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MSSM: good features and open questions

☞ Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

☞ Why?

© stabilization of hierarchies

© MSSM gauge coupling unification

© dark matter candidate

© radiative electroweak symmetry breaking

© . . .

☞ However:

§ µ/Bµ problem
§ dimension four and five proton decay operators

§ CP and flavor problems

➥ Supersymmetry alone seems not to be enough
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Disclaimer & apologies

The topic

“Discrete symmetries in GUTs and in the MSSM”

is very broad. . .

I’m going to focus on

§ µ/Bµ problem
§ dimension four and five proton decay operators

and will ignore

§ CP and flavor problems

This ignores many interesting developments in model building:

• flavor symmetries:

• discrete vs. continuous
• VEV alignment

• CP violation

• spontaneous? or geometric?
• relation to baryon asymmetry?
• . . .
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Proton hexality
Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3

Q Ū D̄ L Ē Hu Hd ν̄ZM2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0

P6 0 1 −1 −2 1 −1 1 3

☞ Appealing features

© forbids dimension four and five proton decay operators

© allows Yukawa couplings & Weinberg operator κ(0)
ij HuLi HuLj

© unique anomaly–free symmetry with the above features

☞ However:

§ not consistent with unification for matter

§ embedding into string theory not yet fully convincing

Förste, Nilles, Ramos-Sánchez, Vaudrevange (2010)
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Outline

➊ Introduction & Motivation X

➋ Anomaly–free discrete symmetries & grand
unification

➌ String theory completion

➍ Summary



• anomaly cancellation

• consistency with unification
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Proton hexality

☞ Disturbing aspects of proton hexality

§ not consistent with (grand) unification for matter

§ embedding into string theory not yet fully convincing

§ does not address µ problem

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

need to be strongly suppressed

needs to be suppressed as well. . .
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Discrete anomaly cancellation

☞ Example: anomaly coefficients for ZN symmetries

Ibáñez & Ross (1990)

AG−G−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav−grav−ZN
=

∑

m

q(m)

sum over all
representations of G sum over all fermions
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Ibáñez & Ross (1990)

AG−G−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav−grav−ZN
=

∑

m

q(m)

Dynkin index discrete charges
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☞ Example: anomaly coefficients for ZN symmetries

Ibáñez & Ross (1990)

AG−G−ZN
=

∑

f

ℓ(f ) · q(f ) !
= 0 mod η

Agrav−grav−ZN
=

∑

m

q(m) !
= 0 mod η

η :=

{
N for N odd
N/2 for N even

traditional anomaly constraints:

all A coefficients vanish (mod η)
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Discrete anomaly cancellation revisited

☞ Example: anomaly coefficients for ZN symmetries

e.g. H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)
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N for N odd
N/2 for N even

traditional anomaly constraints:

all A coefficients vanish (mod η)

➨

➨
➨

GS anomaly cancellation:

all A coefficients equal
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Anomaly–free discrete symmetries

Discrete anomaly cancellation revisited

☞ Example: anomaly coefficients for ZN symmetries

e.g. H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

AG−G−ZN
=

∑

f

ℓ(f ) · q(f ) !
= ρ mod η

Agrav−grav−ZN
=

∑

m

q(m) !
= ρ mod η

η :=

{
N for N odd
N/2 for N even

traditional anomaly constraints:

all A coefficients vanish (mod η)

➨

➨
➨

GS anomaly cancellation:

all A coefficients equal

main message: details

anomaly freedom requires universality of anomaly coefficients

☞ Note: discrete GS anomaly cancellation at work in many
explicit string models

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)
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Anomaly–free symmetries, µ and unification

Anomaly–free symmetries, µ and unification

☞ Working assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

☞ Will prove:

1. assuming (i) & SU(5) relations:
only R symmetries can forbid the µ term

2. assuming (i)–(iii) & SO(10) relations:
unique ZR

4 symmetry

3. assuming (i)–(iii) & SU(5) relations:
only five discrete symmetries possible

4. R symmetries are not available in 4D GUTs
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Claim 1: Non–R symmetries cannot forbid µ
H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

3∑

g=1

[
3

2
q
g
10
+
1

2
q
g

5

]

ASU(2)2−ZN
=

3∑

g=1

[
3

2
q
g
10
+
1

2
q
g

5

]
+
1

2

(
qHu
+ qHd

)

sum over matter charges
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2
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=
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g=1
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3

2
q
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+
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q
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5

