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MSSM: good features and open questions

0 Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

0 Why?

2 stabilization of hierarchies

MSSM gauge coupling unification

dark matter candidate

radiative electroweak symmetry breaking

©000O0

0 However:
@ u/Bu problem
& dimension four and five proton decay operators
@ CP and flavor problems

O Supersymmetry alone seems not to be enough
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I—MSSM: good features and open questions

Disclaimer & apologies
The topic

"Discrete symmetries in GUTs and in the MSSM”

is very broad. ..

I’'m going to focus on
© u/Bu problem
@ dimension four and five proton decay operators
and will ignore
& CP and flavor problems
This ignores many interesting developments in model building:

o flavor sysnmetries:
e discrete vs. continuous
e VEV alignment
e CP violation
e sponfaneous? or geometric?

e relation o baryon asymmetry?
®
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Proton hexality

Ibénez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

O Proton hexality Pg = matter parity ZQ" x baryon friality Bs
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ZV 1] 11 [1]1]0 01
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O Appealing features
2 forbids dimension four and five proton decay operators
allows Yukawa couplings & Weinberg operator « H,L; H,L;

© © 0O

unique anomaly-free symmetry with the above features

0 However:
© not consistent with unification for matter
© embedding into string theory not yet fully convincing

Férste, Nilles, Ramos-Sénchez, Vaudrevange (2010)
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[] Introduction & Motivation V4

[ Anomaly-free discrete symmetries & grand
unification

[ String theory completion

(] Summary
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grand unification

e anomaly cancellation
e consistency with unification
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O Disturbing aspects of proton hexality
© not consistent with (grand) unification for martter

© embedding into string theory not yet fully convincing
© does not address i problem
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+ ) H, Do L
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Proton hexality

O Disturbing aspects of proton hexality

© not consistent with (grand) unification for martter

© embedding into string theory not yet fully convincing
© does not address i problem

/= /lHdHu + K; LiHu

U LiH E; )Y QiHyD; + Y! QiH,U;

q E inl_)k + /lz{]/'k Uiﬁjl_)k

inQk ¢+ Kz(jzlgl ﬁiﬁjﬁkl@ + ...

need to be strongly suppressed

@eds fo be suppressed as D
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I—Anomuly—free discrete symmetries

Discrete anomaly cancellation

O Example: anomaly coefficients for Zy symmetries

Ibdnez & Ross (1990)

Avgay = > (0-¢0

f
Agrav—grav—ZN = Zq(m)
m

e

[sum over all fermions]

sum over all
representations of G
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I—Anomuly—free discrete symmetries

Discrete anomaly cancellation

O Example: anomaly coefficients for Zy symmetries
lbanez & Ross (1990)

Ac-g-zy

Agrav—grav—ZN

Dynkin index

discrete chorges]
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I—Anomuly—free discrete symmetries

Discrete anomaly cancellation

O Example: anomaly coefficients for Zy symmetries

Ibdnez & Ross (1990)

AG—G—Z = f(f) . q(f) ; 0 mod n
v Xf: N for N odd

- |
Agray_grav-z, = Zq(m) 20 mod pg—" N/2 forN even

m

traditional anomaly constraints:
all A coefficients vanish (mod )
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Discrete anomaly cancellation revisited

O Example: anomaly coefficients for Zy symmetries

e.g. HM. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P Vaudrevange (2011)

Aggay = .00 .¢D=p mody
" Xf: . { N  forN odd
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m
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I—Anomuly—free discrete symmetries

Discrete anomaly cancellation revisited

O Example: anomaly coefficients for Zy symmetries

e.g. HM. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P Vaudrevange (2011)

Aggay = .00 .qD=p mody
" Xf: . { N  forN odd
AgTav—gTav—ZN = Zq(m) I: P mOd n N/2 fOf N even
traditional anomaly constraints: S GS anomaly cancellation:
all A coefficients vanish (mod ) 1 allA coefficients equal
main message: > dtail

anomaly freedom requires universality of anomaly coefficients

O Note: discrete GS anomaly cancellation at work in many
explicit string models
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I—Anomuly—free symmetries, 4 and unification

Anomaly-free sysnmetries, u and unification

0 Working assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

O Will prove:

1. assuming (i) & SU(5) relations:
only R sysnmetries can forbid the p ferm
2. assuming ()—iii) & SO(10) relations:
unique ZE symmetry
3. assuming ()—iii) & SU(5) relations:
only five discrete symmetries possible
4. R symmetries are not available in 4D GUTs
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= Non-R symmetries cannot forbid 1

Claim 1: Non-R symmetries cannot forbid u

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

3
3, 1
Asvep-zy = Z[gqﬁﬁgqi—;}

g=1

3
3 1 1
Asvep-zy, = [) [gq‘é{o + gqi} + 5 (am, +am,)
g=1

< sum over matter charges >
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Claim 1: Non-R symmetries cannot forbid u

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

3

3 . 1
Asu@p-zy = Z {E‘fio + 5‘1@—;}
g=1
2. 13 1 1
ASU(Q)Z-ZN = Z {quo + qu} + ) (QH,, + qu)
g=1

[0 Anomaly universality: Aguey-zy —Asu@Ep-zy = 0 mod n

1( +qm,) = 0 mod N  forN odd
~ g\ A = N/2 for N even
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= Non-R symmetries cannot forbid 1

Claim 1: Non-R symmetries cannot forbid u

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

3
3, 1
Asvep-zy = Z[gqﬁﬁgqi—;}

g=1
.13 1 1
ASU(Q)Z-ZN = ; [Eﬁ + qu} + ) (QH,, +qu)
[0 Anomaly universality: Aguey-zy —Asu@Ep-zy = 0 mod n

1( +qm,) = 0 mod N  forN odd
~ g\ A = N/2 for N even

bottom-line:
non-R Zy symmetry cannot forbid p term
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Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Assumption: quarks and leptons have universal charge g

0 u- and d-type Yukawas allowed requires that

29 +qu, = %\modN and 29 +q9m, =»2 mod N
mo’renﬂol has R ch@é
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Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Assumption: quarks and leptons have universal charge g
0 u- and d-type Yukawas allowed requires that
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I—80(10) implies unique symmetry

Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

O Assumption: quarks and leptons have universal charge g
0 u- and d-type Yukawas allowed requires that
29+qy, =2 modN and 2¢+qy, = 2 mod N

~ (4, —9H;, = 0 mod N

O u-type Yukawa and Weinberg operator allowed requires
that

29+qy, =2 mod N and 2q+2qy, = 2 mod N

~ qm, = 0 mod N

O first conclusion:

qH, = QH, = 0 mod N
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I—80(10) implies unique symmetry

Claim 2: SO(10) implies unique symmetry (cont’d)

O Anomaly coefficients for Abelian discrete R symnmetry

ASU(3)2—Z§ 6(g-1)+3 = 6¢g-3

1
6q + 5 (qm, +qn,) =5

ASU(2)2—Z§
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I—80(10) implies unique symmetry

Claim 2: SO(10) implies unique symmetry (cont’d)

O Anomaly coefficients for Abelian discrete R symnmetry
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O Anomaly coefficients for Abelian discrete R symnmetry

6(g-1)+3 = 60-3

ASU(3)2—Z§

1
6q + 5 (qm, +qn,) =5

ASU(2)2—Z§

0 Anomaly universality

ASU(z)Z—zg —ASU(3)2—Z§ =0
2N for N odd
~qu tqn =4 mod ¢ ¢ N even

O but we know already that gi, = i, =0 mod N
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Claim 2: SO(10) implies unique symmetry (cont’d)

O Anomaly coefficients for Abelian discrete R symnmetry

6(g-1)+3 = 60-3

ASU(3)2—Z§

1
6q + = (qm, +qm,) -5

ASU(2)2—Z§ B

0 Anomaly universality

cf. e.g. Dine & Kehayias (2009)

A however: there is no meaningful Z§ symmetry
SU(@2-78 ~

e T o | N forN even

O but we know already that gi, = i, =0 mod N

bottom-line:
N=2or N=4
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I—80(10) implies unique symmetry

Claim 2: SO(10) implies unique symmetry (cont’d)

