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The current WIMP landscape

WIMP-Nucleon Cross Section [cm?]
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The current WIMP landscape
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The current WIMP landscape
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WIMP Mass |

Recent CoGeNT news:

| Data projected on energy | PRELIMINARY (work in progress)

dashed line: 12 Ger:;, 1.5E-5 pb (CRESST like?)
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g 90 = solid line: best WIMP fit from 2-D energy-time analysis
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The current WIMP landscape
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Outline

Motivation: Dark Matter v
WIMP Search with Xenon
XENON100

The new Results

Some Comments

Presence and Future

XENON

Matter Projpect




I Why WIMP Search with Xenon?

e efficient, fast scintillator (178nm)

e high mass number A~131.:
Sl: high WIMP rate @ low threshold

» high Z=54, high p~3 kgl/!:
self shielding, compact detector

* no long lived Xe isotopes,
Kr-85 can be removed to ppt

 "easy" cryogenics @ —100°C -E-th-:-g ey e

» scalability to larger detectors = L el

* in 2-phase TPC o ZID * 4iu I:IE"a.:.a(:cznilE»siunErg_';,'-'lﬂ[Ifce.-’i..f’l?"]:h
good background discrimination

Ar A=40 [
Ge A=T3 i
— e H=131

.......................................................................................................

Diff. rate [events/(kg d keV)]

M. Schumann (U Zurich) — XENON 10



Dual Phase TPC L8

Matter Projpect

S1 S2 WIMP

WIMP , '

WIMP  drift time

gamma

S1 52

<
drift time /

................................... eleotron

(S2/S1),... << (S2/S1)

Whmp gamma

* electron recoil rejection to >99% via
lonization/scintillation ratio (S2/S1)

 3d position reconstruction in TPC
» multiple scatter rejection



Xenon: Light and Charge

» energy deposited in LXe produces
electron-ion pairs and excited atom states;
both processes can lead to scintillation

« anti-correlation between charge and light
— improvement of energy resolution possible

 E-field dependence (field quenching)
 response also depends on particle energy

E ™=) excitation + ionization

i

= 6
3
atom Xe + e £55E™
motion T 5 -
T E Calumbia Case
+Xe ¢+Xe P . *ozrkven | |- 010k
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light electrons 2% 4 0 60 70 & W@ Lurﬂ,g}’[ECqu

from: Aprile et al., PRL 97, 081302 (2006)
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Discrimination:
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XENON Collaboration

mr?

XENON CoIIaboratlon Meeting, LNGS 2011
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XENON100

arXiv:1107.2155

Goal (compared to XENON10):

* increase target x10

* reduce gamma background x100
= material selection & screening
- detector design

Quick Facts:

* 161 kg LXe TPC (mass: 10 x Xe10)
* 62 kg In target volume

e active LXe veto (=4 cm)

e 242 PMTs

e passive shield
(Pb, Poly, Cu, H20, N2 purge)

M. Schumann (U Zurich) — XENON 16



XENON100

arXiv:1107.2155

Goal (compared to XENON10):

* increase target x10

* reduce gamma background x100
= material selection & screening
- detector design

'.'--...-.-i-

Quick Facts:
* 161 kg LXe TPC (mass: 10 x Xe10)
* 62 kg In target volume
 active LXe veto (=4 cm)
e 242 PMTs (Hamamatsu R8520)

e passive shield
(Pb, Poly, Cu, H20, N2 purge)

M. Schumann (U Zurich) — XENON



XENON100

arXiv:1107.2155

Goal (compared to XENON10):
* increase target x10

* reduce gamma background x100
- material selection & screening
- detector design

Quick Facts:
* 161 kg LXe TPC (mass: 10 x Xe10)
* 62 kg In target volume
» active LXe veto (=4 cm)
e 242 PMTs

 passive shield
(Pb, Poly, Cu, H20, N2 purge)

M. Schumann (U Zurich) — XENON
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Material Screening

GATOR: 2.2kg high purity Ge detector
Operated by UZH @ LNGS JINST 6, P08010 (2011)

— Data

Stalnless Steel Simulation sum spectrum

Lo 2y decay

— 23T decay
60
— "Co decay

)lrﬂl'vﬂ_:l‘l_m‘l_,ﬂffu_

10 500 1000 1500 2000 2500
Energy [keV]

Component Amount Total radioactive contamination in materials [mBqg/amount] .

fU / *9Ral *MTh | *"Co | K |other nuclides Screer"ng results:
Cryostat and ‘diving bell' (316Ti 55) |73.61 kg 121.46 147.23 | 404.87 | 662.52
Support bars (316Ti SS) 49.68 kg 64.58 144.07 | 69.55 | 352.73 Astro_ Part_ PhyS
Detector PTFE 11.86 kg 0.71 1.19 0.36 8.89
Detector copper 3.85 kg 0.85 062 | 521 | 078 35 43 (2011)
PMTs 242 pieces 60.50 111.32 | 181.50 [1972.30 [ Cs: 41.14 !
PMT bases 242 pieces 38.72 16.94 | 2.42 | 38.72
TPC resistor chain 1.5x107% kg 1.11 0.57 0.12 7.79
Bottom electrodes (316Ti SS) 0.23 kg 0.43 0.45 2.14 2.36 I .I:
Top electrodes (316Ti S8) 0.24 kg 0.85 0.43 1.73 1.16 use resu ts or
PMT cables 1.80 kg 0.85 1.97 0.37 | 18.65 ["*™Ag: 2.67
Copper shield 21x10° kg | 17080 | 24.69 | 650 | 80.26 Monte Carlo
Polyethylene shield 1.6x10% kg 368.0 150.4 - 2000 . .
Lead shield (inner layer) 6.6x10% kg 4.3x10%  [3.6x10%|7.2x 107 [9.6x10° [*'"Pb: 1.7x10% S I
Lead shield (outer layer) 27.2x10% kg | 1.1x10°  [1.4x10%|2.9x10% |3.8x 107 |*'"Ph: 1.4x 10" Imu atlons

