

Discrete symmetries in GUTs and in the MSSM

Michael Ratz

Bonn, November 7, 2011

Based on:

- H.M. Lee, S. Raby, G. Ross, M.R., R. Schieren & P. Vaudrevange, Phys. Lett. **B** 694, 491-495 (2011) & Nucl. Phys. **B** 850, 1-30 (2011)
- R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P. Vaudrevange, Nucl. Phys. **B** 847, 325-349 (2011)
- M. Fallbacher, M.R. & P. Vaudrevange, Phys. Lett. **B** 705, 503-506 (2011)

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling [unification](#)

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling [unification](#)
 - 😊 dark matter candidate

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking
 - 😊 ...

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking
 - 😊 ...
- ☞ However:
 - 😢 **$\mu/B\mu$ problem**

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators
 - 😢 CP and flavor problems

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling **unification**
 - 😊 **dark matter candidate**
 - 😊 radiative electroweak symmetry breaking
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators
 - 😢 CP and flavor problems
- ➡ Supersymmetry alone seems not to be enough

Disclaimer & apologies

The topic

“Discrete symmetries in GUTs and in the MSSM”

is very broad...

Disclaimer & apologies

The topic

“Discrete symmetries in GUTs and in the MSSM”

is very broad...

I’m going to focus on

- ⌚ $\mu/B\mu$ problem
- ⌚ dimension four and five proton decay operators

and will ignore

- ⌚ CP and flavor problems

Disclaimer & apologies

The topic

“Discrete symmetries in GUTs and in the MSSM”

is very broad...

I’m going to focus on

- :($\mu/B\mu$ problem
- :(dimension four and five proton decay operators

and will ignore

- :(CP and flavor problems

This ignores many interesting developments in model building:

- flavor symmetries:
 - discrete vs. continuous
 - VEV alignment
- CP violation
 - spontaneous? or geometric?
 - relation to baryon asymmetry?
 - ...

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}\mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\ & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\ & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\ & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell\end{aligned}$$

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell
 \end{aligned}$$

need to be strongly suppressed

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell
 \end{aligned}$$

forbidden by matter parity

Farrar & Fayet (1978); Dimopoulos, Raby & Wilczek (1981)

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell
 \end{aligned}$$

Ibáñez & Ross (1992)

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell
 \end{aligned}$$

forbidden by proton hexality

Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

- ☞ Proton hexality = matter parity + baryon triality

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

😊 forbids dimension four and five proton decay operators

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$
- 😊 **unique anomaly-free** symmetry with the above features
... with the common notion of **anomaly freedom**

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$
- 😊 unique anomaly-free symmetry with the above features

☞ However:

- 😊 not consistent with unification for matter (i.e. inconsistent with universal discrete charges for all matter fields)

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H_u	H_d	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H_u L_i H_u L_j$
- 😊 unique anomaly-free symmetry with the above features

☞ However:

- 😊 not consistent with unification for matter
- 😊 embedding into string theory not yet fully convincing

Outline

- ① Introduction & Motivation ✓
- ② Anomaly-free discrete symmetries & grand unification
- ③ String theory completion
- ④ Summary

Anomaly–free discrete symmetries and grand unification

- anomaly cancellation
- consistency with unification

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - (?): not consistent with (grand) unification for matter

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - ⌚ not consistent with (grand) unification for matter
 - ⌚ embedding into string theory not yet fully convincing

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - (⌚) not consistent with (grand) unification for matter
 - (⌚) embedding into string theory not yet fully convincing
 - (⌚) does not address μ problem

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - :(not consistent with (grand) unification for matter
 - :(embedding into string theory not yet fully convincing
 - :(does not address μ problem

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

need to be strongly suppressed

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - :(not consistent with (grand) unification for matter
 - :(embedding into string theory not yet fully convincing
 - :(does not address μ problem

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

need to be strongly suppressed

needs to be suppressed as well...

Discrete anomaly cancellation

- Example: anomaly coefficients for \mathbb{Z}_N symmetries

Ibáñez & Ross (1990)

$$A_{G-G-\mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)}$$
$$A_{\text{grav-grav-}\mathbb{Z}_N} = \sum_m q^{(m)}$$

sum over all representations of G

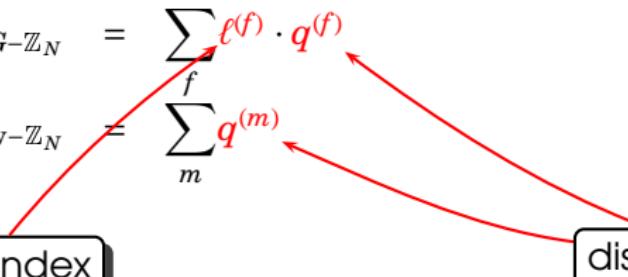
sum over all fermions

Discrete anomaly cancellation

- Example: anomaly coefficients for \mathbb{Z}_N symmetries

Ibáñez & Ross (1990)

$$\begin{aligned} A_{G-G-\mathbb{Z}_N} &= \sum_f \ell^{(f)} \cdot q^{(f)} \\ A_{\text{grav-grav}-\mathbb{Z}_N} &= \sum_m q^{(m)} \end{aligned}$$



Dynkin index discrete charges

Discrete anomaly cancellation

- Example: anomaly coefficients for \mathbb{Z}_N symmetries

Ibáñez & Ross (1990)

$$\begin{aligned}
 A_{G-G-\mathbb{Z}_N} &= \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} 0 \pmod{\eta} \\
 A_{\text{grav-grav-}\mathbb{Z}_N} &= \sum_m q^{(m)} \stackrel{!}{=} 0 \pmod{\eta}
 \end{aligned}
 \quad \eta := \begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}$$

traditional anomaly constraints:

all A coefficients vanish ($\pmod{\eta}$)

Discrete anomaly cancellation revisited

- ☞ Example: anomaly coefficients for \mathbb{Z}_N symmetries

e.g. H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

$$A_{G-G-\mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$A_{\text{grav-grav-}\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$\eta := \begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}$$

traditional anomaly constraints:

all A coefficients vanish ($\pmod{\eta}$)

GS anomaly cancellation:

all A coefficients equal

Discrete anomaly cancellation revisited

- ☞ Example: anomaly coefficients for \mathbb{Z}_N symmetries

e.g. H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

$$A_{G-G-\mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$A_{\text{grav-grav-}\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$\eta := \begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}$$

traditional anomaly constraints:

all A coefficients vanish ($\pmod{\eta}$)

GS anomaly cancellation:

all A coefficients equal

main message:

▶ details

anomaly freedom requires universality of anomaly coefficients

Discrete anomaly cancellation revisited

- ☞ Example: anomaly coefficients for \mathbb{Z}_N symmetries

e.g. H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

$$A_{G-G-\mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$A_{\text{grav-grav-}\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$\eta := \begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}$$

traditional anomaly constraints:

all A coefficients vanish ($\pmod{\eta}$)

GS anomaly cancellation:

all A coefficients equal

main message:

► details

anomaly freedom requires universality of anomaly coefficients

- ☞ **Note:** discrete GS anomaly cancellation at work in many explicit string models

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level
- (iii) Yukawa couplings and Weinberg neutrino mass operator allowed

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level
- (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
- (iv) SU(5) or SO(10) GUT relations for quarks and leptons

Anomaly-free symmetries, μ and unification

- ☞ Working assumptions:
 - (i) anomaly freedom (allow for GS anomaly cancellation)
 - (ii) μ term forbidden at perturbative level
 - (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
 - (iv) $SU(5)$ or $SO(10)$ GUT relations for quarks and leptons
- ☞ Will prove:
 1. assuming (i) & $SU(5)$ relations:
only R symmetries can forbid the μ term

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level
- (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
- (iv) $SU(5)$ or $SO(10)$ GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & $SU(5)$ relations:
only R symmetries can forbid the μ term
2. assuming (i)–(iii) & $SO(10)$ relations:
unique \mathbb{Z}_4^R symmetry

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level
- (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
- (iv) $SU(5)$ or $SO(10)$ GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & $SU(5)$ relations:
only R symmetries can forbid the μ term
2. assuming (i)–(iii) & $SO(10)$ relations:
unique \mathbb{Z}_4^R symmetry
3. assuming (i)–(iii) & $SU(5)$ relations:
only five discrete symmetries possible

Anomaly-free symmetries, μ and unification

☞ Working assumptions:

- (i) anomaly freedom (allow for GS anomaly cancellation)
- (ii) μ term forbidden at perturbative level
- (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
- (iv) $SU(5)$ or $SO(10)$ GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & $SU(5)$ relations:
only R symmetries can forbid the μ term
2. assuming (i)–(iii) & $SO(10)$ relations:
unique \mathbb{Z}_4^R symmetry
3. assuming (i)–(iii) & $SU(5)$ relations:
only five discrete symmetries possible
4. R symmetries are not available in 4D GUTs

Claim 1: Non- R symmetries cannot forbid μ

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right]$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right] + \frac{1}{2} (q_{H_u} + q_{H_d})$$

sum over matter charges

Claim 1: Non- R symmetries cannot forbid μ

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right]$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right] + \frac{1}{2} (q_{H_u} + q_{H_d})$$

- ☞ Anomaly universality: $A_{SU(2)^2 - \mathbb{Z}_N} - A_{SU(3)^2 - \mathbb{Z}_N} = 0 \pmod{\eta}$

$$\sim \frac{1}{2} (q_{H_u} + q_{H_d}) = 0 \pmod{\begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}}$$

Claim 1: Non- R symmetries cannot forbid μ

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right]$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \sum_{g=1}^3 \left[\frac{3}{2} q_{\mathbf{10}}^g + \frac{1}{2} q_{\mathbf{\bar{5}}}^g \right] + \frac{1}{2} (q_{H_u} + q_{H_d})$$

- ☞ Anomaly universality: $A_{SU(2)^2 - \mathbb{Z}_N} - A_{SU(3)^2 - \mathbb{Z}_N} = 0 \pmod{\eta}$

$$\sim \frac{1}{2} (q_{H_u} + q_{H_d}) = 0 \pmod{\begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}}$$

bottom-line:

non- R \mathbb{Z}_N symmetry cannot forbid μ term

Claim 2: $SO(10)$ implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Assumption: quarks and leptons have universal charge q

Claim 2: $SO(10)$ implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- Assumption: quarks and leptons have universal charge q
- u - and d -type Yukawas allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + q_{H_d} = 2 \pmod{N}$$

superpotential has R charge 2

Claim 2: $SO(10)$ implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + q_{H_d} = 2 \pmod{N}$$

$$\leadsto q_{H_u} - q_{H_d} = 0 \pmod{N}$$

Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + q_{H_d} = 2 \pmod{N}$$

$$\leadsto q_{H_u} - q_{H_d} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_{H_u} = 2 \pmod{N}$$

Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + q_{H_d} = 2 \pmod{N}$$

$$\leadsto q_{H_u} - q_{H_d} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_{H_u} = 2 \pmod{N}$$

$$\leadsto q_{H_u} = 0 \pmod{N}$$

Claim 2: SO(10) implies unique symmetry

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + q_{H_d} = 2 \pmod{N}$$

$$\leadsto q_{H_u} - q_{H_d} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_{H_u} = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_{H_u} = 2 \pmod{N}$$

$$\leadsto q_{H_u} = 0 \pmod{N}$$

- ➡ first conclusion:

$$q_{H_u} = q_{H_d} = 0 \pmod{N}$$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2} (\textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d}) - 5$$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2}(\textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\curvearrowright \textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_{H_u} + q_{H_d}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\curvearrowright q_{H_u} + q_{H_d} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $q_{H_u} = q_{H_d} = 0 \pmod{N}$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2}(\textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\curvearrowright \textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $\textcolor{violet}{q}_{H_u} = \textcolor{violet}{q}_{H_d} = 0 \pmod{N}$

bottom-line:

$N = 2$ or $N = 4$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_{H_u} + q_{H_d}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = \boxed{\text{however: there is no meaningful } \mathbb{Z}_2^R \text{ symmetry}}$$

cf. e.g. Dine & Kehayias (2009)

$$q_{H_u} + q_{H_d} \equiv 0 \pmod{N} \quad \text{for } N \text{ even}$$

- ☞ but we know already that $q_{H_u} = q_{H_d} = 0 \pmod{N}$

bottom-line:

$N = 2$ or $N = 4$

Claim 2: SO(10) implies unique symmetry (cont'd)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2}(\textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\curvearrowright \textcolor{violet}{q}_{H_u} + \textcolor{violet}{q}_{H_d} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $\textcolor{violet}{q}_{H_u} = \textcolor{violet}{q}_{H_d} = 0 \pmod{N}$

bottom-line:

$N = 4$ unique

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (q_{H_u} + q_{H_d}) - 5 = 1 \pmod{4/2}$$

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{3}{5} \cdot \frac{1}{2} \cdot (q_{H_u} + q_{H_d} - 2)$$

e.g. $q_{H_u} = q_{H_d} = 16$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (a_H + a_{H_d}) - 5 = 1 \pmod{4/2}$$

gravitino contribution gaugino contributions

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{5} \cdot \frac{1}{2} (q_{H_u} + q_{H_d} - 2) = 1 \pmod{4/2}$$

$$\frac{1}{24} A_{\text{grav}^2 - \mathbb{Z}_N^R} = \frac{1}{24} [-21 + 8 + 3 + 1 + 48(q - 1) + 2(q_{H_u} + q_{H_d} - 2) - 1]$$

only defined $\pmod{4}$

axino contribution

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (q_{H_u} + q_{H_d}) - 5 = 1 \pmod{4/2}$$

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{3}{5} \cdot \frac{1}{2} \cdot (q_{H_u} + q_{H_d} - 2) = 1 \pmod{4/2}$$

$$\frac{1}{24} A_{\text{grav}^2 - \mathbb{Z}_N^R} = \frac{1}{24} [\dots] = 1 \pmod{4/2}$$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_{H_u} = q_{H_d} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_{H_u} + q_{H_d}) - 5 = 1 \pmod{4/2}$$

bottom-line:

- \mathbb{Z}_4^R is anomaly free via GS mechanism
- GS axino contribution important for gravitational anomaly

Claim 3: only 5 symmetries obey SU(5) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Demanding $SU(5)$ rather than $SO(10)$ relations we find that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24

Claim 3: only 5 symmetries obey SU(5) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Demanding $SU(5)$ rather than $SO(10)$ relations we find that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24
- ☞ There are only five viable charge assignments

N	$q_{\mathbf{10}}$	$q_{\bar{\mathbf{5}}}$	q_{H_u}	q_{H_d}	ρ	$A_0^R(\text{MSSM})$
4	1	1	0	0	1	1
6	5	3	4	0	0	1
8	1	5	0	4	1	3
12	5	9	4	0	3	1
24	5	9	16	12	9	7

Recall

gravitational anomaly

$$A_{G^2-\mathbb{Z}_N} = \sum_f \ell^{(f)} q^{(f)} \stackrel{!}{=} \rho \bmod \eta$$

$$A_{\text{grav}^2-\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \bmod \eta$$

Claim 3: only 5 symmetries obey SU(5) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Demanding $SU(5)$ rather than $SO(10)$ relations we find that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24
- ☞ There are only five viable charge assignments

N	$q_{\mathbf{10}}$	$q_{\bar{\mathbf{5}}}$	q_{H_u}	q_{H_d}	ρ	$A_0^R(\text{MSSM})$
4	1	1	0	0	1	1
6	5	3	4	0	0	1
8	1	5	0	4	1	3
12	5	9	4	0	3	1
24	5	9	16	12	9	7

- ☞ All \mathbb{Z}_N^R symmetries can be obtained from $\mathbb{Z}_N^{R'} \times SO(10)$ by spontaneous breaking

Claim 3: only 5 symmetries obey SU(5) relations

H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt-Hoberg, P. Vaudrevange (2011)

- ☞ Demanding $SU(5)$ rather than $SO(10)$ relations we find that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24
- ☞ There are only five viable charge assignments

N	$q_{\mathbf{10}}$	$q_{\bar{\mathbf{5}}}$	q_{H_u}	q_{H_d}	ρ	$A_0^R(\text{MSSM})$
4	1	1	0	0	1	1
6	5	3	4	0	0	1
8	1	5	0	4	1	3
12	5	9	4	0	3	1
24	5	9	16	12	9	7

- ☞ All \mathbb{Z}_N^R symmetries can be obtained from $\mathbb{Z}_N^{R'} \times SO(10)$ by spontaneous breaking
- ☞ N divides 24: hint at realization of \mathbb{Z}_N^R as discrete rotational symmetry in orbifolds

(The geometry of orbifolds with $N = 1$ SUSY is constrained that the order of discrete R symmetries also divides 24)

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

- (i) GUT model in four dimensions based on $G \supset \text{SU}(5)$

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

- (i) GUT model in four dimensions based on $G \supset \text{SU}(5)$
- (ii) GUT symmetry breaking is spontaneous

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

- (i) GUT model in four dimensions based on $G \supset \text{SU}(5)$
- (ii) GUT symmetry breaking is spontaneous
- (iii) Only finite number of fields

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

- (i) GUT model in four dimensions based on $G \supset \text{SU}(5)$
- (ii) GUT symmetry breaking is spontaneous
- (iii) Only finite number of fields

☞ Will prove that it is impossible to get low-energy effective theory with both:

1. just the MSSM field content

No-Go for R symmetries in 4D

M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

- (i) GUT model in four dimensions based on $G \supset \text{SU}(5)$
- (ii) GUT symmetry breaking is spontaneous
- (iii) Only finite number of fields

- ☞ Will prove that it is impossible to get low-energy effective theory with both:
 1. just the MSSM field content
 2. residual R symmetries

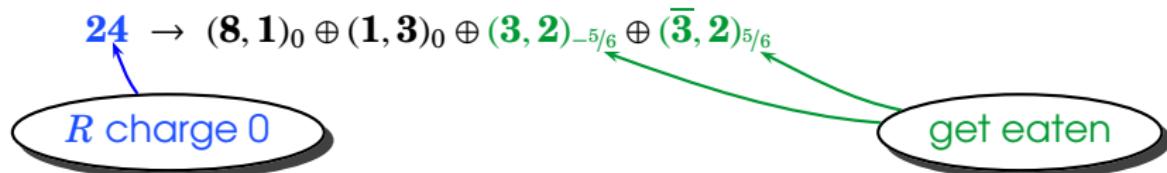
The basic argument

- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$

$$\mathbf{24} \rightarrow (\mathbf{8}, \mathbf{1})_0 \oplus (\mathbf{1}, \mathbf{3})_0 \oplus (\mathbf{3}, \mathbf{2})_{-5/6} \oplus (\overline{\mathbf{3}}, \mathbf{2})_{5/6}$$

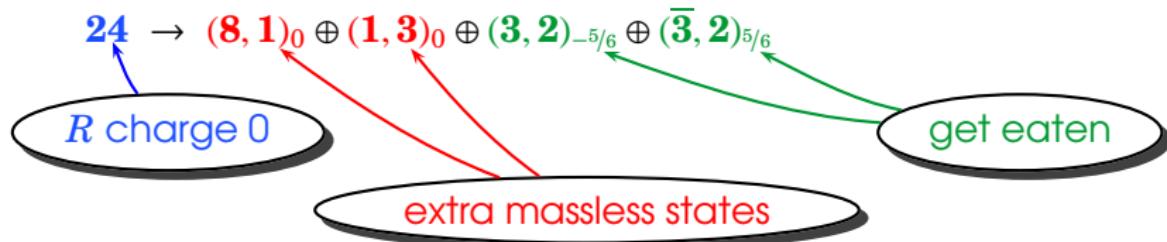
The basic argument

- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$



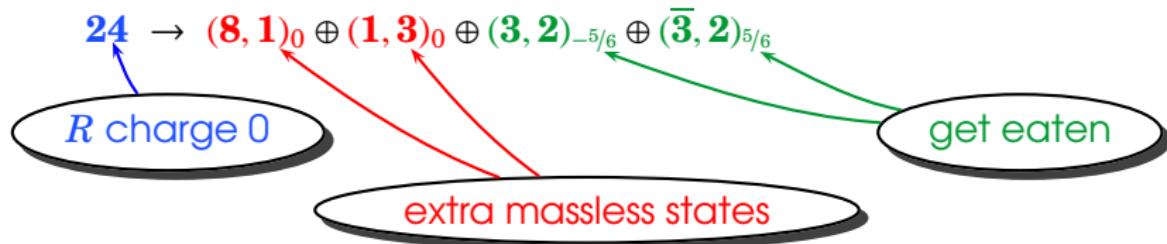
The basic argument

- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$



The basic argument

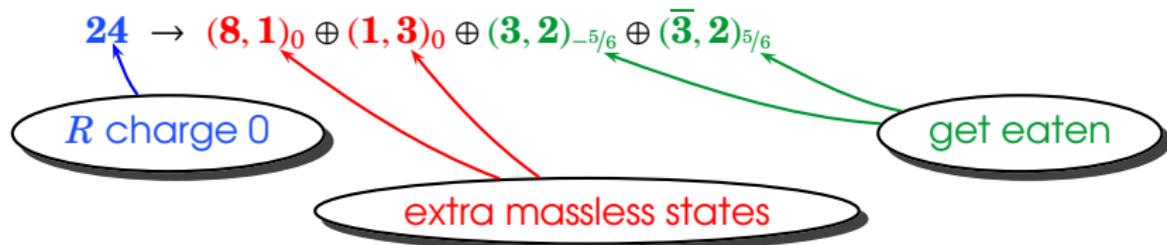
- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$



- ☞ Introducing extra **24-plets** with R charge 2 does not help because this would lead to massless $(3, 2)_{-5/6} \oplus (\bar{3}, 2)_{5/6}$ representations

The basic argument

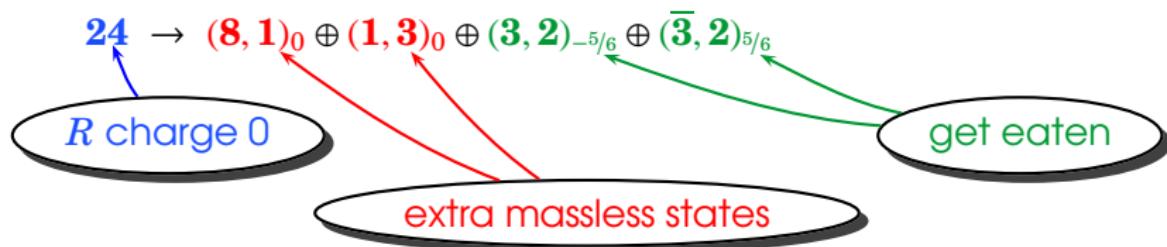
- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$



- ☞ Introducing extra **24-plets** with R charge 2 does not help because this would lead to **massless $(3, 2)_{-5/6} \oplus (\bar{3}, 2)_{5/6}$ representations**
- ☞ Iterating this argument shows that with a **finite number** of **24-plets** one will always have **massless exotics**

The basic argument

- ☞ Consider $SU(5)$ model with an (arbitrary) R symmetry and a **24-plet** breaking $SU(5) \rightarrow G_{\text{SM}}$



- ☞ Introducing extra **24-plets** with R charge 2 does not help because this would lead to **massless** $(3, 2)_{-5/6} \oplus (\bar{3}, 2)_{5/6}$ representations
- ☞ Iterating this argument shows that with a **finite number** of **24-plets** one will always have **massless exotics**
- ☞ Loophole for **infinitely many** **24-plets**

Generalizing the basic argument & discussion

- ☞ It is possible to generalize the basic argument to
 - arbitrary SU(5) representations

Generalizing the basic argument & discussion

- ☞ It is possible to generalize the basic argument to
 - arbitrary $SU(5)$ representations
 - larger GUT groups $G \supset SU(5)$

Generalizing the basic argument & discussion

- ☞ It is possible to generalize the basic argument to
 - arbitrary $SU(5)$ representations
 - larger GUT groups $G \supset SU(5)$
 - singlet extensions of the MSSM

for details see [M. Fallbacher, M.R., P. Vaudrevange \(2011\)](#)

Generalizing the basic argument & discussion

- ☞ It is possible to generalize the basic argument to
 - arbitrary $SU(5)$ representations
 - larger GUT groups $G \supset SU(5)$
 - singlet extensions of the MSSM

for details see [M. Fallbacher, M.R., P. Vaudrevange \(2011\)](#)

- ☞ We already know that **only R symmetries** can forbid the μ term

Generalizing the basic argument & discussion

- ☞ It is possible to generalize the basic argument to
 - arbitrary $SU(5)$ representations
 - larger GUT groups $G \supset SU(5)$
 - singlet extensions of the MSSM

for details see [M. Fallbacher, M.R., P. Vaudrevange \(2011\)](#)

- ☞ We already know that **only R symmetries** can forbid the μ term

bottom-line:

'Natural' solutions to the
 μ and/or doublet-triplet splitting problems
are not available in four dimensions!