O Anomaly coefficients for Abelian discrete R symnmetry

6(g-1)+3 = 60-3

ASU(3)2—Z§

1
6q + 5 (qm, +qn,) =5

ASU(2)2—Z§

0 Anomaly universality

ASU(z)Z—zg —ASU(3)2—Z§ =0
2N for N odd
~qu tqn =4 mod ¢ ¢ N even

O but we know already that gi, = i, =0 mod N

boitom-line:
N = 4 unique
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I—80(10) implies unique symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
¢ Higgs fields have charge gp, = qu, =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ 6(g-1)+3 = 6g-3 = 1 mod 4/2

1
ASU(2)2—Z§ 6q + ) (QHU + QHd) -5 =1 mod 4/2

3 1
GQ+5'§'(C]HM+C]H(,—2)

(e.9. 4, = qn, = 16}

Avqy-zk
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I—80(10) implies unique symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
¢ Higgs fields have charge gp, = qu, =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@-1)+3 = 6g-3 =1 mod 4/2

Aguep-zr = 62+ (0 40u) =5 = 1 mod4s2
N [grovi’rino contribution gaugino contributions

Avag-zg, = 64F /2/ 8, +q
1

—A_ o, . r = [-21 + 8% 3% 1% 48(g - 1)+ 2(qu +M 1]
04" gravi-1Ly ) “ <

[only defined mod 4] axino con’rribuﬁon]
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I—80(10) implies unique symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
¢ Higgs fields have charge gp, = qu, =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality
ASU(3)2-Z§ = 6(@-1)+3 = 6g-3 =1 mod 4/2
1
ASU(2)2—Z§ = 6g+ B (QHU + QHd) -5 =1 mod 4/2
31
AU(1)§,-Zg = 69+ 59’ (CIHM +qmH, — 2) = 1 mod 4/2
1 1

Z_AgraVZ—Zfl = ﬂ .. ]

1 mod 4/2
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I—80(10) implies unique symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
¢ Higgs fields have charge gp, = qu, =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@-1)+3 = 6g-3 =1 mod 4/2

A 2 R
bottom-line:

4« 7R is anomaly free via GS mechanism 4/2

1 e GS axino contribution important for

24" gravitational anomaly
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Claim 3: only 5 symmetries obey SU(S) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

0 Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZZ symmetries has to divide 24
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= Only 5 symmetries obey SU(5) relations

Claim 3: only 5 symmetries obey SU(S) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

0 Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZZ symmetries has to divide 24

OO0 There are only five viable charge assignments

N | g | g5 | qn, | qu, | p | AF(MSSM)
4 1 1 0 0 1 1
6 5 3 4 0 |0 1
8 1 5 0 4 1 3
121 5 9 4 0 |3 1
24 1 5 9 16 12 | 9 7

Recall gravitational anomaly

!
Az, = Zf(f)q(f) = p mod 5
f

Zq(m) g o mod 7y

lqgmv2 ~Zn
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H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

0 Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZZ symmetries has to divide 24

OO0 There are only five viable charge assignments
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0 Al ZE symmetries can be obtained from ZE’ x SO(10) by
spontaneous breaking
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= Only 5 symmetries obey SU(5) relations

Claim 3: only 5 symmetries obey SU(S) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, R Vaudrevange (2011)

0 Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZZ symmetries has to divide 24

OO0 There are only five viable charge assignments

N | g | g5 | qn, | qu, | p | AG(MSSM)
4 1 1 0 0 1 1
6 5 3 4 0 |0 1
8 1 5 0 4 1 3
121 5 9 4 0 |3 1
24 1 5 9 16 12 | 9 7

0 Al ZE symmetries can be obtained from ZE’ x SO(10) by
spontaneous breaking

[ N divides 24: hint ot realization of ZE as discrete rotational
symmetry in orbifolds

(The geometry of ‘orbifolds with & = 1 SUSY is constrained that the order of discrete R symmetries also divides 24)
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No-Go for R symmetries in 4D

M. Fallbacher, M.R., P Vaudrevange (2011)

O Assumptions:
(H GUT model in four dimensions based on G > SU(5)
(i) GUT symmetry breaking is spontaneous
(i) Only finite number of fields

O Will prove that it is impossible to get low-energy effective
theory with both:

1. just the MSSM field content
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= No-Go for R symmetries in 4D