]
+
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(
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☞ Anomaly universality: ASU(2)2−ZN
− ASU(3)2−ZN

= 0 mod η

y

1

2

(
qHu
+ qHd

)
= 0 mod

{
N for N odd
N/2 for N even
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Claim 1: Non–R symmetries cannot forbid µ
H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

3∑

g=1

[
3

2
q
g
10
+
1

2
q
g

5

]

ASU(2)2−ZN
=

3∑

g=1

[
3

2
q
g
10
+
1

2
q
g

5

]
+
1

2

(
qHu
+ qHd

)

☞ Anomaly universality: ASU(2)2−ZN
− ASU(3)2−ZN

= 0 mod η

y

1

2

(
qHu
+ qHd

)
= 0 mod

{
N for N odd
N/2 for N even

bottom-line:

non–R ZN symmetry cannot forbid µ term
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☞ Assumption: quarks and leptons have universal charge q
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☞ Assumption: quarks and leptons have universal charge q

☞ u- and d-type Yukawas allowed requires that

2q + qHu
= 2 mod N and 2q + qHd

= 2 mod N

superpotential has R charge 2
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Claim 2: SO(10) implies unique symmetry
H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Assumption: quarks and leptons have universal charge q

☞ u- and d-type Yukawas allowed requires that

2q + qHu
= 2 mod N and 2q + qHd

= 2 mod N

y qHu
− qHd

= 0 mod N
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Claim 2: SO(10) implies unique symmetry
H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Assumption: quarks and leptons have universal charge q

☞ u- and d-type Yukawas allowed requires that

2q + qHu
= 2 mod N and 2q + qHd

= 2 mod N

y qHu
− qHd

= 0 mod N

☞ u-type Yukawa and Weinberg operator allowed requires
that

2q + qHu
= 2 mod N and 2q + 2qHu

= 2 mod N

y qHu
= 0 mod N

➥ first conclusion:

qHu
= qHd

= 0 mod N
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☞ Anomaly coefficients for Abelian discrete R symmetry

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3

ASU(2)2−ZR
N
= 6q +

1

2

(
qHu
+ qHd

)
− 5

☞ Anomaly universality

ASU(2)2−ZR
N
− ASU(3)2−ZR

N
= 0

y qHu
+ qHd

= 4 mod

{
2N for N odd
N for N even

☞ but we know already that qHu
= qHd

= 0 mod N

bottom-line:

N = 2 or N = 4

however: there is no meaningful ZR
2 symmetry

cf. e.g. Dine & Kehayias (2009)
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☞ Anomaly coefficients for Abelian discrete R symmetry
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(
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)
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☞ Anomaly universality

ASU(2)2−ZR
N
− ASU(3)2−ZR

N
= 0

y qHu
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= 4 mod
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2N for N odd
N for N even

☞ but we know already that qHu
= qHd

= 0 mod N

bottom-line:

N = 4 unique
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SO(10) implies unique symmetry

Unique ZR
4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qHu = qHd
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qHu
+ qHd

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qHu
+ qHd

− 2
)

e.g. qHu
= qHd

= 16
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Unique ZR
4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qHu = qHd
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qHu
+ qHd

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qHu
+ qHd

− 2
)
= 1 mod 4/2

1

24
Agrav2−ZR

N
=

1

24

[
−21 + 8 + 3 + 1 + 48(q − 1) + 2(qHu

+ qHd
− 2)−1

]

only defined mod 4 axino contribution

gravitino contribution gaugino contributions
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☞ We know:
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• Higgs fields have charge qHu = qHd
= 0 mod 4
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Unique ZR
4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qHu = qHd
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qHu
+ qHd

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qHu
+ qHd

− 2
)
= 1 mod 4/2

1

24
Agrav2−ZR

N
=

1

24
[. . . ] = 1 mod 4/2

bottom-line:

• ZR
4 is anomaly free via GS mechanism

• GS axino contribution important for
gravitational anomaly
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H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZR

N symmetries has to divide 24

☞ There are only five viable charge assignments

N q10 q
5

qHu
qHd

ρ AR
0 (MSSM)

4 1 1 0 0 1 1
6 5 3 4 0 0 1
8 1 5 0 4 1 3
12 5 9 4 0 3 1
24 5 9 16 12 9 7

Recall gravitational anomaly

AG2−ZN
=

∑

f

ℓ(f )q(f ) !
= ρ mod η

Agrav2−ZN
=

∑

m

q(m) !
= ρ mod η
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Only 5 symmetries obey SU(5) relations