M. Schumann (U Zurich) — XENON 20



% [ “h oy vsng “Co gy g +:':;a ::;III 2009, no veto cut)

E [ e [ f .......:I( No MC tuning! Measured Background in good
P ST Vil ol agreement with MC prediction.
g2 F S A screening only. _
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‘ In a Dark Matter Experiment!
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CoGeNT =
30 kg fiducial mass i) CDMS_ XENON10
» active LXe veto not used for this plot 1 7'l DAMA/LIBRA

« exploit anti-correlation between light
and charge for better ER-energy scale

XENON100
{full target)

IGEX

Rate [events/keVee/kg/day]
3

AL
3

| |':++|'.-||||||

PMT, 48.5 %

teflon, 2.1 % Xenon
P steel, 6.2 % 2| |
keVee-Scale 0TE e H—+——=
; = ! | XENON100 7
? nOt preCISely [ (fidycial volume) :
. " poly,10.7 % known 3 | ! | | | I I | |

Lxe 3.9 OJ/O 10 L1 | | 1 11 | | - | | | | | -

PMT bases, 28.5 % ) below 9 keVee 5 10 15 20 25 30 35 40 45 50

Energy [keVee]
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relative LCE [%]

IogW( cS2/cS1)
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3___ 1
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0 s28e v F, 197 keV
B PRELIMINARY
C PP PR 0 0 IR W IRE S H v s ) R L ARy
0-3 0.5 1 15 2 25

arXiv:1107.2155
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log_ (cS1) [pe]

Calibrations

Position dependent Corrections:
Cs-137, AmBe inelastic (40 keV),
Xe* (164 keV)

Kr-83m (planned)

- Agreement better than 3%

Electron Lifetime:
Cs-137

= ~200 ps (11.2d), up to 400 ps (run_08)

Electron Recoil Band (Background):
Co0-60, Th-232, Cs-137

Nuclear Recoll Band (Signal):
Neutrons: AmBe

- definition of WIMP search region,

discrimination
22



R&D: Calibration at low Energ

expect signal <40 keV (calibration from outside very difficult)

= n-activated Xe131, Xe129m
was used for Xe10, T~O(10d)

=> Kr83m i Background 83my .

/= N i
Rb83 oo B o
1/2° Kr83m 2 i
. vy 32.1 keV, T12=1.83h 2w

o/ Y -4 keV, Tiz=154ns 3 . |y

T O UL ST IR DY

\_ Krg3 . iy e S e R £ i

0 100 200 300 __ 4000 100 200 300 400
First S1 [p.e.]

=)

anm [ ] &
R&D in Zurich: | %0
Top PMT ; =
Liquid | = s g 20
level ; \no_de R . o
_,L/_ _;._.. GXe _'.;_ . 102 | ) 500 tmoo] 1500 2000
== I
S e R 3
{_:f'.nhnl:lle llllll
Mana/aysay et al., = Bottom PMT I 2nd S1 1st S1
I 2 =1 1 L L n 1 L
Rev.Sci.Instr. 81, il S 10, 50 100 150 200 250 300
073303 (2010) 9.4keV S1 [p.e] 32.1keV
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R&D: Calibration at low Energ

expect signal <40 keV (calibration from outside very difficult)

= n-activated Xe131, Xe129m
was used for Xe10, T~O(10d)

= Kr83m

' Roe h :
750/0 ! 3¢¢
Ly + Kresm : gqa: *s < BPKr (9.4 keV)
N 32.1 keV, T12=1.83h S 0.8} s (9.4 ke
7/2 g\) “‘E O o & L=
. + 9.4 keV, T12=154ns = )t T o SImEC L (32 keV)
9/2 o6l T ¥y
\_ Kr83 Y. . - B~ o -
S ¢-oe _
<E ot o -
—. 04r <
. o ] EEJ_ L o
R&D in Zurich: | I B
N Top PMT T ) i o Kr (41.5 keV, Charge)
Liguid | na _ 02F o
level Anode F
_,L/_ _'-—'-l_‘ OXe _,—_
i Gale 35 cm 1 S ; 'D- | ) ) )
- 0 500 1000 1500 2000
e LXe "‘] e Applied Field [V/em]
{_:f'.nhnl:lle ey
Manalaysay et al., (|  [iBotomPMT |
Rev.Sci.Instr. 81, L eree. | 1<
073303 (2010) Sy el
24
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I Nuclear Recoil Energy Scale

* WIMPs interact with Xe nucleus
- nuclear recoil (nr) scintillation (8 and y's produce electronic recoils)

* absolute measurement of nr scintillation yield is difficult
= measure relative to *’ Co (122keV)

* relative scintillation efficiency Left. _
average over all direct measurements

r {E ) L&r{Eur] 0.35 o Ameodo 2000 C T - _i
- T 4 &y T £ L\-JI|]1‘1ln\.L ]2_1.1 2 =
et LY (Eee = 122 keV) 035§ ey ;
o 0.25 O Chepel 2006 =

' ® Aprile 2009 * 3

. o = & Manzur 2010 : —

measurement principle: g 025w ez b

0.15

/n4 R T I T TR
Energy [keVnr]

N 0 most recent measurements:

> ————————————————————————————— B Plante et al., PRC 84, 045805 (2011)

/\ Manzur et al., PRC 81, 025808 (2010)

: New meqsur_eme"n_t for discussion of possible systematic errors see
In preparation in Zurich A. Manalaysay, arXiv:1007.3746

®

i)

k.
IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

M. Schumann (U Zurich) — XENON 25



Plante et al., Phys. Rev. C 84, 045805 (2011)