Higher-dimensional GUTs

and

string realization

- evading the no-go theorem
- origin of \mathbb{Z}_4^R
- higher-dimensional operators (effective μ term etc.)

Grand unification in higher dimensions

- ☞ Well known: higher dimensional GUTs appear more "appealing"

Grand unification in higher dimensions

- ☞ Well known: higher dimensional GUTs appear more “appealing”
- ☞ New possibilities of symmetry breaking arise

Witten (1985); Breit, Ovrut & Segre (1985) ... Kawamura (1999) ...

Grand unification in higher dimensions

- ☞ Well known: higher dimensional GUTs appear more “appealing”
- ☞ New possibilities of symmetry breaking arise

Witten (1985); Breit, Ovrut & Segre (1985) ... Kawamura (1999) ...

- ☞ KK towers provide us with infinitely many states and allow us to evade the no-go theorem

Grand unification in higher dimensions

- ☞ Well known: higher dimensional GUTs appear more “appealing”
- ☞ New possibilities of symmetry breaking arise

Witten (1985); Breit, Ovrut & Segre (1985) ... Kawamura (1999) ...

- ☞ KK towers provide us with infinitely many states and allow us to evade the no-go theorem
- ☞ Even more, R symmetries have a clear geometric interpretation in terms of the Lorentz symmetry of compact dimensions

Grand unification in higher dimensions

- ☞ Well known: higher dimensional GUTs appear more “appealing”
- ☞ New possibilities of symmetry breaking arise

Witten (1985); Breit, Ovrut & Segre (1985) ... Kawamura (1999) ...

- ☞ KK towers provide us with infinitely many states and allow us to evade the no-go theorem
- ☞ Even more, R symmetries have a clear geometric interpretation in terms of the Lorentz symmetry of compact dimensions
- ☞ **Remainder of this talk:** explicit string-derived example

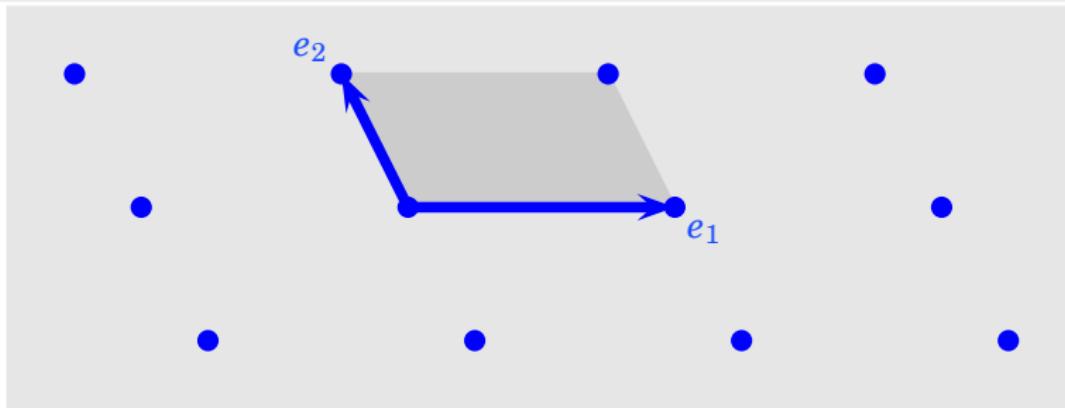
based on: M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P. Vaudrevange (2011)

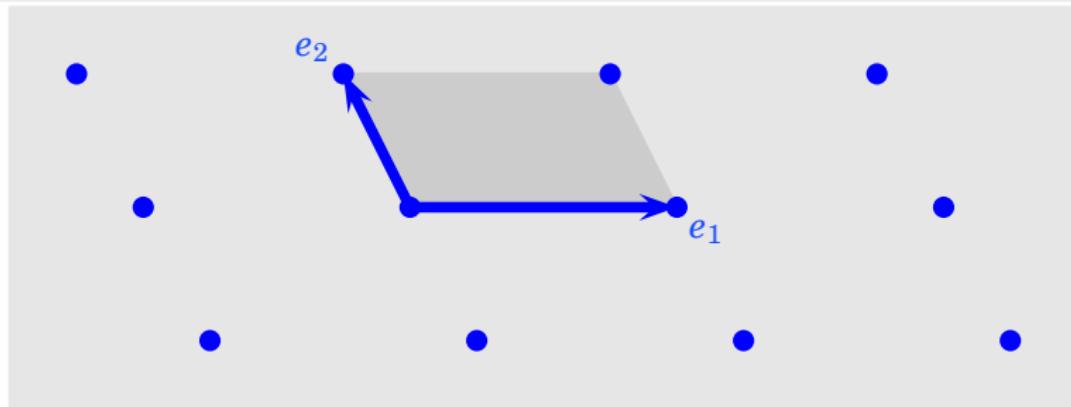
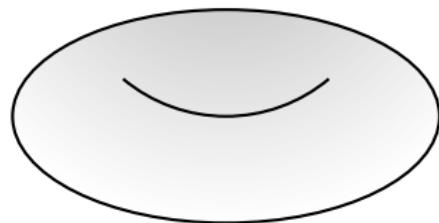
The \mathbb{Z}_2 orbifold plane

2D space with $SO(2)$ rotational symmetry

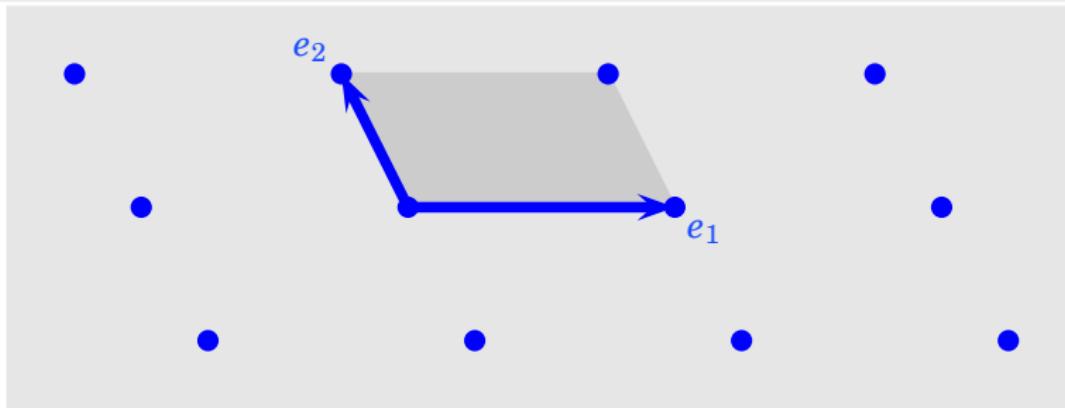
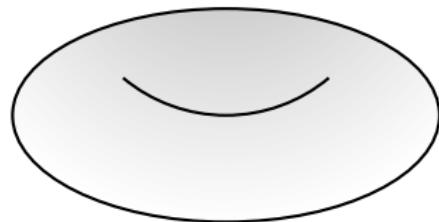
The \mathbb{Z}_2 orbifold plane



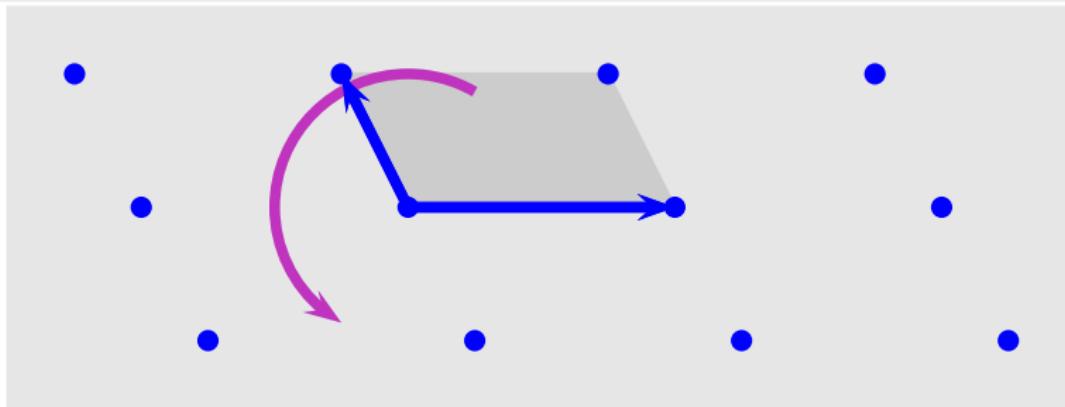
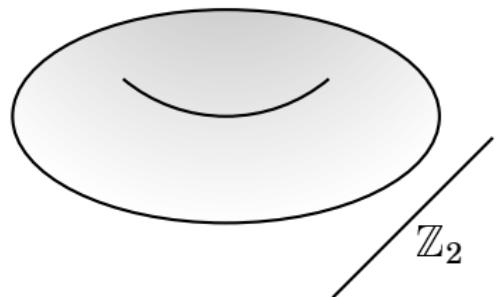
The \mathbb{Z}_2 orbifold plane



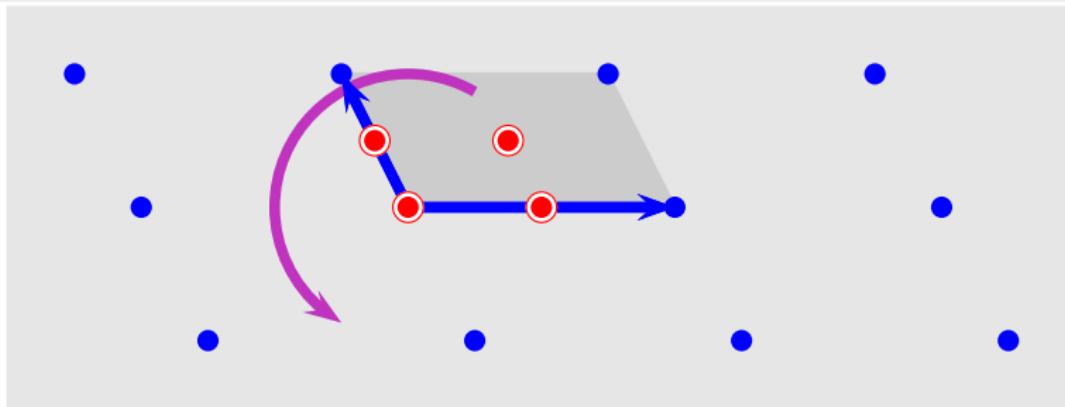
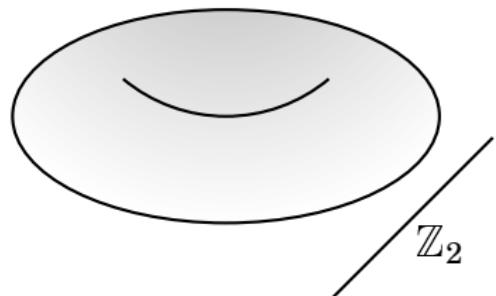
The \mathbb{Z}_2 orbifold plane



