breaking
Blazek, Dermisek & Raby PRL 88, 111804 (2002)
PRD 65, l15004 (2002)
Baer £ Ferrandis, PRL 87, 211803 (200
Avto, Baer, Balazs, Belyaev, Ferrandis € Tata
JHEP 0306:023 (2003
Tobe £ Wells NPB 663, 123 (2003)
Dermisek, Raby, RoszKowskKi € Ruiz de Avsti
JHEP 0304:037 (2003)
JHEP 0509:029 (2005)
Baer, K'raml, Sekmen & Summy
JHEP 0803:056 (2008)
JHEP 08[0:079 (2008)
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Hierarchical <0U0) YuKawas

W 16,1016, +16 10 % 16 +---

Albright, Anderson, Babu, Barr, Barbieri, Berezhiani,

BlazeK, Carena, Chang, Dermisek, Dimopovlos, Hall,
fMasiero, Murayama, Pah, Raby, Romanino, Rossi,
Starkman, Wagner, WilczeK, Wiesenfeldt,
Willenbrock
Effective higher dimension operators,
Small rep’s + Alany predictions !!
Possible UV completion to strings !!
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A 16,10 16,

Note, CANNOT predict top mass dve to
large SUSY threshold corrections to
bottom and tav mass

So instead use YuKawa vnification to predict
soft SUSY breaking masses !!
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Roughly 42 comes
from RG running from

Blazek, Dermisek £ Raby “dust so” BCs

2
Mg, My, AMG, My, Ay, 1
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l. Top - down vs. 2. Bottom - vp analysis
l.  Vary parameters at GUT scale and fit
low energy data by minimizing ?

2. Fit central valves of low enerqy data £
ron a// parameters vp to GUT scale &

iterate unhil self-consistent

Note : Varying A, m,, Am’

= m, arbitrary

BUT this is difficult in bottom — vp approach !!
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Blazek, Dermisek & Raby
PRL 88, [l1804 (2002)

it +,b,tav requires

Ab & _2m16 My, = \ﬁmla
m, > few TeV 4, M,, << m,

tan /= 50
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' Baer, Kraml £ Sekmen
arXiv:0908.0134
“PR3” BCs

m? = Q} Dy +(m/ )2
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L e .
Badziak, Olechowski &€ Pokorski
arXivllo].2764
“gavgino splitting” BCs

m? = Qy Dy +(m?)’
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» Gavge covpling vnitication
> YuKawa unification
> lnverted scalar mass hierarchy ™

Bagger, Feng, Polonsky € Zhang
PLB473, 264 (2000)
= Suppresses Tlavor £ CP violation
" Noucleon decay
** ‘st so” & “DR3P”
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Extend to 3 Tamily model in 4D
( Dermisek £ Raby PLB 622, 327 (2005) )

Extend to orbifold GUT in 5D
{ HD Kim, € Raby,
JHEP 0301, 056 (2003 &

Extend to heterotic string in 10D
compactified on Z,;xZ, orbifold
{ Kobayashi, Raby & Zhang,
PLB 593, 262 (2004) & NPB 704, 3 (2005))
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v’ analysis - 3% Family

Dermisek, Raby, RoszKowsKi and Ruiz de Avstri
JHEPP 09 (2005) 029

il Parameters:
M=t

# My, Ay tanf mg m;, Am,

9 Observables (included in 2 :
U Gﬂ a, M; My, ovew  + 14 e
Mt mb (mb) M precision EW data
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Resvlts

Dark Aatter £ WAMNAP
B,s -> M_l_ 2
Light Higgs mass - m,
Upper bound on m,
=) Lower bound on BRB_-> utu?d
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N = i

:

Dark Aatter € WANAP

Nevtralino LSP
x> A f
Abb o tan i
A : broad resonance, m, arbitrary
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m,,=3 TeV, m,=500 Ge
T T | L T LI T

m,,=3 TeV, m,=500 GeV
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Green band consistent with WAL
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Bel B, -> put p )
SAN: 3 x (079
ANSSAN : ~ (tan B)®/m,*

CDF =18+11/-09x10-8 (95% CL)

CDF bound € 4 x 1078 (95% CLY w/ T b

LHChL € 1.5 x 108 (95% CL)Y w/ 300 pb-! 20|
37pb-! 2010

LHCL + CANS € 1 x 1078 (95% L)
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Resvults -

mg & m, Ttixed

m,,=8 TeV, m,=0.7 TeV m,,=5 TeV, m,=1.25TeV
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Light Higgs mass