Claim 3: only 5 symmetries obey SU(5) relations
H.M. Lee, S. Raby, M.R., G. Ross, R. Schieren, K. Schmidt–Hoberg, P. Vaudrevange (2011)

☞ Demanding SU(5) rather than SO(10) relations we find that
the order N of possible ZR

N symmetries has to divide 24

☞ There are only five viable charge assignments

N q10 q
5

qHu
qHd

ρ AR
0 (MSSM)

4 1 1 0 0 1 1
6 5 3 4 0 0 1
8 1 5 0 4 1 3
12 5 9 4 0 3 1
24 5 9 16 12 9 7

☞ All ZR
N symmetries can be obtained from ZR ′

N × SO(10) by
spontaneous breaking

☞ N divides 24: hint at realization of ZR
N as discrete rotational

symmetry in orbifolds
(The geometry of orbifolds with N = 1 SUSY is constrained that the order of discrete R symmetries also divides 24)
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No–Go for R symmetries in 4D

No–Go for R symmetries in 4D
M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ Assumptions:

(i) GUT model in four dimensions based on G ⊃ SU(5)

(ii) GUT symmetry breaking is spontaneous

(iii) Only finite number of fields

☞ Will prove that it is impossible to get low–energy effective
theory with both:

1. just the MSSM field content

2. residual R symmetries
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No–Go for R symmetries in 4D

The basic argument

☞ Consider SU(5) model with an (arbitrary) R symmetry and
a 24–plet breaking SU(5)→ GSM

24 → (8,1)0 ⊕ (1,3)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6

R charge 0 get eaten

extra massless states

☞ Introducing extra 24–plets with R charge 2 does not help
because this would lead to massless (3,2)−5/6 ⊕ (3,2)5/6
representations

☞ Iterating this argument shows that with a finite number of
24–plets one will always have massless exotics

☞ Loophole for infinitely many 24–plets

cf. Goodman & Witten (1986)
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No–Go for R symmetries in 4D

Generalizing the basic argument & discussion

☞ It is possible to generalize the basic argument to

• arbitrary SU(5) representations

• larger GUT groups G ⊃ SU(5)

• singlet extensions of the MSSM

for details see M. Fallbacher, M.R., P. Vaudrevange (2011)

☞ We already know that only R symmetries can forbid the µ
term

bottom–line:

‘Natural’ solutions to the
µ and/or doublet–triplet splitting problems
are not available in four dimensions!



• evading the no–go theorem

• origin of ZR
4

• higher–dimensional operators (effective µ term etc.)
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Grand unification in higher dimensions

Grand unification in higher dimensions

☞ Well known: higher dimensional GUTs appear more
“appealing”

☞ New possibilities of symmetry breaking arise

Witten (1985); Breit, Ovrut & Segre (1985) . . . Kawamura (1999) . . .

☞ KK towers provide us with infinitely many states and allow us
to evade the no–go theorem

☞ Even more, R symmetries have a clear geometric
interpretation in terms of the Lorentz symmetry of compact
dimensions

☞ Remainder of this talk: explicit string–derived example

based on: M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

R. Kappl, B. Petersen, S. Raby, M.R., R. Schieren & P. Vaudrevange (2011)
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2D space with SO(2) rotational symmetry
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TheZ
2
orbifold planeZ2 orbifold plane & R symmetries

☞ Crucial: ZR
4 symmetry arises as a remnant of the Lorentz

group in compact dimensions

Z2 bcb bcb

bcbbcb

localized
fields have oddZR

4 charge

bulk fields
have evenZR

4 charge



Discrete symmetries in GUTs and in the MSSM Higher–dimensional GUTs and string realization

TheZ
2
orbifold planeZ2 orbifold plane & R symmetries

☞ Crucial: ZR
4 symmetry arises as a remnant of the Lorentz

group in compact dimensions

➥ Remainder of this talk: discuss globally consistent string
model with these features

more details on heterotic orbifolds will be provided in tomorrows talk by P. Vaudrevange



Discrete symmetries in GUTs and in the MSSM Higher–dimensional GUTs and string realization

Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6)

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry
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Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)
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Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

Note: this is just a cartoon
the geometric picture will be ex-
plained in more detail elsewhere

M. Fischer, M.R., P. Vaudrevange (to appear)
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local
y no ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)

y precision gauge unification
with distinctive pattern of soft masses

Raby, M.R., Schmidt-Hoberg (2009)
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction
y complete blow-up without breaking SM gauge
symmetry in principle possible