6000 3
* Approach: systematic : :
Vessel | pp y « 5000 |- 24.3 PE/keV 1
— ,clean measurement T ]
—_ Suppo Ty 4000 -
Active LXe o . . . ?
Volume * minimize double-scatters  : ,.:
L PMT 8, "
Assembly . . . % [ o4
* very high light yield 2 2000} .o
1 H ++ n
|!h.1] - 1000 [~ +-H- +
|l —swe e full data vs MC analysis # :
Plate b e, i , s ]
p _ 0 bac gt T it 1 1 gty
= 0 1000 2000 3000 4000 5000 6000
s * rate is no free parameter .
PTFE )
]';11:3;1:1: PMT Base
oo Trigger @ 90% ' ] 2 Trigger @ 90% ;
140f * § 0=23.0" 1 3 '* 0=265 E
oF 30+06kev ] P d + 3.9+ 0.7 keV
1200 £ leof :
For =z : ¥* =192
2 100F o 140 ]
= r 2 120 =
g SU:_ g Lon -
i 60F E 0 3
= auf— = o
r 40
2'0:- 20 ! ]
ﬂU o ::l I llU IIS 2:;3 2I5 3IU IﬁU ISI I llU ]Ii ZIU ?.ISI 3IU 3|5 JIU 45 30
Scintillation Signal [pe] Scintillation Signal [pe]
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I Nuclear Recoil Energy Scale

Some attempts to model Leff:

— T T T ]
s | Bezrukov et al.,
g arXiv:1011.3990
5 025 - +ﬁ iy
5 0.2 C — i I
5 ) T
E 0.15 | —— - T
3 L
~ best charge vyield description |

10 20 50 100
Energy / keV

Lindhard *

"

A ;}T |

Hftachi

Szydagis et al.,
arXiv:1106.1613
: !

1 110 100
nuclear recoil energy (keV)

M. Schumann (U Zurich) — XENON

Leff

0.353— o Arneodo 2000 3
- * Bernabei 2001 -
035" ¥ A 2005 =
0255 & fpmeanoo E
02E & ot F
0.15 E
(= ———" E
0.05 E
O 2 3 436700 20 30 450 i

Energy [keVnr]

most recent measurements:
B Plante et al., PRC 84, 045805 (2011)
/\ Manzur et al., PRC 81, 025808 (2010)

for discussion of possible systematic errors see
A. Manalaysay, arXiv:1007.3746
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I Nuclear Recoil Energy Scale

M. Schumann (U Zurich) — XENON 28

Some attempts |
Kopp, Schwetz, Zupan: arXiv:1110.2721:
Tt o
sl ) o _ The assumptions on Leg below Eyr /& 3 keV (where
g no data are availble) have no impact on the XENON-100 exclusion curves. Even assuming
ﬁ 0.25 - Lo = 0 below 3 keV, the limits remain essentially unchanged [4]. Hence, the result does
é’ o2f— L |- not rely on any extrapolation into a region with no data.
- . 1= J
E f tI I.ll i :riﬂ | 035:— o Arneodo 2000 —:
< A"—/“""'f-“— ) o | ' g = Bcn:nahci 2001 g
A = best charge yield description 0.35— : i}ﬁ]{-?fé“zﬂ{?_s“‘ E
! 1 1 ! 1 = O Chepel 2006 —
5 10 20 50 100 0255 & prile 2000 E
r = & Manzur 2010 ]
Energy / keVp § 0'25_ ® Plante 2011 =
0.3 = Lk 015;__ ______________ _;
Lindhar H+tachi 0.1 : =
$025 ,” = : =
5 e - 0.05= s —
% 02 _| 'l[ A o= L . Ly 3
2 Y 1 2 3 4 5678910 200 30 40 50 100
5 i . ~| Energy [keVnr]
- | | most recent measurements:
o b . |
AT e | Sl ey
200 e arXiv:1106.1613 anzur et al., ' (2010)
G - | for discussion of possible systematic errors see
nuclear recoil energy (keV) A. Manalaysay, arXiv:1007.3746



First Results from 11.2 days

ff
T

[0 Arneodo (2000)

P 035F =
- Bernabei (2001) -
03:_ imov _: 0 L]
S - * First result from 11.2 life days
025 " M M =
— epel (2006) =
R - * Data taken in late 2009
0.15F _+T ] E
0TI I 4 * formally non-blind analysis, but
o.osg—/ | = cuts defined on calibration data
05‘ -/ L s e =
1 10 100 [
/ / Nuclear Recoil Equivalent Energy [keV ] PRL 105’ 131302 (2010)
Pl— 10-39 T | T T T T T T TT | T T T T T T T IE
E l%-'\ DAMA 3 S1 [PE]
= LA RSO - R o R A o e At tassia:
o107 E ; = = 0.8F : .
3 = CoGeNT = £ 06 : -
o - m 8 04 : —
A ] 8 02F E -
5 = '-.‘\ DAMA = _ 3_i . 3
- ‘-.‘,'\:u'ilh channeling) - o 28F S 3
104 & = I 26F- : =
= : Trotta et al. CMSSM 68% CL - :02 2.4F : =
B b S 20F : =
e N = E 3
= = 1.8 T =
104 - _ LoE LT~ , =
E XENON100, low Leff, decreasing extrapolati 3 L4 : T — : E
= XENON100, global LefT fit, constant extrapolation s 12£90% NR acceptance "———_ | -
1[]-45 Lo 1 1 ] e 1 T T | 0 5 10 I\;S 20 . 25 . 30 35 40
10 100 1000 uclear Recoil Equivalent Energy [keV ]

Mass [GeV/c?]
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Profile Likelihood Method

PRD 84, 052003 (2011)

. Construct Likelihood function: dark matter
.NR like“ sideband /measurement
measurement ¥ = L (o.N P am. . s
\ 10, Vo, €, €0, Lot Ve ) ER like* sideband
NR scale XLz (€5)| X ZL3(€p) measurement

measurement  ———— X% (Leg) X L (Vese )

6000

Profile Likelihood Method

- natural transition from limit to detection 5000
- account for systematic uncertainties
- use full S2/S1 space

- hypothesis (signal/bg) based 3000
on profile likelihood ratio

- o IS the interesting parameter;
other nuisance parameters are profiled out 1000

- method described in arXiv:1007.1727

S2 [PE]

4000

2000

ENR (signal).