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P Vaudrevange (2011)

O Assumptions:
(H GUT model in four dimensions based on G > SU(5)
(i) GUT symmetry breaking is spontaneous
(i) Only finite number of fields

O Will prove that it is impossible to get low-energy effective
theory with both:

1. just the MSSM field content
2. residual R symmetries
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a 24-plet breaking SU(5) — Gsm
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O Iterating this argument shows that with a finite number of
24-plets one will always have massless exotics



Discrete symmetries in GUTs and in the MSSM Anomaly-free discrete symmetries & grand unification

= No-Go for R symmetries in 4D

The basic argument

[0 Consider SU(5) model with an (arbitrary) R symmetry and
a 24-plet breaking SU(5) — Gsm

24 — (8,1) @ (1,8)0 @ (3,2) 5 ® (3, 2)5

R charge 0

extra massless states

0 Infroducing exfra 24-pletfs with R charge 2 does not help
because this would lead to massless (3, 2)_s @ (3, 2)s/6
representations

O Iterating this argument shows that with a finite number of
24-plets one will always have massless exotics

0 Loophole for infinitely many 24—-plets

cf. Goodman & Witten (1986)
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Generalizing the basic argument & discussion

O Itis possible to generalize the basic argument to
e arbifrary SU(5) representations
e larger GUT groups G > SU(5)
e singlet extensions of the MSSM

for details see M. Fallbacher, M.R., P Vaudrevange (2011)

0 We adlready know that only R symmetries can forbid the u
term
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= No-Go for R symmetries in 4D

Generalizing the basic argument & discussion

O Itis possible to generalize the basic argument to
e arbifrary SU(5) representations
e larger GUT groups G > SU(5)
e singlet extensions of the MSSM

for details see M. Fallbacher, M.R., P Vaudrevange (2011)

0 We adlready know that only R symmetries can forbid the u
term

bottom-line:

‘Natural” solutions to the
1 and/or doublet-triplet splitting problems
are not available in four dimensions!




Higher—-dimensianal GUTs

and

string realization

¢ evading the no—-go theorem
o origin of Z
¢ higher-dimensional operators (effective u term etc.)
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interpretation in terms of the Lorentz symmetry of compact
dimensions
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I—(;rund unification in higher dimensions

Grand unification in higher dimensions

O Well known: higher dimensional GUTs appear more
“appealing”

O New possibilities of symmetry breaking arise
Witten (1985); Breit, Ovrut & Segre (1985) ... Kawamura (1999)

O KK towers provide us with infinitely many states and allow us
to evade the no-go theorem

0 Even more, R symmetries have a clear geometric
interpretation in terms of the Lorentz symmetry of compact
dimensions

0 Remainder of this talk: explicit string-derived example

based on: M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, R Vaudrevange (2009)
R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P Vaudrevange (2011)
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The Zg orbifold plane

2D space with SO(2) rotational symmetry
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Higher-dimensional GUTs and string realization

I—The Zg orbifold plane

Discrete symmetries in GUTs and in the MSSM

Zg orbifold pillow

~®
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I—The Zg orbifold plane

Zs orbifold plane & R symmetries

0 Crucial: Z symmetry arises as a remnant of the Lorentz
group in compact dimensions

bulk fields
have even
ZE charge

localized
fields have odd
ZE charge
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I—The Zg orbifold plane

Zs orbifold plane & R symmetries

0 Crucial: Z symmetry arises as a remnant of the Lorentz
group in compact dimensions

[] Remainder of this talk: discuss globally consistent string
model with these features

more details on heterotic orbifolds will be provided in tomorrows talk by P Vaudrevange



Discrete symmetries in GUTs and in the MSSM Higher-dimensional GUTs and string realization

I—Bluszt:zyk et al. model

Zo X 79 Orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5)
® ®

@ ®
SU(5) SU(5)

O step: 6 generation Zsy x Zy model with SU(5) symmetry
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I—Bluszt:zyk et al. model

'
Zo X 79 Orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)
@ ® @

non-local
breaking
SU(5)
l
Gsm

@ ® @
SU(5) SU(5) SU(5)