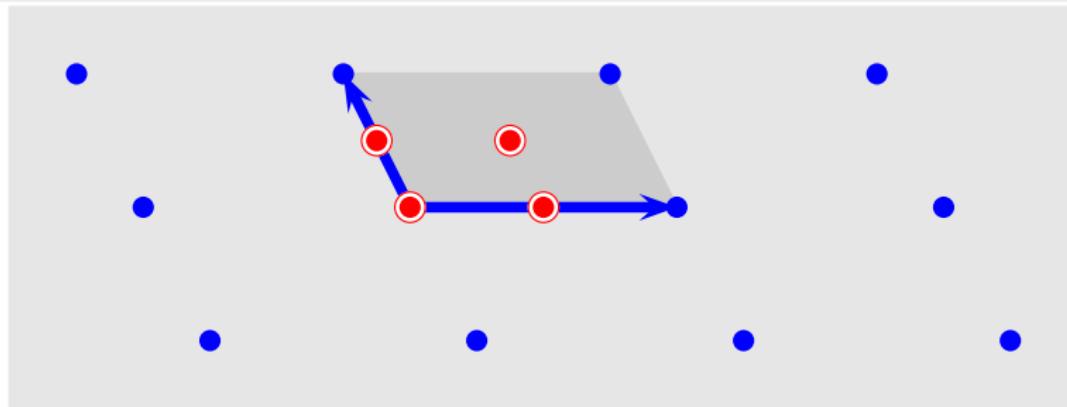
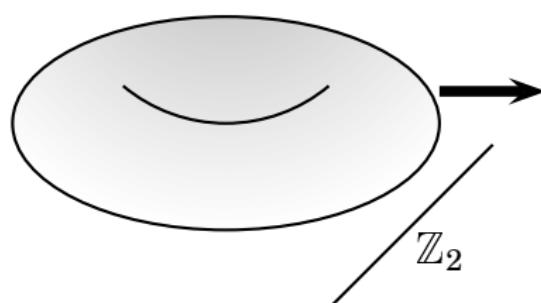
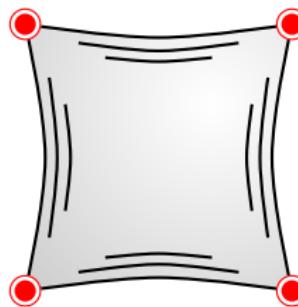
The \mathbb{Z}_2 orbifold plane