.

e .ie " - .
AT - PRI AN ..
OI\\ L 11 L1 \\\T Illl\\lll\ 1II\

\‘II.I‘lllll\.\\
0 2 4 6 8 10 12 14 16 18 20 22 24
S1[PE]
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Profile Likelihood Method

PRD 84, 052003 (2011)

E 40 T T T T | T T T T | T T T T | T T T T T T T T T T T T | T T T
5 30 [run_08 (100.90) =
0 :
10 Lt 1 —Dbackground + WIMP signal
- # i (100 GeV/c? at 10* cm?, 13 events)
2r oennen] il i—observed Signal
L — e E
K o 34— expected background
I < | i
021 -
| | | 1 | | | | 1 | | L | 1 | | | | | | | | 1 | | | | | | | | 1 30
2.0 ‘15 1.0 -0.5 0.0 0.5 1.0 ORI T T TR
Discrimination Parameter 5 F\ 5 SO avia run_07 (11.2d) -
§ " > CoGeNT
S 104 /

need good understanding of background
(»background model“) 0

- but this is required by any 10
low background experiment
(regardless of the type of analysis)

o s XENON100

‘F.IIIHI| I\IIIHI| I\IIIHI|

Trotta et al. CMSSM 68% CL

XENﬂ)O profiled limit

PLresult . |

1 | | 11
10 100 1000
Mass [GeV/c?]

.....

T IIIIIII| T IIIIIII| T \IIIHI| I \IIIHI| I \IIIHI| LTI
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Log10(S2Tot/S1)

The new XENON100 Data

data taken in first half of 2010

100.9 life days
data blinded in ROI
analysis and results in:

PRL 107, 131302 (2011)

P PR
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P B 1
100

c—h
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0.24%
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31001 02/03 04 0105 31505
Date in 2010 [Day/Month]

S
®.01.14
2
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Date |Day/Month]
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L0
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&0
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...-rl‘/_ I

Science data
run_07

Science data
run_08

II|III|IiI|IIIIIIIIIII|IIIII_

calibration

—

MNovi02 Dec/02

" Janf01 Jan/31 Mar/02

Apr/01 May/01 May/31 Jun/30
Date
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2.76 ATeV

46

Pb+Pb @ sqrt(s)

30:

2010-11-08 11

ALICE



Data Analysis

Basic Data Quality Cuts

- reject non useable waveforms
(muons, micro-discharges, ...)

- ,hot spot” cuts

- S1 noise cut

M. Schumann (U Zurich) — XENON

log (S2 /S1)-ER mean

Energy Cuts

- low E region (S1)

- S2 software threshold

- require 2x S1 coincidence
(against PMT dark current, noise)

S1 [PE]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

I I I I I I I I I I I T | I I I
I

-
o,zf— | - : ol
N | energy region |
= | |
Fou I
02k | |
SETE NR calibration |
< 0.6 | |
SN |
08 |
= } ~~~82 > threshold I
1‘2_ | | ||1|0 | | | | 2|0 | | | T‘-;O | | | | 4‘0 | || | | 5|0 | |
Energy [keVnr]
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Data Analysis

Basic Data Quality Cuts Energy Cuts
- reject non useable waveforms - low E region (S1)
(muons, micro-discharges, ...) - S2 software threshold

- ,hot spot” cuts - require 2x S1 coincidence

- S1 noise cut (against PMT dark current, noise)
> 02
- E  SL:514PE

Single Scatter Selection ~ Zoisp- s2ew7re |

(WIMPs interact only once!) £ o1

- only one S2 peak 0.5

- only one S1 peak - ¥ I

- active veto cut 00_ TR0 3R 3100

Time [us]
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Matter Projpect

Energy Cuts

- low E region (S1)

- S2 software threshold

- require 2x S1 coincidence
(against PMT dark current, noise)

single scatter
interaction

anomalous
event pattern

M. Schumann (U Zurich) — XENON



Data Analysis

Basic Data Quality Cuts Energy Cuts
- reject non useable waveforms - low E region (S1)
(muons, micro-discharges, ...) - S2 software threshold
- ,hot spot” cuts - require 2x S1 coincidence
- S1 noise cut (against PMT dark current, noise)

Fiducial volume cut
NR/ER discrimination

(strict only for classical analysis)

Single Scatter Selection Consistency Cuts
(WIMPs interact only once!) - S2 width cut

- only one S2 peak (drift time ok? gas events)
- only one S1 peak - position reconstruction

- active veto cut - anomalous event rejection

M. Schumann (U Zurich) — XENON 38



Acceptance LS

Matter Project

S1 [PE Cut Acceptance:
1 mx>50 GeV/c?
g 08~ mx=10 GeV/c?
E 0.6} X
o, mx=7 GeV/c
S 04l
< |
0.2 acceptance of 99.75%
ol .1 .| discrimination cut
10 20 50
1o
ME
oEN L
PN
165 \\\ =
14F- T~ i =
~ I'E-: | T s S
N NR :
o2 26F : -
S a4 E
22 =
2F
185
165
145
12
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Cut Acceptance:
mx>50 GeV/c?

mx=10 GeV/c?
mx=7 GeV/c?