O step: 6 generation Zs x Zy model with SU(5) symmetry

O step: mod out a freely acting Zg sysnmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)
Braun, He, Ovrut, Pantev (2005)
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I—Bluszt:zyk et al. model

'
Zo X 79 Orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)

non-local
breaking
SU(5)
l
Gsm

Note: this is just a cartoon
the geometric picture will be ex-
SU(5) . . .
plained in more detail elsewhere
0 step: 6 g

M. Fischer, M.R., P Vaudrevange (to appear) T]meTry

0 step: mod out a freely acting Zg symmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3
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I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
~ No ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)
~ precision gauge unification

with distinctive pattern of soft masses
Raby. M.R., Schmidt-Hoberg (2009)
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I—Bluszt:zyk et al. model

Main features

[] GUT symmetry breaking non-locall

[1 No localized flux in hypercharge direction
~ complete blow-up without breaking SM gauge
symmetry in principle possible
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I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
[1 No localized flux in hypercharge direction

[] 4D gauge group:
SU3)e x SU)L x U()y x U(1)5 1 x [SUE3) x SU2)2 x U(1)]

[] massless spectrum

spectrum = 3 x generation + vector-like

[ various appealing features:
e vacua where exotics decouple at the linear level in SM
singlets
e non-trivial Yukawa couplings
e gauge-top unification
e SU(D) relation Y+ = Yp (outalso for light generations)
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[ We succeeded in finding vacua with the 7%

© Various good features

v F- and D-flatness explicitly verified

v exotics decouple at the linear level in SM singlets, i.e. just
MSSM below GUT scale with massessness of Higgs fields ensured by Zf

v non-trivial full-rank Yukawa couplings

v gauge-top unification

v SU(B) relation y, =y wut aiso for light generations)
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[

Zf from Zg x Zg models

7E from a Zg x 7y model

[ We succeeded in finding vacua with the ZF

© Various good features

v F- and D-flatness explicitly verified

v exotics decouple at the linear level in SM singlets, i.e. just
MSSM below GUT scale with massessness of Higgs fields ensured by Zf

v non-trivial full-rank Yukawa couplings

v gauge-top unification

v SU(B) relation y, =y wut aiso for light generations)

0 Successful string embedding of Z£ possible!
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O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty & Taylor (1995)

solutions of D-equations N solutions of F-equations = non-trivial

0 However: (#') # 0 generically
0 Vacua with residual ZE are slightly different

0 Example: consider one field ¢y with R-charge O and one
field ¢o with R-charge 2

W= ¢o-fldo) +O(de2)  with (#) = 0 automatic

o
Fy, = 8o o f'($0) +0(g2%) = 0 @y = 0
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L susy vacua with zf

SUSY vacua with 7

O Recall: situation for gauge theories with generic
superpo‘renﬁol e.g. Luty & Taylor (1995)

solutions of D-equations N solutions of F-equations = non-trivial

0 However: (#') # 0 generically
0 Vacua with residual ZE are slightly different

0 Example: consider one field ¢y with R-charge O and one
field ¢o with R-charge 2

W= ¢o-fldo) +O(de2)  with (#) = 0 automatic

o

F, = o = 2 f'(@0) +O(¢2%) = 0 @2 = 0
bo
o ! .

F,, = = f(¢o) = 0 fixes ¢o

b2 %
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L susy vacua with sz

SUSY vacua with Z£ (cont'd)

[ Generalization: consider N fields oY) with R-charge 0 and M
fields ¢(2’) with R-charge 2

W= > P O, )+
J

Fd)g) = 0 automatically

Fp=0 ~ f2%,..)=0 ~ Mconstaintson N fields

0 expect solutions for N > M

0 Have identified configurations with N > M in our Zg x Zsg
model(s)
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

/= deHu + K; LiHu
+ YéjLinEj + Yfij Qinl_)j + YLJ Ql’HuUj
+ /lijk LiLjEk + /ll/‘jk Linﬁk + /lé}k Eﬁjﬁk

+ Kgn HuLi HuLj + Kl(jlk){’ QinQkLg + Kz(]?lzf ﬁiﬁjﬁkl@ + ...
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

/= /lHdHu+K'LiHu

+ Aij L; 'Ek + "'k Linﬁk + /lz{]/'k Eﬁjﬁk

+ k) Hhe HaL + N, QiQQpLy + 1), U;UDE, + ...