Discrete symmetries in GUTs and in the MSSM Higher–dimensional GUTs and string realization

Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]
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spectrum = 3 × generation + vector-like
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]

➍ massless spectrum

spectrum = 3 × generation + vector-like

➎ Various appealing features:

• vacua where exotics decouple at the linear level in SM
singlets

• non-trivial Yukawa couplings
• gauge-top unification
• SU(5) relation yτ ≃ yb (but also for light generations)
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☞ We succeeded in finding vacua with the ZR
4
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4
from Z2 ×Z2 modelsZR

4 from a Z2 × Z2 model

☞ We succeeded in finding vacua with the ZR
4

© Various good features

X F- and D-flatness explicitly verified
X exotics decouple at the linear level in SM singlets, i.e. just

MSSM below GUT scale with masslessness of Higgs fields ensured by ZR
4

X non-trivial full-rank Yukawa couplings
X gauge-top unification
X SU(5) relation yτ ≃ yb (but also for light generations)
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4
from Z2 ×Z2 modelsZR

4 from a Z2 × Z2 model

☞ We succeeded in finding vacua with the ZR
4

© Various good features

X F- and D-flatness explicitly verified
X exotics decouple at the linear level in SM singlets, i.e. just

MSSM below GUT scale with masslessness of Higgs fields ensured by ZR
4

X non-trivial full-rank Yukawa couplings
X gauge-top unification
X SU(5) relation yτ ≃ yb (but also for light generations)

➥ Successful string embedding of ZR
4 possible!



Discrete symmetries in GUTs and in the MSSM Higher–dimensional GUTs and string realization

SUSY vacua withZR

4

SUSY vacua with ZR
4

☞ Recall: situation for gauge theories with generic
superpotential e.g. Luty & Taylor (1995)

solutions of D-equations ∩ solutions of F-equations = non-trivial
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SUSY vacua with ZR
4

☞ Recall: situation for gauge theories with generic
superpotential e.g. Luty & Taylor (1995)

solutions of D-equations ∩ solutions of F-equations = non-trivial

☞ However: 〈W 〉 , 0 generically

☞ Vacua with residual ZR
4 are slightly different

☞ Example: consider one field φ0 with R-charge 0 and one
field φ2 with R-charge 2

W = φ2 · f (φ0) + O(φ22) with 〈W 〉 = 0 automatic
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SUSY vacua withZR
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SUSY vacua with ZR
4

☞ Recall: situation for gauge theories with generic
superpotential e.g. Luty & Taylor (1995)

solutions of D-equations ∩ solutions of F-equations = non-trivial

☞ However: 〈W 〉 , 0 generically

☞ Vacua with residual ZR
4 are slightly different

☞ Example: consider one field φ0 with R-charge 0 and one
field φ2 with R-charge 2

W = φ2 · f (φ0) + O(φ22) with 〈W 〉 = 0 automatic

Fφ0 =
∂W

∂φ0
= φ2 · f

′(φ0) + O(φ22) = 0 @ φ2 = 0
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SUSY vacua withZR

4

SUSY vacua with ZR
4

☞ Recall: situation for gauge theories with generic
superpotential e.g. Luty & Taylor (1995)

solutions of D-equations ∩ solutions of F-equations = non-trivial

☞ However: 〈W 〉 , 0 generically

☞ Vacua with residual ZR
4 are slightly different

☞ Example: consider one field φ0 with R-charge 0 and one
field φ2 with R-charge 2

W = φ2 · f (φ0) + O(φ22) with 〈W 〉 = 0 automatic

Fφ0 =
∂W

∂φ0
= φ2 · f

′(φ0) + O(φ22) = 0 @ φ2 = 0

Fφ2 =
∂W

∂φ2
= f (φ0)

!
= 0 fixes φ0
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4

SUSY vacua with ZR
4 (cont’d)

☞ Generalization: consider N fields φ(i)
0 with R-charge 0 and M

fields φ
(j)
2 with R-charge 2
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SUSY vacua with ZR
4 (cont’d)

☞ Generalization: consider N fields φ(i)
0 with R-charge 0 and M

fields φ
(j)
2 with R-charge 2

W =

∑

j

φ
(j)
2 · f

(j)(φ(1)
0 , . . . ) + . . .
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SUSY vacua with ZR
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☞ Generalization: consider N fields φ(i)
0 with R-charge 0 and M

fields φ
(j)
2 with R-charge 2

W =

∑

j

φ
(j)
2 · f

(j)(φ(1)
0 , . . . ) + . . .