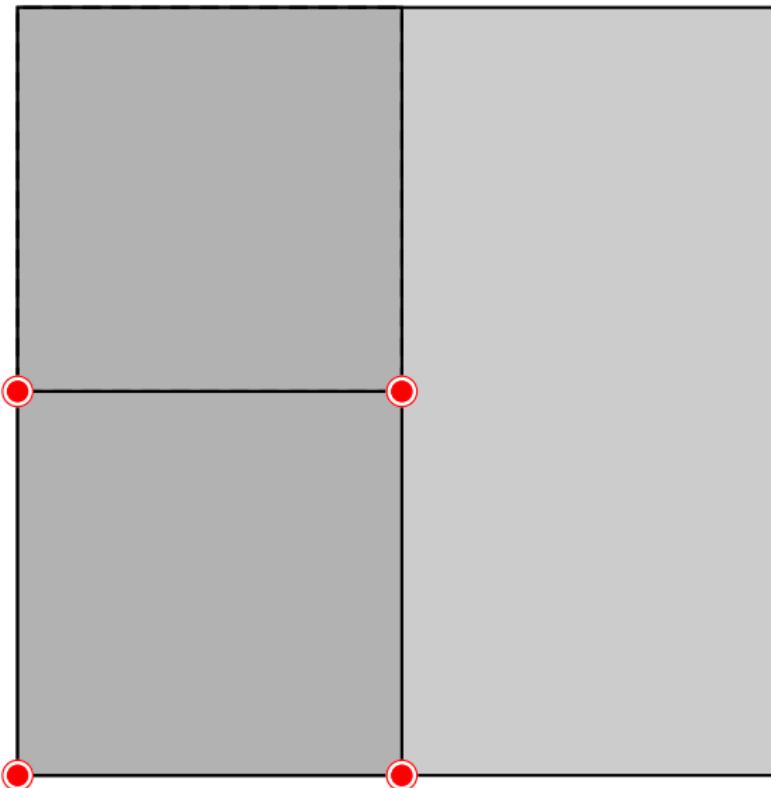
The \mathbb{Z}_2 orbifold plane



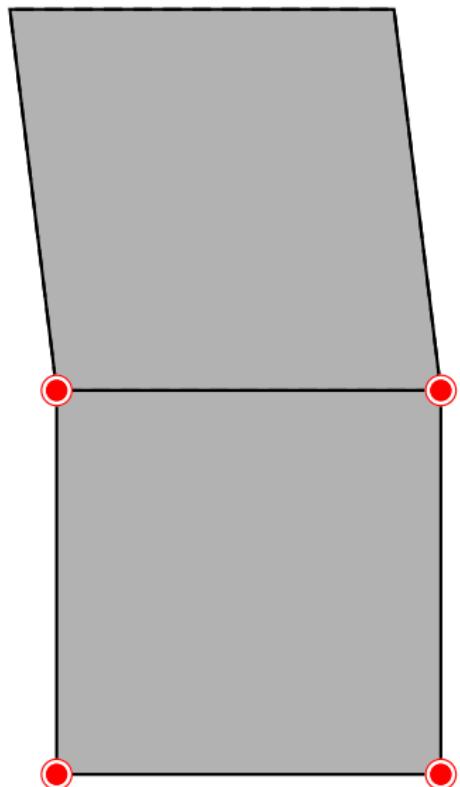
The \mathbb{Z}_2 orbifold plane



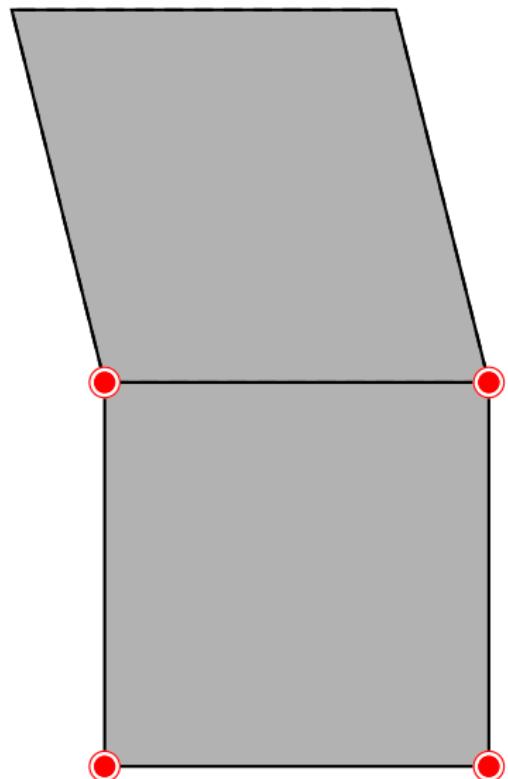
\mathbb{Z}_2 orbifold pillow



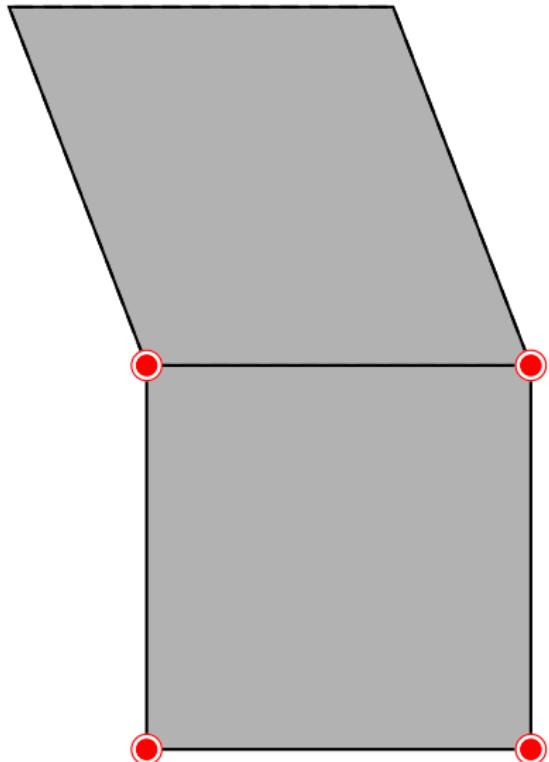
\mathbb{Z}_2 orbifold pillow



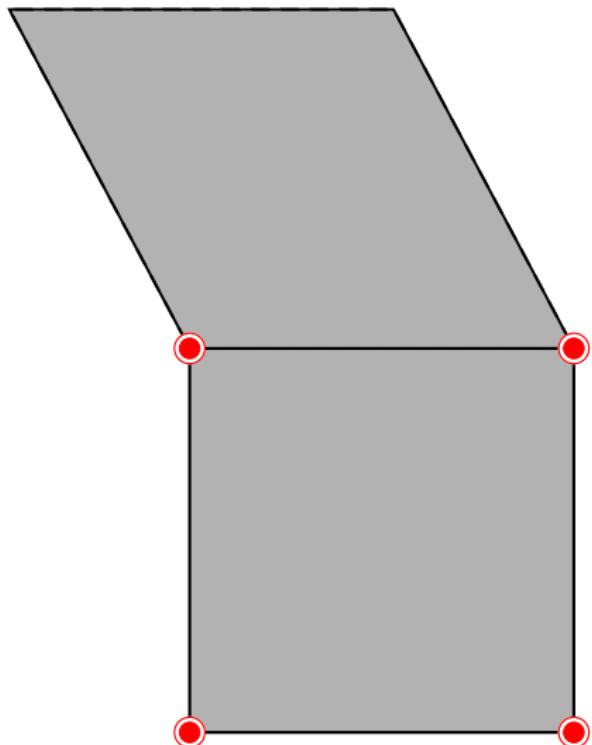
\mathbb{Z}_2 orbifold pillow



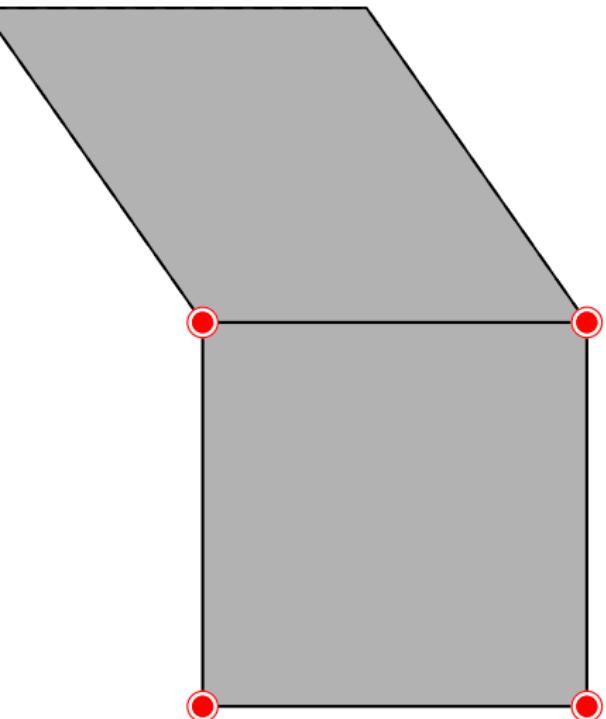
\mathbb{Z}_2 orbifold pillow



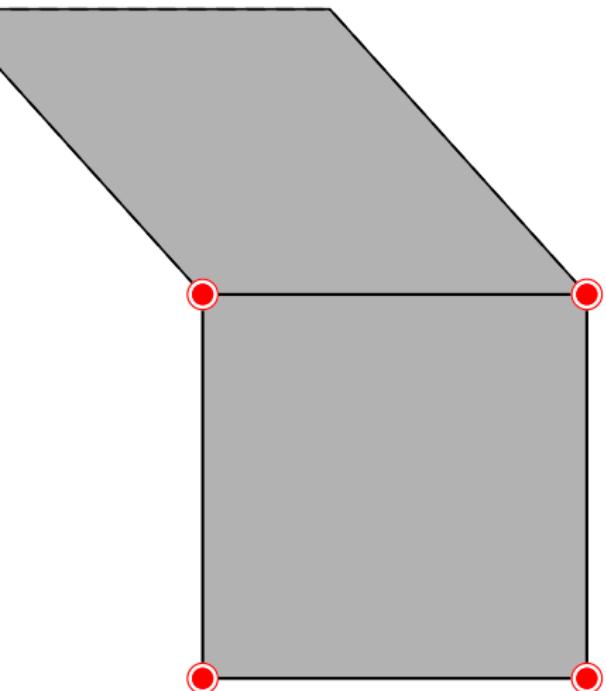
\mathbb{Z}_2 orbifold pillow



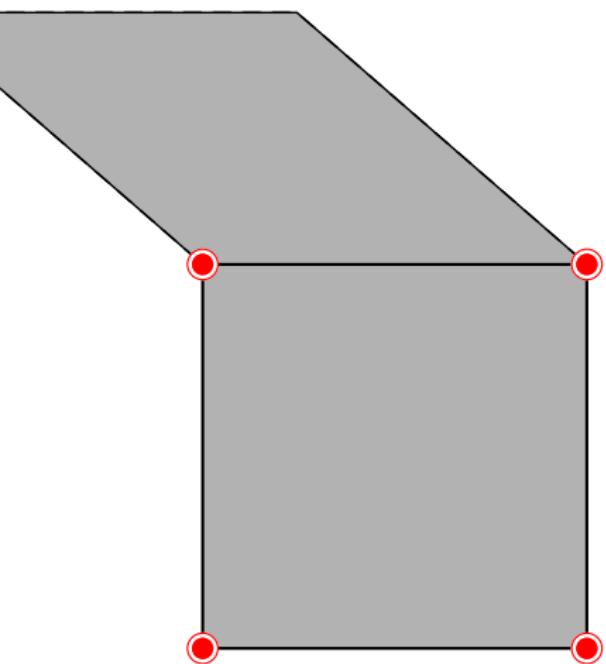
\mathbb{Z}_2 orbifold pillow



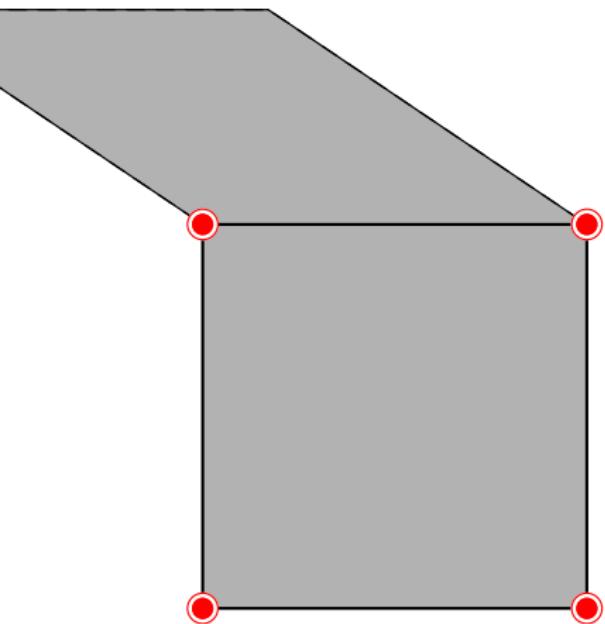
\mathbb{Z}_2 orbifold pillow



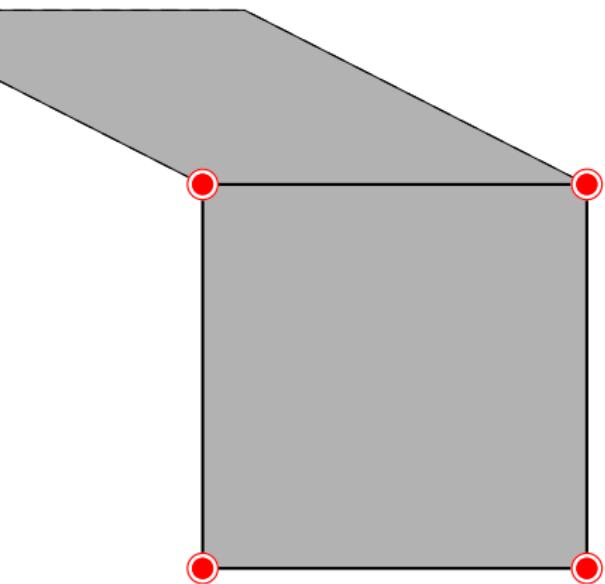
\mathbb{Z}_2 orbifold pillow



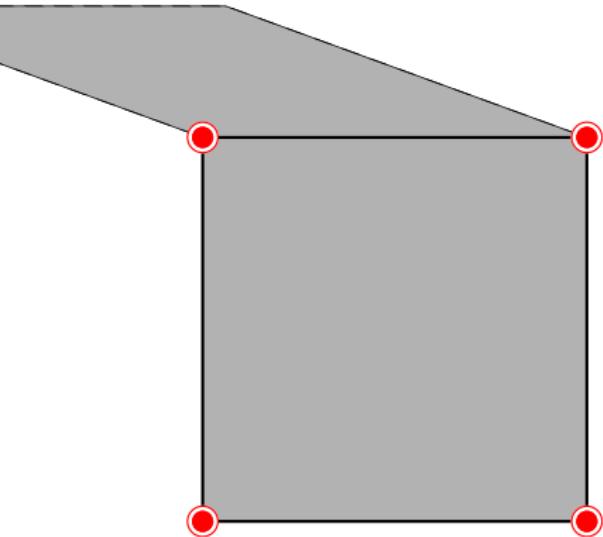
\mathbb{Z}_2 orbifold pillow



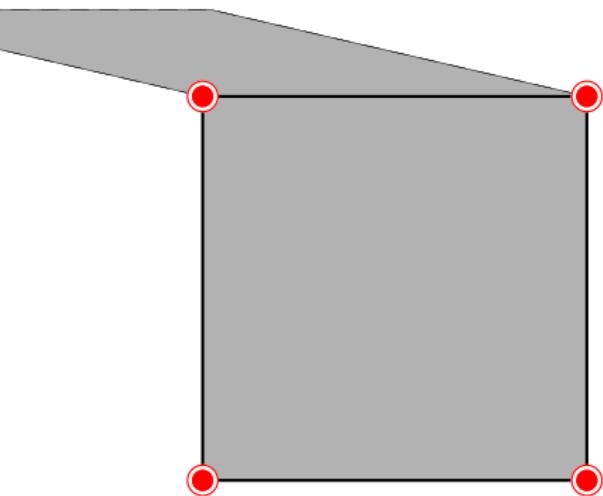
\mathbb{Z}_2 orbifold pillow



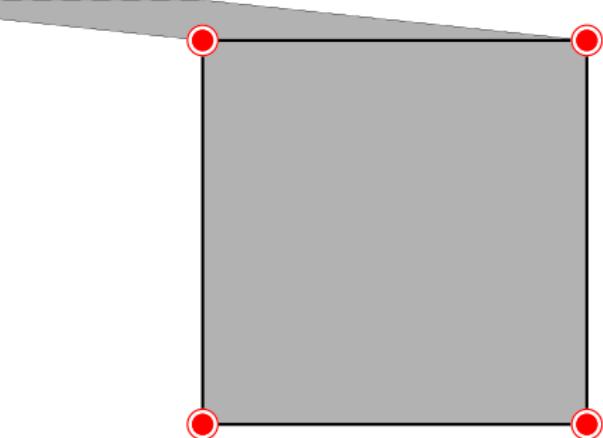
\mathbb{Z}_2 orbifold pillow



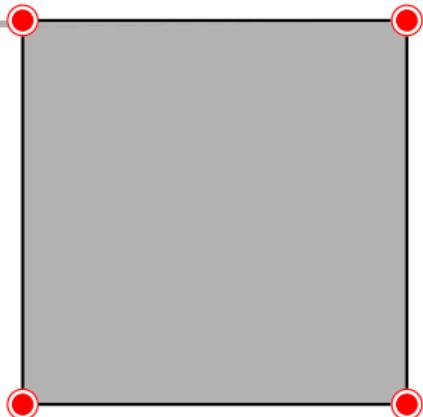
\mathbb{Z}_2 orbifold pillow



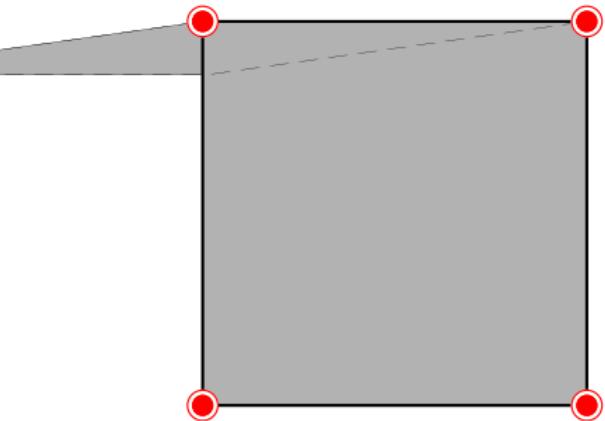
\mathbb{Z}_2 orbifold pillow



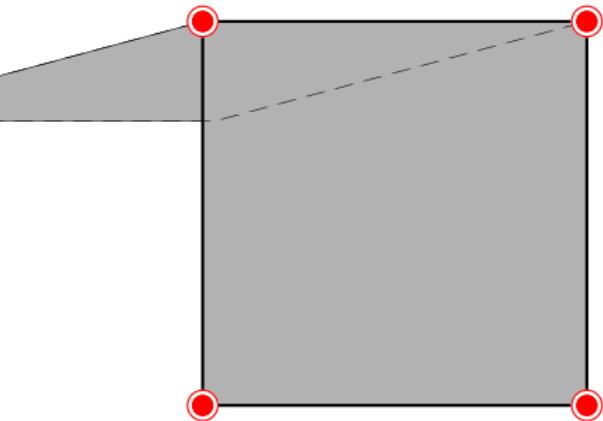
\mathbb{Z}_2 orbifold pillow



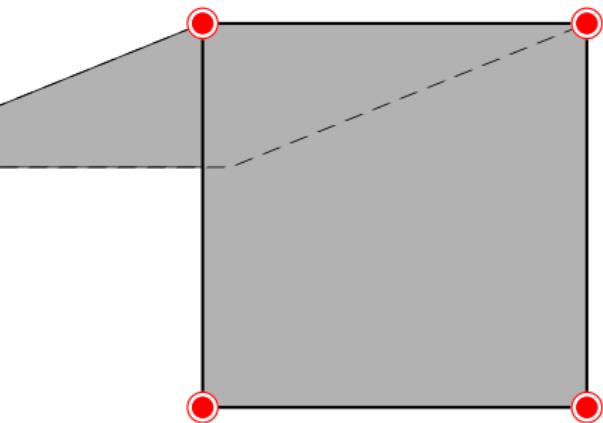
\mathbb{Z}_2 orbifold pillow