Carena,
Quiros &
Wagner ‘95

|A,l increases =) m, decreases
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Light Higgs mass

+log corr.

m/ . M1 AN J N itzﬂpxzta” p
mb

2
m: m:

o) |
m%n <=2%  Needed to fit data

b

M\, increases ) -A, increases

m, decreases
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m,,=3 TeV, m,=500 GeV
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m,(max) == Br( B_-> ut p= )(min)

m,,=5TeV, m,=1.25 TeV
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Baer, Kraml, Sekmen and Summy DermiseK, Raby, RoszKowskKi and
JHEP 03 (2008) 056 Ruiz de Avstri  JHEP 09 (2005 029
Bottom = Up and Down and Up ... Top - Down

m,,=3 TeV, m,=0.5 TeV
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Summary - AASO,,SMA

Gavge € YuKawa vnification
Suppresses flavor £ CP viol. £ N decay **
Dark AMatter consistent w/WARNAP
14 € m, < 121 GeV
m, < 1.3 TeV
—p BRB_-> it ) > 1078



Discuss sparticle and higgs
masses later
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3 Family SOUO) + Family symmetry

Dermisek & Raby PLB 622:327 (2005
DermiseK, Harada £ Raby PRD74, 03501 (2006)

Albrecht, Altmannshofer, Buras, Guadagnoli € Stravk
JHEP 07(0:055 (2007)
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3 family <0, SUSY fMModel

D, x UMD fFamily Symmetry
Suvperpotential

YuKawa couplings

x> analysis

Charged fermion masses £ mixing
Nevtrino masses & mixing
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Superpotential for charged fermion
YuKawa covplings

W

ch. fermions

~16,1016,+16 10 4,

+;(_a[|v|z;(a +45%163 +45%16a + A16,

@2 <¢>=[;2] (45) = (B-L)M,

2L R AVES assumed
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SOU0) x ( D, x VD family sym. )
YoKawa Unification for 3™ Family

I veal para’s
+ 4 phases

+ 3 rveal Majorana
Nevtrino masses

Dermisek € Raby
PLB 622:327 (2005)
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Effective

10 +
higher 1;3 1;3
dimension
operators

45 Ga 10

- \/ -+ ﬂix - *’ -+

16- a Xa 16,
45 e 10

o \\/ -t ﬂ}ix - * -

16a Xa Xa 16a
A A 10

~ + - Xx - + -

16, X, Ya 16.

(3:3)

(3.2) (23)

(3,13 (1,3)

(2,2)

(1,2) (2,1)
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neutrino

=16(4,N,16, + A,N,16,)

+%(S,N,N, +S;N;N;)

a a ada




W =vm v+VVN+¥%NM N

neutrino

ey
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\—3550' -3¢0 i
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m) M =U (mV(V ) M,V )Ue
Using y° analysis, fit

15 charged fermion & 4 nevtrino
low enerqy observables with

Il arbitrary YuKawa & 3 AMajorana mass
parameters

mmp 4 &1 d o f. orbpredictions
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Global y? analysis

Sector =k Parameters

gauge 3 aq, Mg, €,

SUSY (GUT scale) 5 mus, My/q, Ao, ma,, mu,,
textures 11 e, €, X p, 0,6 E,
neutrino 3 Mg,, Mgp,, Mpg.,
SUSY (EW scale) 2 tan 3, p

24 parameters at GUT scale

compared to SAA - 27 parameters
CANSSAA - 32 parameters
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Global y? analysis - good fits to
= charged fermion masses £ mixing angles
= nevtrino masses € mixing angles
" naturally satisfies Lepton flavor Violation
and electron electric dipole moment bounds
Dermisek, Harada € Raby
PRD74, 035011 (2006)