\ acceptance of 99.75%
o . 4 . .| discrimination cut

4.0 - 5.0 PE

100[—

S1 [PE
1
w 0.8
)
g o6l
o
8 04
< 02l
0 30 20 50
Energy [keVnr]
. . EEDDU
Determination of the S
S2>300 PE Acceptance: i

o

w0

o
I

o

o

a
I

o

o

=3
I

[ IR
$1[PE]
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Poisson Smearing

% L . - = | :
510 typical Xe100 PMT 2 [ | WIMP spectrum
S S | s K / (10 GeV WIMP)
3 distribution of single s F S : :
10 electrons from the e / Poisson smearing
I photocathode ;‘5 o - 4 with efficiency
10°F L B N P
E 102 ;— B
Bl R m4§_ h -:
10 1 2 3 4 5 6 7 F T A
i 107 ! -
Gain [X 107] - 3 PE 4 PE
lU—frD 1 I2| I 1 I4|. 1 1 Ié 1 1 1 é 1 | I|1|DI | I1|2I | I]|4I 1 I1|ﬁl | I18

Energy [keVr]

Resolution at low E is dominated by Poisson counting statistics
— a few photoelectrons seen by PMTs
All other contributions

WIMP spectrum is expected to drop exponentially with £ to the energy resolution
= more events make it above threshold than vice versa (interaction in LXe etc.)
are ignored.
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Cut Acceptance:
mx>50 GeV/c?

0.8

0.6

Acceptance

mx=10 GeV/c?
mx=7 GeV/c?

\ acceptance of 99.75%

discrimination cut

E ™= excitation + ionization

vV

Xe Xe'+ e
iy *Xe
i +
Xe2 Xe
\/ ;+e‘
2Xe + hv Xe™ + Xe
scintillation ionization
light electrons

the two signals
are detected
independently

M. Schumann (U Zurich) — XENON

1 I 1
30
Energy [keVnr]
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S1 [PE] Cut Acceptance:
1 mx>50 GeV/c?
g 08— mx=10 GeV/c?
E 0.6}
o, mx=7 GeV/c?
§ 0.4}
< 02l \ acceptance of 99.75%
0 ! discrimination cut

=0 a0
Energy [keVnr]

spectrum is multiplied
with acceptance and

E ™=) excitation + ionization

A g SV smeared with
Xe'  Xe+e g g 1o Poisson distribution
s E 10? g ?
Xe?2 Xe s £ #
v ;-%e‘ a 1 i measured acceptance
10 o T
2Xe + hv Xe* + Xe ! E a""": }
scintillation  ionization 10" 1 <7\A
light electrons 10 E 5F
107 0.90(—
OII‘Z“I4I‘IBIII‘8||‘10 0:....4‘...;\’-..”:\;.”‘1‘8‘1‘(P‘E§ ; i
the tWO Signals Recoil Energy (keVnr) 0.85; :
are detected expected spectrum converted into the - ! ] IR
independently of a X GeV/c2 WIMP S1 light signal 1P

(before Poisson!)
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Background Prediction

Expected Background for
» 48 kg fiducial mass

* 100.9 live days .
« 99.75% ER rejection : n'z
=
Gaussian Leakage: § o
1.14 = 0.48 N
Anomalous Leakage: .
0.56 = 0.25 e
Neutron Background: !
0.11 = 0.08 -

1.8 + 0.6 events

S1 [PE]

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
X I B B B B B
- | |
— | |
n I |
m | |
- | |
- I 99.75 ER rejection
- ! I
—~ | .
SN PRt |
- o~ e 30 NR hcceptance
S |
u | T — |
[ || | L et L || I |

10 20 30 40 50
Energy [keVnr]

— prediction based on data and MC

— prediction verified on high E sideband

M. Schumann (U Zurich) — XENON
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Unblinding Xe

L Sl‘ ]
0.015F ]

Amplitude / V
=
e
T

[ noise only on a few PMTs

.1 s | s | s | s | s \ h

190 195 200 205 210 215
Time / ps

Gaussian Leakage:
1.14 £ 0.48

Anomalous Leakage:
0.56 = 0.25

Neutron Background:
0.11 = 0.08

1.8 + 0.6 events
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Population of noise events at threshold
- Some leak into WIMP search region
= Post-unblinding cut removes noise population
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z [cm]

Radius [cm]
2 4 6 8 10 12
0 | | | | |
10— ‘e
R & E
s '
20
250 e
T e .
'30_|_| |—|__\_F|_|—-| [ .| .|“ 1 ..T .|..| 1
0 50 100 150
Radius? [cm?]

Gaussian Leakage:
1.14 £ 0.48

Anomalous Leakage:
0.56+ 0.25

Neutron Background:
0.11 = 0.08

1.8 + 0.6 events
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(SbeS 1)-ER mean

logm

Xe

Result
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Observe 3 events
- |ikelihood for 3 or more events is 28%
— Profile Likelihood analysis does not yield

significant signal = calculate limit 46



(spin-independent) WIMP Limit

o

=
Lk
=3

. XENONI100 (2011)
Q DAMA/Na — observed limit (90% CL)
Expected limit of this run:

107
CoGeNT

+ - .
§ DAMA/I . l c LixprL‘ti,jdi
\ CDMS (2011) +2 G expectec

T 1 -H‘TH| "_|.-r [T

f—
<
L
./‘

ot
=|

o

[

.
[y

10

WIMP-Nucleon Cross Section [cm?’]