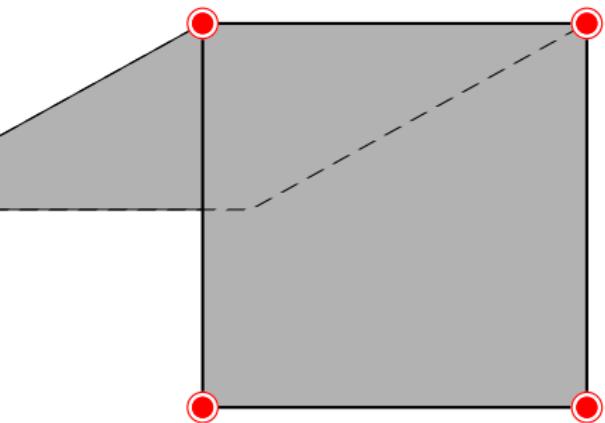
\mathbb{Z}_2 orbifold pillow



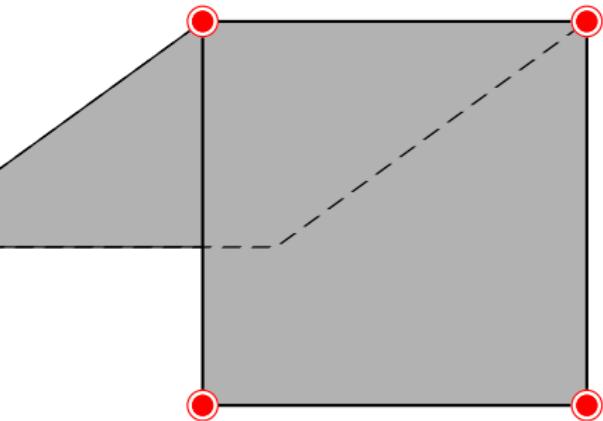
\mathbb{Z}_2 orbifold pillow



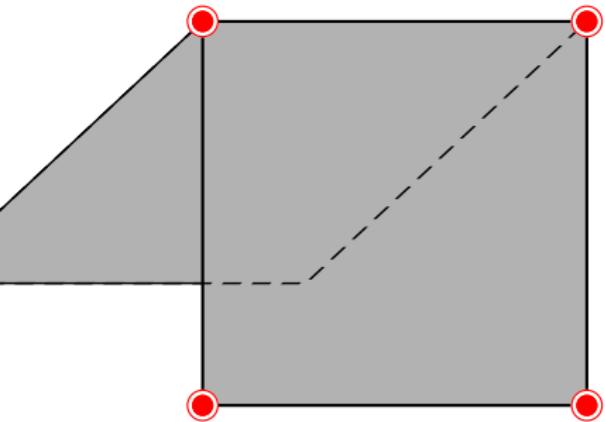
\mathbb{Z}_2 orbifold pillow



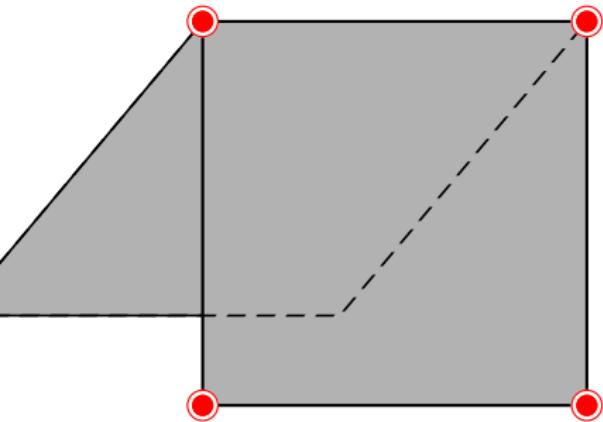
\mathbb{Z}_2 orbifold pillow



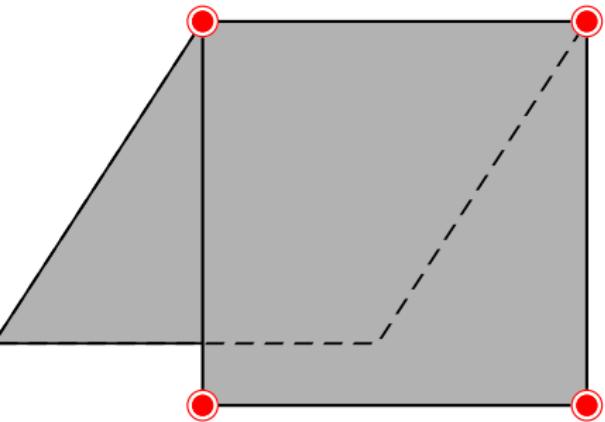
\mathbb{Z}_2 orbifold pillow



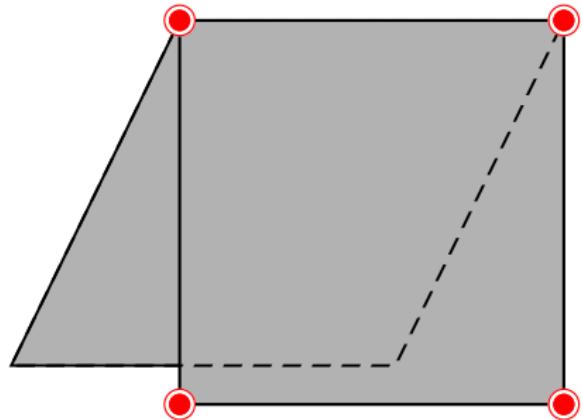
\mathbb{Z}_2 orbifold pillow



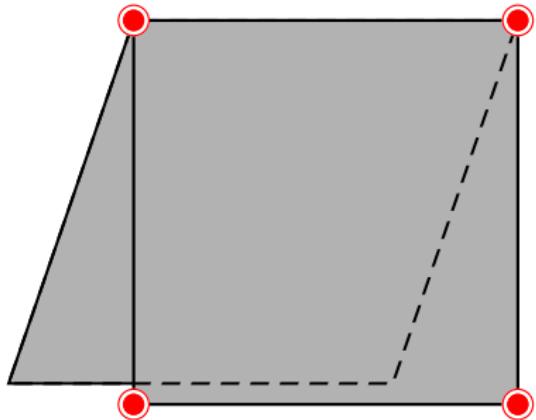
\mathbb{Z}_2 orbifold pillow



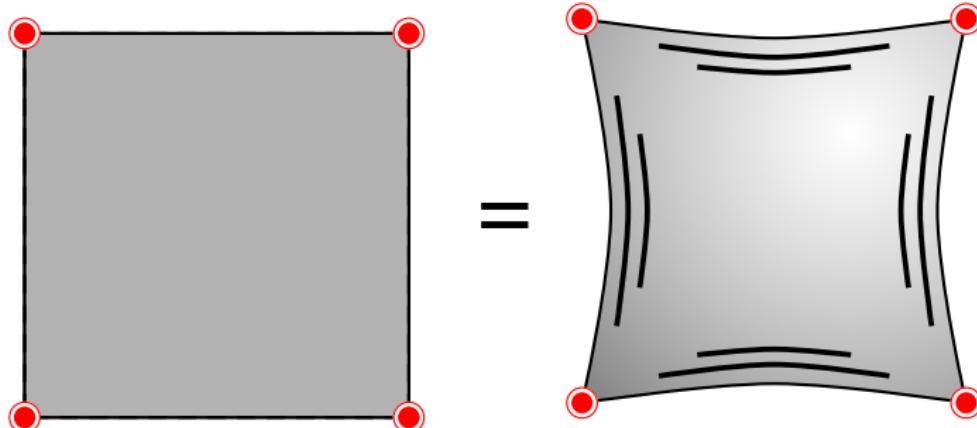
\mathbb{Z}_2 orbifold pillow



\mathbb{Z}_2 orbifold pillow

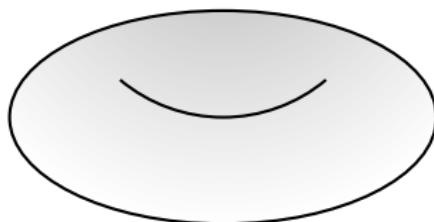


\mathbb{Z}_2 orbifold pillow



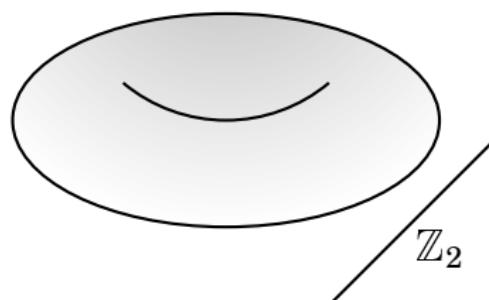
\mathbb{Z}_2 orbifold plane & R symmetries

- ☞ **Crucial:** \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions



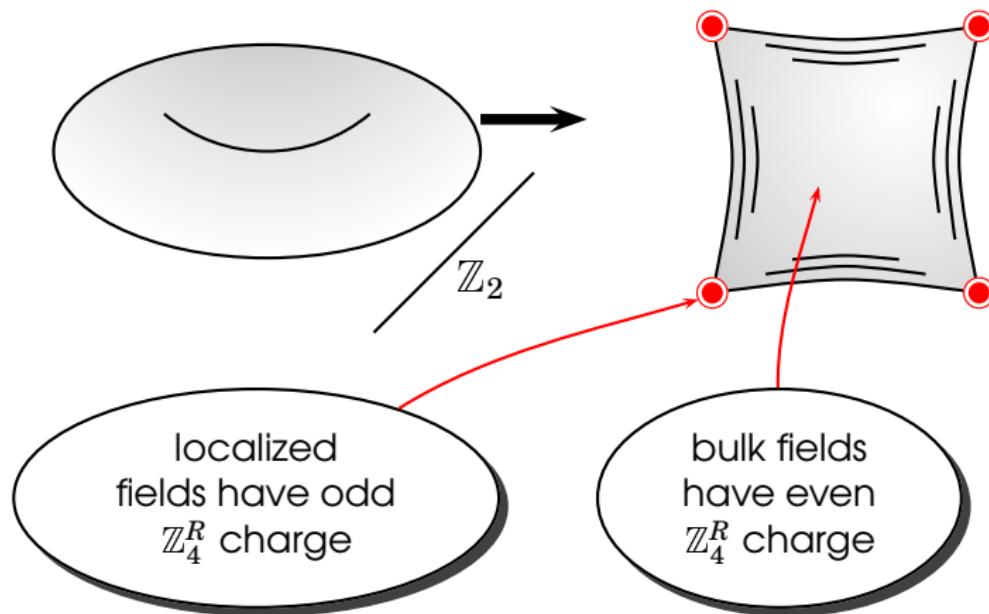
\mathbb{Z}_2 orbifold plane & R symmetries

- ☞ **Crucial:** \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions



\mathbb{Z}_2 orbifold plane & R symmetries

- ☞ **Crucial:** \mathbb{Z}_4^R symmetry arises as a remnant of the **Lorentz** group in compact dimensions



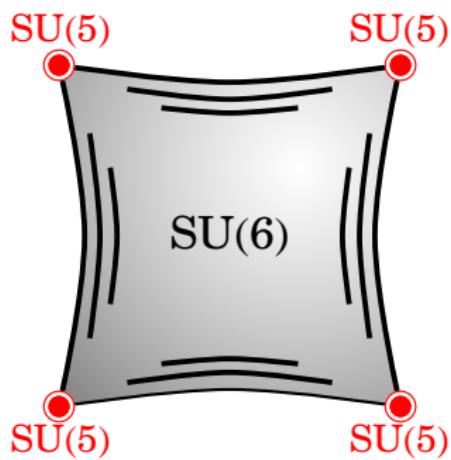
\mathbb{Z}_2 orbifold plane & R symmetries