m,=4 TeV
u =300 GeV

M,,, = 200 GeV

Observable Data (o) Theory Pull

(masses in GeV)
G, x 10° 1.16637 (0.1%) |1.16638 | < 0.01
P 137.036 (0.1%) |137.035| < 0.01
as(Mz) 0.1187 (0.002) |[0.1174 0.37
M, 172.7 (2.9) 173.11 0.02
mp( Mp) 4.25 (0.25) 4.49 0.94
M, — M, 3.4 (0.2) 3.61 1.16
me(m.) 1.2 (0.2) 1.16 0.03
ms 0.105 (0.025) 0.107 0.01
mg/mg 0.0521 (0.0067) | 0.0638 3.09
Q2 x10° 1.934 (0.334) 1.815 0.12
M. 1.777 (0.1%) 1.777 | < 0.01
M, 0.10566 (0.1%) | 0.10566 | < 0.01
M, x 10° 0.511 (0.1%) 0.511 < 0.01
Viis 0.22 (0.0026) 0.2193 0.06
Ve 0.0413 (0.0015) |0.0410 0.03
Vb 0.00367 (0.00047) | 0.00316 | 1.15
Vid 0.0082 (0.00082) | 0.00824 | < 0.01
€K 0.00228 (0.000228) | 0.00234| 0.08
sin(23) 0.687 (0.064) 0.6435 0.46
Am3, x 103 2.3 (0.6) 2.382 0.01
Am3, x 10° 7.9 (0.6) 7.880 [ < 0.01
sin® fy5 0.295 (0.045) 0.289 0.01
sin? flog 0.51 (0.13) 0.532 0.03

TOTAL x* 7.65
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Resvlts for 7<y? < 8

m,=4 TeV
114 < m, <129 GeV
0.010 < sin®294, < 0.015
1 < BR(u—ey)x10" <7
2 < d (e cm)x10” < 5



Y2 analysis including B physics

Albrecht, Altmannshofer, Buras, Guadagnoli, € Stravb
JHEP 0710:055 (2001

Find good fits to quark, charged lepton
€ nevtrino masses and mixing angles
€ test flavor violation in b physics

some tension between b 2> sy & b> sl -
mmp M, >10 TeV
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What is the teunsion:

C; o pA, tan Bxsign(C;M )~ —2C;"
A, <0

!

_ ~SM A SM
B Cc" . cr ~-C

BR(B— X_I"17) favors C, =~ +C;"
QIES=—12 o




HOWBVBT C, = _ch

+ Data

£ g F

g < - Ex. of Super-symmetrig

£ - particles being produred
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R q(GeV°/ic))

Bo>K I

Invariant mass of lepton pair

Belle arXiv:0904.0770
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Theory mmBinned theory  Theory predictions from C.Bobeth et al., arXiv:1105.0376v2
-o-LHCb
—————

E |2 ! ) e ) - _J1I- ' ' LHC'b —
< < 4 L [ Preliminary ]
" i i % 1=309/pb ]
0.5— - 0.5; i

Q0|
3 » h i [ } *%g:
5 N 31 4 :
z 0 ] R ST S S
O d s ]
L,) = = E . Ig'r.'e(l:i%inary :
O i 1< L=309/pb |
T i 1= 1 ;
-0.5}- LHCDb 1% | f
; Preliminary N:o.s'%f — .
; L=309/pb 13 ¢ ;
1 | 4 2 l 2 2 | 2 l ] 2 | | l ] | | 2 '.3 0- " N N N | R = 3 { 3 3 3 = 1 4 1 2 < 7
0 5 1 0 1 5 20 0 ° 10 :;2 [Gevllcdio

q? [GeV?/c*]
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Where do we stand after
| fb-! LHC ¢¢




LHC - NO significant signals beyond
the Standard Alodel
However -
> slight excess for light higgs ?
> slight excess for multi-leptons ?
o mg, m Mg thenm 2 TeV
i ¢ B r 2"‘" ‘Famiy scalars much heavier
than 3™ family = m Y 0500 GeV)