Trotta et al.

k \ e
Buchmueller -Qll. \ \
| | | | | | | 1 1 | M\bl_/f_) 1 | ﬂl | | 1 1

é ’:’ éélO 20 30 40 30 100 200 300 400
WIMP Mass [GeV/c’]

XENON100 sets the most sensitive
limit over a large WIMP mass range

Challenges the CoGeNT, DAMA, CRESST-II
signals as being due to light mass WIMPs
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1000

PRL 107, 131302 (2011)

Limit derived with

Profile Likelihood method
PRD 84, 052003 (2011)

Detector is operational
with lower background level
and lowered trigger threshold

Dark Matter

&0

212 60~
321th "Co

—

AmBe

o

(A= e I |
01/03 01/05 o1/07 31/08 31110
Date in 2011 [Day/Month]



Inelastic Dark Matter (IDM):
tries to reconcile the result
from DAMA with other expts
Phys. Rev. D64, 043502 (2001)
Dark Matter particle has an
excited state, with an energy
splitting 6

— now: (mx, g, 6)

WIMP-nucleon interactions
excite the WIMP, elastic
scattering forbidden

— rate peaks at higher E

XENON100 excludes the
IDM interpretation of the
DAMA result at 90% CL

(scattering off | an Na)
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Back to DAMA/Libra
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I Low Energy Response to ER

im PP—
?G 3cm i
E ___70cm —T—T—T— T i
- (D= J
l [ | | | 1 Nal detector _ il LXe TPC

137Cs source

Compton Scatter Measurement in Zurich
indicates that LXe ,sees” electronic recaoill
interactions around ~2.3 keV (at zero-field)

1-0 spread of
the beam is 1.6°

4.25 raw Monte Carlo spectrum

250 .
300} ~2.3 keV
250F
2 aanl o ‘IDD’ - —————r - 71T
5° preliminary - s
3 150} 70F preliminary
100} S0F
s0f %- )
o 2 4 e_8_10 12 14 18 18 20 < 5f
Raw Energy [keV] Eﬁ
4.25 Data E, o
200 P — O 10t -
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150F J' o i — o
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E toop]
presented at TAUP2011
(A. Manalaysay, UZH)
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The current WIMP landscape
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Criticism or Confusion?

J. Collar, arXiv:1106.0653

10 |11|-.:]|-.|1|-‘||||.11|11||1]|||||||||]1||
B []

L L L L L L1

DAMA/LIBRA
(no channeling)

CoGeNT

G (X 10 ph)

1 Ll L L Ll

’
=
e

1
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Criticism or Confusion?

J. Collar, arXiv:1106.0653
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Criticism or Confusion?

J. Collar, arXiv:1106.0653

1 {} [ T T T T | T T T '.I 'I T '.I "I "I || 1] T T T T T T T 'I T T T T I T T T T 'I T T T T |
B AU SRR TR A v\ -
B [] a s " . \ ' =
— [© T
ﬂ —
=k DAMA/LIBRA

(no channeling)

,nhumber of irreducible

recoil events accepted* CoGeNT

1 Ll L L Ll

--.,‘I “-“. r\ -:\. h}
WA NECTN N e

H EH N f} ]
]|....I....I...:I...“..I....!Ir...\Iw.g)n...
| D 6 7 ; 10 11 12
m:{ (Gev,fl{jz) |2 8 10 12 14 1S(;] EgEz]o 22 24 26 28 30 32 34 36 38

I T T T T T T T TT i [ I T
0.4

I T
efore post- unbllndlng n0|se cut

AT A e ™
. W R E e i P ‘?"‘
‘-‘ W3 Nave b T pitaal e S "", d'q.
::-;{? 32}‘&.’“,-:1;“&:-3:%* i *“A «.4,, ;.:v,-*‘

2T

Amplitude / V
(=3 (=3
2 9
S &
\ \
|
loglo(SZb/SI} ER mean
s &
ES
III""|HI/IHI
. 5
/ i Tl
iR R R
G . ... ‘.
u

Electronic Noise:

* on a few PMTs only
e periodic, correlated

T T
S1

=
ll\llllll.ll\llll‘l
r

« visible on dead channels! ... e
« whole population rejected o @ METISL o |
. . F -1 '--.__‘_ .
by pOSt-uanIndlng CUt _O-OOS?noiseonlyonafewPMTs ] I | T‘:—- #### 4 l I |
719‘0 . 165 L 260 ) 265 . 21|0 \ 2{5 = -1.2 1 1 1 10 1 1 1 1 20 1 1 1 20 1 1 1 1 a0 1 1 1 1 50 1 1
Time / ps Energy [keVnr]

M. Schumann (U Zurich) — XENON 56



Criticism or Confusion?

J. Collar, arXiv:1106.0653
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(no channeling)

’
E
1

1 Ll L L Ll

XENON100

published in PRL
PRL 107, 131302 (2011)
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CoGeNT

Surface Background?
J. Collar, talk at TAUP
Kopp et al., arXiv:1110.2721
Kelso at al., arXiv:1110.5338

DAMA/Libra

Nal Quenching???
J. Collar, talk at TAUP
Kopp et al., arXiv:1110.2721
Kelso at al., arXiv:1110.5338
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The current WIMP landscape

][}'39 =1 T T T I T T T T T T T T T T =
- A XENON100 (2011) =
a “ =L Q 4 — observed limit (90% CL) m
g 10 E_ “a.\\ CoGeNT Expected limit of this run: =
:' E © DAMA/I I + | 6 expected -
© — + 2 ¢ expected —
= wl N - CDMS (2011) ]
g E N =
— \ “DMS (20 ]
@ - ' \\LDM“" (20O p st 011) .
3 .
S 102 -\ XENON10 (52 only, 2011) _
E — | . EDELWEISS (2011) XENONI100 (2010) =
Q - N o e
= .
3 100 =
z =
= : _
E 104 = —
3 — Trottaetal.
: Buchmueller & al. -
“}-45 Lo | | | I I u':| IIq|“-llE| ?r| : ‘ A T
6 78910 20 30 40 50 100 200 300 400 1000

WIMP Mass [GeV/c’]
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I XENON10 ,,S2 only* Analysis

PRL 107, 051301 (2011)