- ☞ **Crucial:** \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
- ➡ **Remainder of this talk:** discuss globally consistent string model with these features

more details on heterotic orbifolds will be provided in tomorrow's talk by [P. Vaudrevange](#)

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

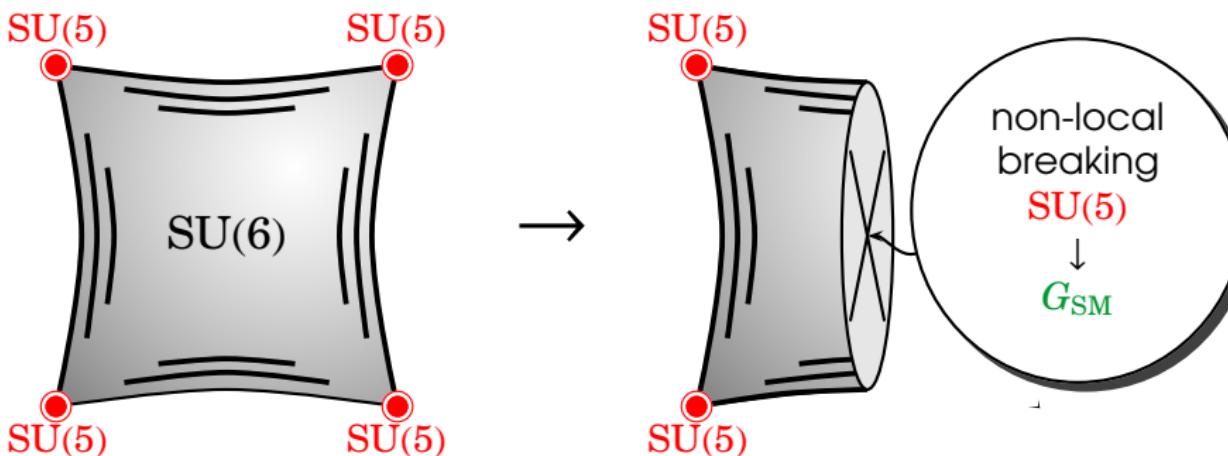
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



- ① step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with $SU(5)$ symmetry

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



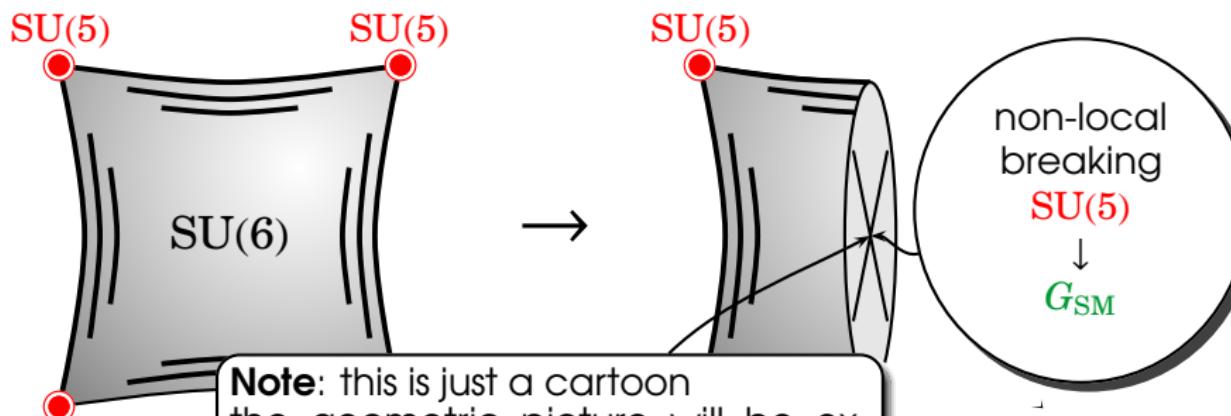
- 1 step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with $SU(5)$ symmetry
- 2 step: mod out a freely acting \mathbb{Z}_2 symmetry which:
 - breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
 - reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



① step: 6 ge

M. Fischer, M.R., P. Vaudrevange (to appear)

② step: mod out a freely acting \mathbb{Z}_2 symmetry which:

- breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
- reduces the number of generations to 3

Main features

① GUT symmetry breaking **non-local**

~ no 'logarithmic running above the GUT scale'

Hebecker, Trapletti (2004)

~ **precision gauge unification**

with **distinctive pattern of soft masses**

Raby, M.R., Schmidt-Hoberg (2009)

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
~ complete blow-up without breaking SM gauge symmetry in principle possible

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$
- ④ massless spectrum

spectrum = **3 × generation** + **vector-like**

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$

- ④ massless spectrum

spectrum = **3 × generation** + **vector-like**

- ⑤ Various appealing features:
 - vacua where **exotics** decouple at the linear level in SM singlets
 - non-trivial Yukawa couplings
 - gauge-top unification
 - SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)

\mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the \mathbb{Z}_4^R

\mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the \mathbb{Z}_4^R
- 😊 Various good features
 - ✓ F - and D -flatness explicitly verified
 - ✓ exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)

\mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the \mathbb{Z}_4^R
- 😊 Various good features
 - ✓ F - and D -flatness explicitly verified
 - ✓ exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)
- ➡ Successful string embedding of \mathbb{Z}_4^R possible!

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. [Luty & Taylor \(1995\)](#)

solutions of D -equations \cap solutions of F -equations = non-trivial

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. Luty & Taylor (1995)

solutions of D -equations \cap solutions of F -equations = non-trivial

- ☞ However: $\langle \mathcal{W} \rangle \neq 0$ generically

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. Luty & Taylor (1995)

solutions of D -equations \cap solutions of F -equations = non-trivial

- ☞ However: $\langle \mathcal{W} \rangle \neq 0$ generically
- ☞ Vacua with residual \mathbb{Z}_4^R are slightly different

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. Luty & Taylor (1995)

solutions of D -equations \cap solutions of F -equations = non-trivial

- ☞ However: $\langle \mathcal{W} \rangle \neq 0$ generically
- ☞ Vacua with residual \mathbb{Z}_4^R are slightly different
- ☞ Example: consider one **field ϕ_0** with **R -charge 0** and one **field ϕ_2** with **R -charge 2**

$$\mathcal{W} = \phi_2 \cdot f(\phi_0) + O(\phi_2^2) \quad \text{with} \quad \langle \mathcal{W} \rangle = 0 \text{ automatic}$$

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. Luty & Taylor (1995)

solutions of D -equations \cap solutions of F -equations = non-trivial

- ☞ However: $\langle \mathcal{W} \rangle \neq 0$ generically
- ☞ Vacua with residual \mathbb{Z}_4^R are slightly different
- ☞ Example: consider one **field ϕ_0** with **R -charge 0** and one **field ϕ_2** with **R -charge 2**

$$\mathcal{W} = \phi_2 \cdot f(\phi_0) + \mathcal{O}(\phi_2^2) \quad \text{with} \quad \langle \mathcal{W} \rangle = 0 \text{ automatic}$$

$$F_{\phi_0} = \frac{\partial \mathcal{W}}{\partial \phi_0} = \phi_2 \cdot f'(\phi_0) + \mathcal{O}(\phi_2^2) = 0 \quad @ \phi_2 = 0$$

SUSY vacua with \mathbb{Z}_4^R

- ☞ Recall: situation for gauge theories with generic superpotential

e.g. Luty & Taylor (1995)

solutions of D -equations \cap solutions of F -equations = non-trivial

- ☞ However: $\langle \mathcal{W} \rangle \neq 0$ generically
- ☞ Vacua with residual \mathbb{Z}_4^R are slightly different
- ☞ Example: consider one field ϕ_0 with R -charge 0 and one field ϕ_2 with R -charge 2

$$\mathcal{W} = \phi_2 \cdot f(\phi_0) + \mathcal{O}(\phi_2^2) \quad \text{with} \quad \langle \mathcal{W} \rangle = 0 \text{ automatic}$$

$$F_{\phi_0} = \frac{\partial \mathcal{W}}{\partial \phi_0} = \phi_2 \cdot f'(\phi_0) + \mathcal{O}(\phi_2^2) = 0 \quad @ \phi_2 = 0$$

$$F_{\phi_2} = \frac{\partial \mathcal{W}}{\partial \phi_2} = f(\phi_0) \stackrel{!}{=} 0 \quad \text{fixes } \phi_0$$

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

$$\mathcal{W} = \sum_j \phi_2^{(j)} \cdot f^{(j)}(\phi_0^{(1)}, \dots) + \dots$$

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

$$\mathcal{W} = \sum_j \phi_2^{(j)} \cdot f^{(j)}(\phi_0^{(1)}, \dots) + \dots$$

$$F_{\phi_0^{(i)}} = 0 \quad \text{automatically}$$

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

$$\mathcal{W} = \sum_j \phi_2^{(j)} \cdot f^{(j)}(\phi_0^{(1)}, \dots) + \dots$$

$$F_{\phi_0^{(i)}} = 0 \quad \text{automatically}$$

$$F_{\phi_2^{(j)}} = 0 \quad \leadsto \quad f^{(j)}(\phi_0^{(1)}, \dots) \stackrel{!}{=} 0 \quad \leadsto \quad M \text{ constraints on } N \text{ fields}$$

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

$$\mathcal{W} = \sum_j \phi_2^{(j)} \cdot f^{(j)}(\phi_0^{(1)}, \dots) + \dots$$

$$F_{\phi_0^{(i)}} = 0 \quad \text{automatically}$$

$$F_{\phi_2^{(j)}} = 0 \quad \curvearrowright \quad f^{(j)}(\phi_0^{(1)}, \dots) \stackrel{!}{=} 0 \quad \curvearrowright \quad M \text{ constraints on } N \text{ fields}$$

- ➡ expect solutions for $N \geq M$

SUSY vacua with \mathbb{Z}_4^R (cont'd)

- ☞ Generalization: consider N fields $\phi_0^{(i)}$ with R -charge 0 and M fields $\phi_2^{(j)}$ with R -charge 2

$$\mathcal{W} = \sum_j \phi_2^{(j)} \cdot f^{(j)}(\phi_0^{(1)}, \dots) + \dots$$

$$F_{\phi_0^{(i)}} = 0 \quad \text{automatically}$$

$$F_{\phi_2^{(j)}} = 0 \quad \curvearrowright \quad f^{(j)}(\phi_0^{(1)}, \dots) \stackrel{!}{=} 0 \quad \curvearrowright \quad M \text{ constraints on } N \text{ fields}$$

- ➡ expect solutions for $N \geq M$
- ☞ Have identified configurations with $N \geq M$ in our $\mathbb{Z}_2 \times \mathbb{Z}_2$ model(s)

\mathbb{Z}_4^R phenomenology

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}\mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\ & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\ & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\ & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots\end{aligned}$$

\mathbb{Z}_4^R phenomenology

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_l L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

forbidden at the perturbative level

\mathbb{Z}_4^R phenomenology

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

appear at non-perturbative level

\mathbb{Z}_4^R phenomenology

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

also forbidden at
non-perturbative level by
non-anomalous \mathbb{Z}_2 subgroup
which is equivalent
to matter parity