gluino

e — e ————



Observable Exp. value | Fit value | Pull (#)
My 80.403 R0.6 0.5 A ™ h* . At- g
M 911876 | 90.7 1.1 | ﬂ)rec © a‘i"
Gy x 10° 1.16637 1.16 0.3 JHEP 0710:055 (2007
1/0en 137.036 136.8 0.4 ‘ ‘
a,(Mz) 0.1176 0.117 0.2 3 f'amdy ana;lysas "
M, 170.9 170.6 0.2
mg(my ) 4.2 4.22 0.3 e
siilend) 195 114 12 mig 4000 | 6000 § 10000
m, (2 GeV) 0.095 0.107 0.5 p 378 1953 | 1200
mg(2CeV) 0.005 0.00741 | 1.2 BR(Bs — putpu~) x 10° | 8.6 b S|
my (2 GeV) 0.00225 0.00461 | 3.1 50 0.022 1 0.13 1 0.14
M L.Y7% L.78 0:1 BR(u — ey) x 1013 0.36 | 0.021 | 0.0026
My (HSC) (pS=has |0zt 5aSUSY 5 1010 458 | +1.6 | 4052
M. 0.000511 0.000511 | 0.0 L
Vs 0.2258 0.225 0.6 M, 128 12 129
Via| x 10° 4.1 3.96 2.1 Ma 507 | 559 | 842
L 0.0416 0.0416 0.1 m;, 640 | 1172 | 1903
sin .’d 0.675 0.639 1.4 m, 895 1475 | 2366
5"‘{3:1 x 107 2.6 2.6 0.0 ms, 1510 | 2419 | 3933
An’:vﬁ]g\ {1 79 7.9 0.0 mi? 60 60 60
sin® 26,2 0.852 0.852 0.0
sin? 20ay 0.996 1.0 0.2 M e |19 1120
exc % 109 2,929 2.33 0.4 mg 462 | 478 | 506
BR(B — X,v) x 10¢ 3.55 2.86 1.3
BR(B — X, f7f )x10° | 16 1.62 0.0 - SM
AM,/AM, 35.05 31.1 1.1 Requwed C7 ~ -|-C7
BR(B* — v*v) x 104 1.31 0.517 1.7

total y2: 27.4 50




“Just so” splitting

parameter = Pt. B [14] | DR3 I
JHEP 0909’005 (200> mie(1,2) 10000  11805.6
3 family only ms(3) 10000 10840.1
mio 12053.5  13903.3
Mp 3287.1 1850.6
my /o 43.9442 27.414
Ap -19947.3  -22786.2
tan 3 50.398 50.002
R 1.025 1.027
i 3132.6 2183.4
mg 351.2 3214
My, 9972.1 11914.2
mj, 2756.5 2421.6
mg, 3377.1 1359.5
Mep 10094.7  11968.5
Mt 116.4 114.5
myo 113.8 114.2
mgo 49.2 16.5
ma 1825.9 668.3
mp, 127.8 128.6
6y, (radians) 0.329 1.53

Table 2: Masses in GeV units and parameters for Yukawa-unified point B of Ref. [14] with just-so
HS, and a point with the DR3 model using My = 10'? GeV. We also give the b-squark mixing
angle.



Badziak et al
JHEP 108,147 (201D
3 family only

Completely distinct spectrum

just one example

mie 1054
M 542.5
mio /M6 1.454
D/m?, 0.1907
A0/772;16 2.312
tan [3 45.78
o 18R A0 0
BR(b — s7) | 3.83 x 1074
Qpah? 0.095

R 1.007
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Badziak et al. dHEP 1108147 201D

1600|— Uyd; + + -
g =
_afzds
1400 + er £ - =
. U'E dL
§ dg ~ Ug
1200+ W I : déR - z E
b2t2< Ve L 1 dR
_1000 . Lt g ér =
: _ = 9327 Y
= V.€r t Vo &r ~
é 800 T T tr
‘roaomrt i° X
L A +HCA®H" g _ -+ e
b by x> X veee |
1
e ¥ox> * T ~o - THCAH' t—
‘\"/Ez Eo 2o
200+ 3 * % i x°x x I
o 20 T o o
-h X tl g h io + h 5-(0
left centre right
mi6 1054 1352 949.5
Mo 542.5 224.2 408.8
myo/ Mg 1.454 1.125 1.324
D/mig 0.1907 0.0921 0.1154
Ap/myg 2.312 —0.357 1.865
tan 3 45.78 48.47 47.72
aﬁ”sy 13.2:% 1071 | 14.2.% 107" | 174 % 10~
BR(b— sy) | 3.83x107* | 411 x 107 | 4.19 x 10~*
Qpmh? 0.095 0.111 0.125
R 1.007 1.016 1.005
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NSO, SN € Ltarge tan([3)

Fits WAAP

Predicts light Higgs

with mass of order 120 - |30 GeV

Predicts lighter 3™ and heavy Ist € 2™ gen.
squarKs and sleptons (inverted scalar mass hier)
LFV bounds satistied

Enhances Br(B., — putu )

® Suppresses BrlB— tVv) £ A Mg

B—> X_ vy, X_ I" I tension

s



after | fb' LHC

" light glvinos ~ 300 - 500 GeV
heavier gluinos =m=m m, > 10 TeV ?

" multi-leptons === lighter charginos and
nevtralinos ?

= predicts heavy ISt € 2™ generations
and lighter 3 === mylti-leptons +
jets + E_

Test GUTs via global y? analysis