I ,Sstandard” two-phase TPC

Time

ﬁ:'rﬂpnrtiﬂna]\
5 (52)

Fig. adapted from Astro.Part.Phys. 34, 679 (2011)

~1 ps width
e- e- Electron
e- e-g- Drift
Liquid 1] TTT ~2 mm/ps
Primary (51) ) »
| TS
~29 ns width P

>

Signal

Incoming
Particle
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I XENON10 ,,S2 only* Analysis

PRL 107, 051301 (2011)

I trade z-position+discrimination for lower threshold

Time

ﬁrupnrtiﬂnaql\“
'5 (s2) )

~1 ps width

Fig. adapted from Astro.Part.Phys. 34, 679 (2011)

Signal

Incoming
Particle
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XENON10 ,,S2 only* Analysis

PRL 107, 051301 (2011)

trade z-position+discrimination for lower threshold

Time

h

ﬁm pnrtiﬂnaql\“

'5 (s2) )

~1 ps width

Fig. adapted from Astro.Part.Phys. 34, 679 (2011)

Signal

Incoming
Particle
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| XENON10 ,,S2 only“ Analysis

PRL 107, 051301 (2011)

» 12.5d data from 2006

 trigger threshold at single electron level,
data not used before

e require S2>5 e (~1.4 keV)
e radial cut r<3 cm, basically no z-cut — 1.2 kg

» choosing Qy 40% higher (lower) would yield
a 2x stronger (weaker) limit @ 7 GeV/c?

Models:
Sorensen/Dahl,
PRD83, 063501 (2011)
Bezrukov et al., — —
Astropart.Phys. 35, 119 (2011)

10 T T T T T T 171 T l.::lq T l T ;I{ |:| Id llO T T 100 t I I flk){‘x*'-‘r'&&%"ﬁ I I_O—II..-"H I= [_]_Ilg _é
- . 1, & =1, £ B :
9 ---Eq. 1, k =0.166 . 10k £ RRE
8t * 17, Eq =100 kV/em. ] At W Lt uf ]
= 8 ==[25], E; =073 kV/em et B
ﬁ 7 - - [32]r Ed- =2.00 k\;/cnl 7 52 electrons
E [=" o] [32] Fq=0.10 k\“!/CHl 0.40 —_
E 6 - - B ® i:l[} < z< 15 cm
= F ~ 0.35¢ SR 1
B sL.o-- - - | - ] . y XO %0 T ¢,¢
< T RIS it < 030} SRR R ]
L i o X =. - x ! \ﬁ-\ e
- ~ -\\p -:a'_'.“-*’
4t I . G N - 025) RVE L s [ B
G . \ LTI . s 0.25 ) x:; S o /f‘;ﬁ%‘”;
2 T . = 0.20r " s
3 | this work uses the solid curve and _ l‘l}:‘.\ - = * : % x EF‘/’#,.— o
| <— |assumes a sharp cutoff (dotted) % '5‘"_.3::‘: | : 0.15¢1 1 T
2 in caleulating exclusion limits ':"-‘;___“;? ul % Ef 0 )
3 3 F 4 < z<5cm
1 L1111 | | 1 | | I | | | | | | | | 1 0.1 0 % 1|6 32 6|‘:1 _e;_ E -
0.05 N G
1 10 100 2 5 10 20 0 50 100150
nuclear recoil energy | DA [k(—"_‘-\*'r] muclear recoil energy E,,  [keV] dN/da,
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Criticism or Confusion?

J. Collar, arXiv:1106.0653

L :'%-.‘ T -I T L T T T ||| |-

| = B[ Y m=7 GeVic", o_=10"pb 7]

B 5l + X o B
2o / ]
100} E 3r ‘—+— :
: E 2_ I|Illl l
Cg i E

| é OF ,+. Y T

1 10

recoll energy (keV)

inferred recoil energy scale (keV))
—
=

-

L used in analysis

1 10 100
1ionization yield (electrons)
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Criticism or Confusion?

J. Collar, arXiv:1106.0653

y =1

= m=7 GeVic', o_=10"pb 7]
" L/ Bl 4

r L‘*_—I— : ——
1 10
recoll energy (keV)

o
=]
counts / keV kg day

= = kDO O
T
.-"'-
|

inferred recoil energy scale (keV))
=

-
T

1 10 100
1ionization yield (electrons)

M. Schumann (U Zurich) — XENON

Let's add the datapoints...

== Bezrukov (arXiv:1011.3990)
e Sorensen, k=0.110

2 = = = Critique's original assessment
107 Critique’'s new assessment

Recoil Energy [keV]

*

10° \
used in analysis

1 R 10°
lonization Signal [electrons]
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Criticism or Confusion?

J. Collar, arXiv:1106.0653 And put it in the usual style...

.l'rl : 1 y SR i LR I 4 ; v

: "% E‘:_ ) m=7 GeVic’, o = 107'ph . 101 : ggf;l;zg, k=0110
' B : ) . --=C Id
E 4 : G|

-2 al L ]
F = 2F + . data from Manzur et al.
-8 1F =]
[ § ot 2]

1 10

recoll energy (keV)

—
=

dy [electrons/keV]

-
-"'-
-

W s O N @ ©
_*_
e

—
-
-
-
------
-
--
-- -

inferred recoil energy scale (keV))

used in analysis

-
& T T3

10’ 10
Recoil Energy [keV]

1 10 100
1ionization yield (electrons)

,Predictions” are due to a mistake.

Xenon is not Germanium! One has to Conclusion: only if Qy is incompatible

fﬁ:éfg'tr;;"ioei'gﬁt;g[i‘;Ocvgfcio\r;?;”\?vti'&”lza”d with data and theoretical understanding
’ ' one can avoid the XENON10 contraints.
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Amplitude [V]

Criticism or Confusion?