F
φ

(i)
0
= 0 automatically
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= 0 automatically
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0 , . . . )
!
= 0 y M constraints on N fields
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☞ Generalization: consider N fields φ(i)
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φ
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= 0 automatically

F
φ
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2
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0 , . . . )
!
= 0 y M constraints on N fields

➥ expect solutions for N ≥M
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SUSY vacua withZR

4

SUSY vacua with ZR
4 (cont’d)

☞ Generalization: consider N fields φ(i)
0 with R-charge 0 and M

fields φ
(j)
2 with R-charge 2

W =

∑

j

φ
(j)
2 · f

(j)(φ(1)
0 , . . . ) + . . .

F
φ

(i)
0
= 0 automatically

F
φ

(j)
2
= 0 y f (j)(φ(1)

0 , . . . )
!
= 0 y M constraints on N fields

➥ expect solutions for N ≥M

☞ Have identified configurations with N ≥M in our Z2 × Z2

model(s)
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phenomenologyZR
4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .
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4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

forbidden at the perturbative level
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phenomenologyZR
4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

appear at non–perturbative level
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phenomenologyZR
4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

also forbidden at
non-perturbative level by

non-anomalous Z2 subgroup
which is equivalent
to matter parity
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phenomenologyZR
4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

non-perturbative generation of µ solves the µ problem
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phenomenologyZR
4 phenomenology

☞ Gauge invariant superpotential terms up to order 4

W = µHdHu + κi LiHu

+ Y ij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

non-perturbatively generated terms harmless
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phenomenology

Minimal realization of ZR
4

☞ MSSM + Kähler stabilized dilaton

1.6 1.7 1.8 1.9 2.0
0

1.´10-8

2.´10-8

3.´10-8

4.´10-8

5.´10-8

6.´10-8

Re  S

V
�H

10
16

G
eV

4
L

• non–perturbative corrections to the Kähler potential lead
to a bump in the potential of ReS

• ImS has a flat potentialy GS axion remains light
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phenomenology

Minimal realization of ZR
4

☞ MSSM + Kähler stabilized dilaton

☞ Non–perturbative superpotential

Wnp ⊃ M3
P e
−bS

is ZR
4 covariant (i.e. has R charge 2) as S→ S + i

2
∆GS

☞ Comments:

• Of course Wnp is just the effective description of some hidden
sector strong dynamics

• ZR
4 anomaly universality leads to non–trivial constraints on the

(β-function) coefficient b
• discrete shift of dilaton not uniquely fixed:

4 π∆GS ≡
1

24
Agrav−grav−ZR

4
= AG−G−ZR

4
mod 2
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phenomenology

Minimal realization of ZR
4

☞ MSSM + Kähler stabilized dilaton

☞ Non–perturbative superpotential

Wnp ⊃ M3
P e
−bS

is ZR
4 covariant (i.e. has R charge 2) as S→ S + i

2
∆GS

☞ Effective µ term and QQQL coefficients

Wnp ⊃ AMP e
−bS HdHu +M

−1
P e−bS κ

(1)
ijkℓ QiQjQkLℓ + . . .

are also ZR
4 covariant
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phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass



Discrete symmetries in GUTs and in the MSSM Higher–dimensional GUTs and string realizationZR
4

phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass

➥ Effective µ term and QQQL coefficients

Weff ⊃ O(m3/2)HdHu +
O(m3/2)
M2

P

QiQjQkLℓ + . . .

!
∼ msoft

!
.

10−8

MP
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phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass

➥ Effective µ term and QQQL coefficients

Weff ⊃ O(m3/2)HdHu +
O(m3/2)
M2

P

QiQjQkLℓ + . . .

!
∼ msoft

!
.

10−8

MP

➥ Gravity mediation: µ and proton decay problems solved!
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phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass

➥ Effective µ term and QQQL coefficients

Weff ⊃ O(m3/2)HdHu +
O(m3/2)
M2

P

QiQjQkLℓ + . . .

➥ Gravity mediation: µ and proton decay problems solved!

☞ 〈W 〉 breaks ZR
4 down to matter parity
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phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass

➥ Effective µ term and QQQL coefficients

Weff ⊃ O(m3/2)HdHu +
O(m3/2)
M2

P

QiQjQkLℓ + . . .

➥ Gravity mediation: µ and proton decay problems solved!