\mathbb{Z}_4^R phenomenology

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \cancel{\mu H_d H_u + \kappa_i L_i H_u} \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

non-perturbative generation of μ solves the μ problem

\mathbb{Z}_4^R phenomenology

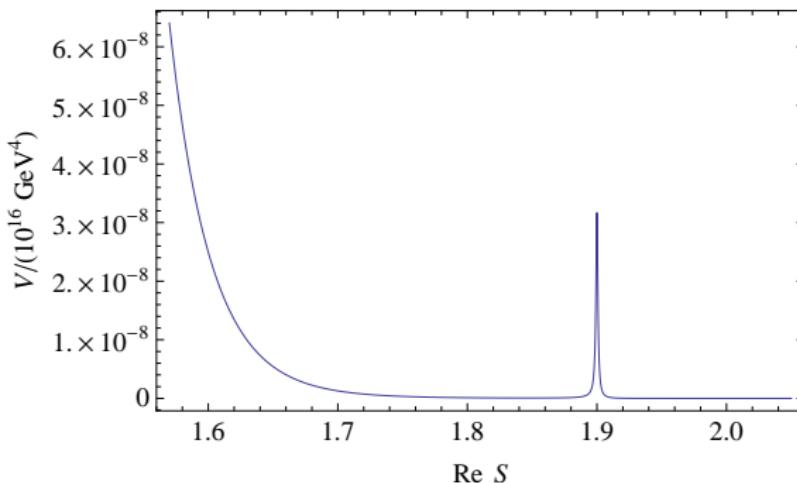
- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu H_d H_u + \kappa_i L_i H_u \\
 & + Y_e^{ij} L_i H_d \bar{E}_j + Y_d^{ij} Q_i H_d \bar{D}_j + Y_u^{ij} Q_i H_u \bar{U}_j \\
 & + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \\
 & + \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_\ell + \dots
 \end{aligned}$$

non-perturbatively generated terms harmless

Minimal realization of \mathbb{Z}_4^R

☞ MSSM + Kähler stabilized dilaton



- non-perturbative corrections to the Kähler potential lead to a bump in the potential of $\text{Re } \mathcal{S}$
- $\text{Im } \mathcal{S}$ has a flat potential \sim GS axion remains light

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{\text{GS}}$

- ☞ Comments:

- Of course \mathcal{W}_{np} is just the effective description of some hidden sector strong dynamics
- \mathbb{Z}_4^R anomaly universality leads to non-trivial constraints on the (β -function) coefficient b
- discrete shift of dilaton not uniquely fixed:

$$4\pi \Delta_{\text{GS}} \equiv \frac{1}{24} A_{\text{grav-grav-}\mathbb{Z}_4^R} = A_{G-G-\mathbb{Z}_4^R} \bmod 2$$

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{GS}$

- ☞ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{np}} \supset A M_P e^{-b S} H_d H_u + M_P^{-1} e^{-b S} \bar{\kappa}_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \dots$$

are also \mathbb{Z}_4^R covariant

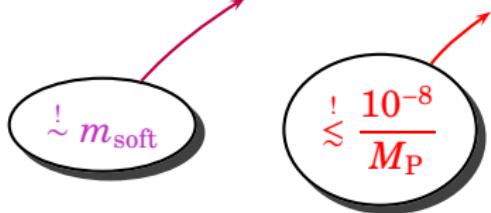
\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass

\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass
- ➡ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{eff}} \supset \mathcal{O}(m_{3/2}) H_d H_u + \frac{\mathcal{O}(m_{3/2})}{M_P^2} Q_i Q_j Q_k L_\ell + \dots$$



\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass
- ➡ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{eff}} \supset \mathcal{O}(m_{3/2}) H_d H_u + \frac{\mathcal{O}(m_{3/2})}{M_P^2} Q_i Q_j Q_k L_\ell + \dots$$

! $\sim m_{\text{soft}}$

! $\lesssim \frac{10^{-8}}{M_P}$

- ➡ Gravity mediation: μ and proton decay problems solved!

\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass
- ➡ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{eff}} \supset \mathcal{O}(m_{3/2}) H_d H_u + \frac{\mathcal{O}(m_{3/2})}{M_P^2} Q_i Q_j Q_k L_\ell + \dots$$

- ➡ Gravity mediation: μ and proton decay problems solved!
- ☞ $\langle \mathcal{W} \rangle$ breaks \mathbb{Z}_4^R down to matter parity

\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass
- ➡ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{eff}} \supset \mathcal{O}(m_{3/2}) H_d H_u + \frac{\mathcal{O}(m_{3/2})}{M_P^2} Q_i Q_j Q_k L_\ell + \dots$$

- ➡ Gravity mediation: μ and proton decay problems solved!
- ☞ $\langle \mathcal{W} \rangle$ breaks \mathbb{Z}_4^R down to matter parity
- ☞ Singlet extension: add singlet N w/ R charge 2

$$\mathcal{W}_{\text{eff}} \supset \kappa N H_d H_u + \lambda N^3 + \mathcal{O}(m_{3/2}) N^3 + \dots$$

\mathbb{Z}_4^R phenomenology

- ☞ A non-trivial vacuum expectation value of \mathcal{W} is a measure for both \mathbb{Z}_4^R breaking and the gravitino mass
- ➡ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{eff}} \supset \mathcal{O}(m_{3/2}) H_d H_u + \frac{\mathcal{O}(m_{3/2})}{M_P^2} Q_i Q_j Q_k L_\ell + \dots$$

- ➡ Gravity mediation: μ and proton decay problems solved!
- ☞ $\langle \mathcal{W} \rangle$ breaks \mathbb{Z}_4^R down to matter parity
- ☞ Singlet extension: add singlet \mathcal{N} w/ R charge 2

$$\mathcal{W}_{\text{eff}} \supset \kappa \mathcal{N} H_d H_u + \lambda \mathcal{N}^3 + \mathcal{O}(m_{3/2}) \mathcal{N}^3 + \dots$$

- ➡ General singlet extension of the MSSM w/ $m_{\mathcal{N}} \sim m_{3/2}$ (no domain wall/tadpole problems)

Summary

&

outlook

Summary

- ☞ Assumptions:
 - (i) anomaly freedom (allow for GS anomaly cancellation)
 - (ii) μ term forbidden at perturbative level
 - (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
 - (iv) SU(5) or SO(10) GUT relations for quarks and leptons

Summary

- ☞ Assumptions:
 - (i) anomaly freedom (allow for GS anomaly cancellation)
 - (ii) μ term forbidden at perturbative level
 - (iii) Yukawa couplings and Weinberg neutrino mass operator allowed
 - (iv) $SU(5)$ or $SO(10)$ GUT relations for quarks and leptons

- ☞ Have shown:
 1. assuming (i) & $SU(5)$ relations:
 \sim only R symmetries can forbid the μ term
 2. assuming (i)–(iii) & $SO(10)$ relations:
 \sim unique \mathbb{Z}_4^R symmetry
 3. assuming (i)–(iii) & $SU(5)$ relations:
 \sim only five discrete symmetries possible
 4. R symmetries are not available in 4D GUTs
 \sim no ‘natural’ solution to doublet–triplet splitting in 4D!

Summary

- ☞ A simple 'anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

Summary

- ☞ A simple 'anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

universal anomaly coefficients
universal charges for matter
forbid μ @ tree-level
allow Yukawa couplings
allow Weinberg operator

} \curvearrowright unique \mathbb{Z}_4^R

Summary

- A simple 'anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

universal anomaly coefficients
 universal charges for matter
 forbid μ @ tree-level
 allow Yukawa couplings
 allow Weinberg operator

} \leadsto unique \mathbb{Z}_4^R

$\mathbb{Z}_4^R \leadsto \left\{ \begin{array}{l} \text{dim. 4 proton decay operators completely forbidden} \\ \text{dim. 5 proton decay operators highly suppressed} \\ \mu \text{ appears non-perturbatively} \end{array} \right.$

Summary

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of [Lorentz symmetry in extra dimensions](#)

Summary

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of [Lorentz symmetry in extra dimensions](#)
- ☞ Guided by the (unique) \mathbb{Z}_4^R symmetry we have constructed a globally consistent string model with:
 - exact MSSM spectrum
 - non-trivial Yukawa couplings
 - exact matter parity
 - $\mu \sim m_{3/2}$
 - dimension five proton decay operators sufficiently suppressed

Summary & outlook

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of [Lorentz symmetry in extra dimensions](#)
- ☞ Guided by the (unique) \mathbb{Z}_4^R symmetry we have constructed a globally consistent string model with:
 - exact MSSM spectrum
 - non-trivial Yukawa couplings
 - exact matter parity
 - $\mu \sim m_{3/2}$
 - dimension five proton decay operators sufficiently suppressed
- ☞ (Unique) \mathbb{Z}_4^R will also be available in other constructions (F-theory, D -branes, ...)

**Vielen
Dank!**

Green-Schwarz anomaly cancellation

- ☞ Under ‘anomalous’ U(1) symmetry the path integral measure exhibits non-trivial transformation

Fujikawa (1979)

$$\mathcal{D}\Psi \mathcal{D}\bar{\Psi} \rightarrow \mathcal{J}(\alpha) \mathcal{D}\Psi \mathcal{D}\bar{\Psi} \quad \text{with non-trivial } \mathcal{J}(\alpha)$$

Green-Schwarz anomaly cancellation

- Under 'anomalous' U(1) symmetry the path integral measure exhibits non-trivial transformation
- One can absorb the change of the path integral measure in a change of Lagrangean

Fujikawa (1979)

$$\Delta \mathcal{L}_{\text{anomaly}} = \frac{\alpha}{32\pi^2} F_{\text{anom}} \tilde{F}_{\text{anom}} A_{U(1)_{\text{anom}}^3} + \sum_G \frac{\alpha}{32\pi^2} F^a \tilde{F}^a A_{G-G-U(1)_{\text{anom}}} - \frac{\alpha}{384\pi^2} \mathcal{R} \tilde{\mathcal{R}} A_{\text{grav-grav-U(1)_{anom}}}$$

sum over all gauge factors

anomaly coefficients

Green-Schwarz anomaly cancellation

- Under 'anomalous' U(1) symmetry the path integral measure exhibits non-trivial transformation
- One can absorb the change of the path integral measure in a change of Lagrangean

Fujikawa (1979)

$$\begin{aligned}\Delta \mathcal{L}_{\text{anomaly}} = & \frac{\alpha}{32\pi^2} F_{\text{anom}} \tilde{F}_{\text{anom}} A_{U(1)_{\text{anom}}^3} \\ & + \sum_G \frac{\alpha}{32\pi^2} F^a \tilde{F}^a A_{G-G-U(1)_{\text{anom}}} - \frac{\alpha}{384\pi^2} \mathcal{R} \tilde{\mathcal{R}} A_{\text{grav-grav-U(1)_{anom}}}\end{aligned}$$

- Provided the Lagrangean also includes **axion** couplings

$$\mathcal{L} \supset -\frac{a}{8} F_{\text{anom}} \tilde{F}_{\text{anom}} - \frac{a}{8} F^a \tilde{F}^a + \frac{a}{4} \mathcal{R} \tilde{\mathcal{R}}$$

$\Delta \mathcal{L}_{\text{anomaly}}$ can be compensated by a shift of the **axion** a if the **anomaly coefficients** are **universal**

Green & Schwarz (1984)

Discrete GS anomaly cancellation

- ☞ The analysis applies also for discrete symmetries

Discrete GS anomaly cancellation

- ☞ The analysis applies also for discrete symmetries
- ☞ Specifically for a \mathbb{Z}_N transformation

$$\Phi^{(f)} \rightarrow e^{-i \frac{2\pi}{N} q^{(f)}} \Phi^{(f)}$$

the **dilaton** (containing the **axion**) has to transform as

$$S \rightarrow S + \frac{i}{2} \Delta_{\text{GS}}$$

where

$$\pi N \Delta_{\text{GS}} \equiv \frac{1}{24} A_{\text{grav-grav-}\mathbb{Z}_N} = A_{G-G-\mathbb{Z}_N} \bmod \eta \quad \forall G$$

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurokawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurokawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)
- ☞ However:
 - no uniqueness discussion

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurokawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)
- ☞ However:
 - no uniqueness discussion
 - no discussion about suppression of dimension five operators

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R
- starting point: 'anomalous' $U(1)_R$ (????)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R
- starting point: ‘anomalous’ $U(1)_R$ (????)
- no discussion of mixed hypercharge nor gravitational anomalies