< forbidden at the perturbative level
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

/= /lHdHu+KiLiHu

+ /lijk Li 'Ek + /ll/'jk Linﬁk + /ll/'J/'k Eﬁjﬁk

i + Kfjl]gl QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

< appear at non-perturbative level
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

W o= deH +KlLH

also forbidden at
non-perturbative level by
non-anomalous Zg subgroup
which is equivalent
to matter parity
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

W = puHqHy, + ki LiHy

{LiHyE; + Y] QiHyD; + Y Q:H,U;

Ey + A, LiQ;Dy, + A, U;D;Dy,

Lj+ Kl(jlk)f Q:Q;QrL, + Kglgf ﬁiﬁjﬁkfjg .

mn-per’rurboﬁve generation of u solves the u problem
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[

Zf phenomenology

7ZE phenomenology

0 Gauge invariant superpotential terms up to order 4

W = pHdHu + K; LiHu
+ YéjLinEj + Yfij Qinl_)j + YLJ Ql’HuUj
+ /lijk LiLjEk + /ll/'jk Linﬁk + /ll/'J/'k Eﬁjﬁk
+ Kgn H,L; HuLj + K(llgl QinQkLg + Kz(jzlgl ﬁiﬁjﬁkl@ + ...

L

\

< non-perturbatively generated terms harmless =
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= Zf phenomenology

Minimal realization of ZE

O MSSM + Kdhler stabilized dilaton

6.x10°8F
5.x10°8F

4.x108F

2.x10°8F
1.x10°8F
OF . | . ; . ;
1.6 1.7 1.8 1.9 2.0
Re S

o non—perturbative corrections to the Kdhler potential lead
to a bump in the potential of Re S

e Im S has a flat potential ~ GS axion remains light
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[

Zf phenomenology

Minimal realization of ZE

[0 MSSM + Kd&hler stabilized dilaton
0 Non-perturbative superpotential
Wap D M% e’

is Z§ covariant (i.e. has R charge 2) as S — S + 1 Acs
0 Comments:

o Of course 74, is just the effective description of some hidden
sector strong dynamics
o ZE anomaly universality leads fo non-trivial constraints on the
(B-function) coefficient b
e discrete shift of dilaton not uniquely fixed:
1

47TAGS = —A

2 grav-grav-zEF = AG—G—Zf mod 2
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[

Zf phenomenology

Minimal realization of ZE

[0 MSSM + Kd&hler stabilized dilaton
0 Non-perturbative superpotential
Wap D M% e’

is Z§ covariant (i.e. has R charge 2) as S — S + 1 Acs
O Effective u term and QQQL coefficients

Wap > AMpe S HyHy, + My e "5 Qi@iQkLe + ...

are also Z£ covariant
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Zf phenomenology

7ZE phenomenology

O A non-trivial vacuum expectation value of 7 is a measure
for both 7% breaking and the gravitino mass

O Effective u term and QQQL coefficients

ew > O(msj2) HaHu + 552 QiQi@QuLec + .
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7ZE phenomenology

O A non-trivial vacuum expectation value of 7 is a measure
for both 7% breaking and the gravitino mass

O Effective u term and QQQL coefficients

ew > O(msj2) HaHu + 552 QiQi@QuLec + .

0 Gravity mediation: ¢ and proton decay problems solved!
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[

Zf phenomenology

7ZE phenomenology

O A non-trivial vacuum expectation value of 7 is a measure
for both 7% breaking and the gravitino mass

O Effective u term and QQQL coefficients

ew > O(msj2) HaHu + 552 QiQi@QeLc + .

0 Gravity mediation: 1 and proton decay problems solved!
0 ¥y breaks ZE down to matter parity
0 Singlet extension: add singlet N w/ R charge 2

%ff D KNHdHu + /1N3 +O(m3/2)N3 +
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[

Zf phenomenology

7ZE phenomenology

O A non-trivial vacuum expectation value of 7 is a measure
for both 7% breaking and the gravitino mass

O Effective u term and QQQL coefficients

ew > O(msj2) HaHu + 552 QiQi@QeLc + .