☞ 〈W 〉 breaks ZR
4 down to matter parity

☞ Singlet extension: add singlet N w/ R charge 2

Weff ⊃ κNHdHu + λN
3
+ O(m3/2)N3

+ . . .
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phenomenologyZR
4 phenomenology

☞ A non–trivial vacuum expectation value of W is a measure
for both ZR

4 breaking and the gravitino mass

➥ Effective µ term and QQQL coefficients

Weff ⊃ O(m3/2)HdHu +
O(m3/2)
M2

P

QiQjQkLℓ + . . .

➥ Gravity mediation: µ and proton decay problems solved!

☞ 〈W 〉 breaks ZR
4 down to matter parity

☞ Singlet extension: add singlet N w/ R charge 2

Weff ⊃ κNHdHu + λN
3
+ O(m3/2)N3

+ . . .

➥ General singlet extension of the MSSM w/ mN ∼ m3/2

(no domain wall/tadpole problems)





Discrete symmetries in GUTs and in the MSSM Summary

Summary

☞ Assumptions:
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☞ Assumptions:

(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10) GUT relations for quarks and leptons

☞ Have shown:

1. assuming (i) & SU(5) relations:
y only R symmetries can forbid the µ term

2. assuming (i)–(iii) & SO(10) relations:
y unique ZR

4 symmetry

3. assuming (i)–(iii) & SU(5) relations:
y only five discrete symmetries possible

4. R symmetries are not available in 4D GUTs

y no ‘natural’ solution to doublet–triplet splitting in 4D!
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Summary

☞ A simple ‘anomalous’ ZR
4 symmetry can

• provide a solution to the µ problem
• suppress proton decay operators

universal anomaly coefficients
universal charges for matter

forbid µ @ tree-level
allow Yukawa couplings
allow Weinberg operator





y unique ZR
4ZR

4 y






dim. 4 proton decay operators completely forbidden
dim. 5 proton decay operators highly suppressed
µ appears non-perturbatively
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Summary & outlook

☞ Embedding into string theory allows us to understand
where the ZR

4 symmetry comes from: it may arise as a
discrete remnant of Lorentz symmetry in extra dimensions

☞ Guided by the (unique) ZR
4 symmetry we have constructed

a globally consistent string model with:
• exact MSSM spectrum

• non–trivial Yukawa couplings

• exact matter parity

• µ ∼ m3/2

• dimension five proton decay operators sufficiently suppressed

☞ (Unique) ZR
4 will also be available in other constructions

(F-theory, D-branes, . . . )
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DΨDΨ → J(α)DΨDΨ with non-trivial J(α)
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Green–Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fujikawa (1979)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FanomF̃anomAU(1)3anom

+

∑

G

α

32π2
FaF̃a AG−G−U(1)anom −

α

384π2
RR̃Agrav−grav−U(1)anom

sum over all gauge factors anomaly coefficients
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(Discrete) Green–Schwarz anomaly cancellation

Green–Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fujikawa (1979)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FanomF̃anomAU(1)3anom

+

∑

G

α

32π2
FaF̃a AG−G−U(1)anom −

α

384π2
RR̃Agrav−grav−U(1)anom

☞ Provided the Lagrangean also includes axion couplings

L ⊃ −
a

8
FanomF̃anom −

a

8
FaF̃a

+
a

4
RR̃

∆Lanomaly can be compensated by a shift of the axion a
if the anomaly coefficients are universal

Green & Schwarz (1984)
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(Discrete) Green–Schwarz anomaly cancellation

Discrete GS anomaly cancellation

☞ The analysis applies also for discrete symmetries

☞ Specifically for a ZN transformation

Φ
(f ) → e−i

2π
N

q(f )
Φ

(f )

the dilaton (containing the axion) has to transform as

S → S +
i

2
∆GS

where

πN ∆GS ≡
1

24
Agrav−grav−ZN

= AG−G−ZN
mod η ∀ G

back
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literatureZR
4 literature

☞ Anomaly–free version of this ZR
4 with extra matter has been

discussed previously Kurosawa, Maru & Yanagida (2001)

☞ ZR
4 with GS anomaly cancellation has also been discussed

before Babu, Gogoladze & Wang (2002)

☞ However:

• no uniqueness discussion
• no discussion about suppression of dimension five operators
• no discussion of non–perturbative violation of ZR

4

• starting point: ‘anomalous’ U(1)R (???)
• no discussion of mixed hypercharge nor gravitational

anomalies
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