0 Gravity mediation: 1 and proton decay problems solved!
0 ¥y breaks ZE down to matter parity
0 Singlet extension: add singlet N w/ R charge 2

Wege > kN HgH, + AN3 + O(m32) N3 +

0 General singlet extension of the MSSM w/ my ~ ms)2
(no domain wall/tadpole problems)
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O Assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons
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Summary

O Assumptions:
(H anomaly freedom (allow for GS anomaly cancellation)
(i) p term forbidden at perturbative level

(i) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

0 Have shown:
1. assuming (i) & SU(5) relations:
~ only R symmetries can forbid the u term

2. assuming (H-C(iii) & SO(10) relations:
~ unique ZE symmetry

3. assuming (H-C(ii) & SU(5) relations:
~ only five discrete symmetries possible
4. R symmetries are not available in 4D GUTs

~ no ‘natural’ solution to doublet-triplet splitting in 4D!
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universal charges for matter
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allow Yukawa couplings

allow Weinberg operator
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Summary

[] A simple ‘anomalous’ ZE symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators

universal anomaly coefficients

universal charges for matter
forbid u @ free-level 3 ~ unique ZF

allow Yukawa couplings

dllow Weinberg operator

dim. 4 proton decay operators completely forbidden
fo ~ dim. 5 proton decay operators highly suppressed
1 Appears non-perturbatively
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Summary

[] Embedding into string theory allows us to understand
where the Z{ symmetry comes from: it may arise as a
discrete remmnant of Lorentz symmetry in extra dimensions

[] Guided by the (unique) ZF symmetry we have constructed
a globally consistent string model with:

e exact MSSM spectrum

non-trivial Yukawa couplings

exact matter parity
e U ~mg

e dimension five proton decay operators sufficiently suppressed



Discrete symmetries in GUTs and in the MSSM Summary

Summary & outlook

[] Embedding into string theory allows us to understand
where the Z{ symmetry comes from: it may arise as a
discrete remmnant of Lorentz symmetry in extra dimensions

[] Guided by the (unique) ZF symmetry we have constructed
a globally consistent string model with:

e exact MSSM spectrum

e non-trivial Yukawa couplings

e exact matter parity

® K~ Mg

e dimension five proton decay operators sufficiently suppressed

[] (Unique) ZZ will also be available in other constructions
(F-theory, D-branes, .. .)
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Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fulkawa (1979)

DYDY — J() DYDY  with non-frivial J(a)
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L (Discrete) Green-Schwarz anomaly cancellation

Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fulkawa (1979)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a
A.,(fgnommy = 397 QFanom al‘lOIl’lAU(l)anam

* 232 \%%RRA@OV V-V
A\

[sum over all gauge focTors] anomaly coefficients )
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L (Discrete) Green-Schwarz anomaly cancellation

Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fulkawa (1979)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a ~
A«ffonomoly = mFanomFanomAU(l)gmm

a jaed a ~
+> 352 F AG-G-Uuon ~ g3 RRAgrav-grav-Ult)umon
G

0 Provided the Lagrangean also includes axion couplings

_e Fo_%paga . Cps
£ > 8FanomFamm 8F F* + 4RR
AZanomaly CAN e compensated by a shift of the axion a
if the anomaly coefficients are universal

Green & Schwarz (1984)
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L (Discrete) Green-Schwarz anomaly cancellation

Discrete GS anomaly cancellation

O The analysis applies also for discrete symnmetries
O Specifically for a Zy fransformation
o 5 o1 Fd g0

the dilaton (containing the axion) has to transform as
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o starting point: ‘anomalous’ U(1)g (???)
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L Zf literature

72 literature

0 Anomaly-free version of this Z§ with extra matter has been
discussed preVlOUSly Kurosawa, Maru & Yanagida (2001)

0 ZZ with GS anomaly cancellation has also been discussed

before Babu, Gogoladze & Wang (2002)
0 However:
e NO uniqueness discussion
e no discussion about suppression of dimension five operators
 no discussion of non-perfurbative violation of ZZ
o starting point: ‘anomalous’ U(1)g (???)
e no discussion of mixed hypercharge nor gravitational

anomalies
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