100l T T {;}55,-{*.-'&&; T T T T T T ._{T.II;IH .= U_I|g _;

£ e : ZEPLIN work on single electrons:
o fp K& R 4T « Astropart. Phys. 30 (2008) 54
R i o « arXiv:1110.3056
_I_Pc S2 electrons
— 0.40 — N o] (73, .78)
— N 0.35 L éxo 0]
0.5 — £ 030} " v <G g fo™~
- < ozs| TR ~130 e
- : I~ XX e
— £ 020
0.4 — = g
— S o040t
0.3 _— 0.05
oz —
04—
— T [0]: 2 {146, 124}
0
— v ooy R
140 150 160 170 180 190 200 210 220 230

Time [ps]

Conclusion: only if Qy is incompatible
with data and theoretical understanding
one can avoid the XENON10 contraints.
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The new Results v
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Trigger Probability

Improved Trigger Threshold

* Low energy signals are S2-triggered
* dedicated measurement of threshold

TPC
E oos|— .
I - This S2 signal
< :— S2sTot[0]: 1uf.909 pe o
- ; =3 e generated
10— : 5 N | this trigger
- ST T i§ - :
- run_10 ++ H T RERN = signal.
i + = N Time[s]
06— e _ Trigger Signal a §V
ol fE
- run_08 -
02— =
- ; =
l:"“r.l_ | I5||JI - I1||J|JI I15||J - I2||J|JI IzéuI - I:'.jmI - I:=.5||JI I4||J|JI | - k
<> S2sTot [PE] T
run_10 S2 analysis run 08
threshold not S2 analysis
defined yet threshold

M. Schumann (U Zurich) — XENON 68



?ﬂ?@

I News from the current DM run E&5%

Matter Project
XENON100 run_10
: -
E _ . . . no active veto cut
E ) - . ] '-: -
L i Lt _i" "
— - ™ . b
» "?_ L
s o R ‘;at"'ﬁ"-‘
| bl & 1 'H.
% . -"f: B a"
m?-
& I A A AL AL L L LA
ol //
v
| 1 1 |l | 1
10 15 30
S1 [PE]
No electronic Blinded
noise present Dark Matter

Search Region
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I News from the current DM run E&55

XENON100 run_10

N7
Xle

Matter Project

. with active vetoﬁ
E |

D Active veto cut
removes >50%
of background

10

log (S2_b/S1)-ER mean

99.5% ER’:}/A

.|III.|III|III.|III.|IIT;|-7~H;R

I 30
S1 [PE]

Blinded
Dark Matter
Search Region

No electronic
noise present
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I Comparison with the latest results NG

XENON
Matter Project

Phys. Rev. Lett. 107, 131302 (2011)

S1 [PE]
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 XENON100 I’l.ll'l_'lﬂ
| I I | I i=1
0.4— | |' . | | o l, L i 3 pal— . | *  with active veto cut
: L‘.‘ ‘. e : *“ . %;: : “‘:“ .‘:. . | E : - |.- . N ’.. - ..- - .
— . P T R R IR C . .
I :f.{.se-:::~:..;;‘;-*:-:;:.-f-.‘..;*:’.:-.::;.’:..;s;:. I e A DA R S TR A S
n - et gt . .- “ K ":& 4 Ry 4“Q.“ k] ; - . - - a
3 O+ 5N ".":“ 1’}“‘.“%“};}:“?; }*‘é“:‘:&?‘&s&:‘é{" ﬂ"‘ﬁ{z"‘i‘ E 0.0 — "- - # . :&. . '-.-r' !-‘f "IJ: M .: - :i ! - “a
B 1 Ja. Lt aa 4 100 P ' . e F a5 wa = & an avy, . aVa I’. - lf - B
EF P I e e g e el T e N e AT MLV T e L
PR Y 4% b{?. 2 TR - | - - au . LN .} ay ol Tl 4 oa
[ ool (e AL | Cnta s *‘f.‘f‘ S At o - -;.| . P L T U L R e
o 02 | st A « SRR, i . o022
1 - H - 5 - .y i “‘-.l = - |
~— - F5 s . = L
5 04_—- """ % |' """ et e e e A e et s REE R b | E 0.4 — i ---------------------------------------------------
~es | & ' 99.5% ER'rejection
% n | : | »
— D()r\ | | 0.6 — | 1 ¥ ¥
%ﬂ_ -\ e e e | C | X
= -0.8 \\I . | -0.8— |
| - C
- | "~ I C |
-1 | e— | 10— |
B q.-"'ﬁ‘-""‘*--.. r
12_ ||| | | | | | | | T‘—"l | 1 | 1 || 12_|||l|||||||||||||||||||||||||
’ 10 20 30 40 50 0 5 10 15 20 25 30
Energy [keVnr] S1 [PE]

almost identical cut acceptance

Fiducial Mass: 48 kg Fiducial Mass: 48 kg
Lifetime: 100.9 days Lifetime: 132.5 days

run_10 is still ongoing!
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XENON100: Sensitivity

WIMP-Nucleon Cross Section [cm?]
=

W vP-Nucleon Cross Section [cm?]

WIMP Expectations

CMSSM: Trotta et al.
CMSSM+LHC:
Buchmueller et al.

0% = ~—————— = = 1 event/kgl/yr
= XENON100 (2011) - =
:XENON1OO goal Buchmueller et al. ] B
10-45 Lo l | Loy | 1) N 10—45__
6 78910 20 30 40 50 100 200 300 400 1000 =
WIMP Mass [GeV/c?] B
46 |
How do we get there? 07 =
= 1eventiton/yr . | -
10 20 30 40 50 100 200 300 1000
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e 2.4t LXe ("1m3 detector")
1t fiducial mass

e 100x lower background
(10 cm self shielding,
low radioactivity components)

e Timeline: 2010 — 2015

e start construction in 2012
1.9m

Low Radioactivity
Photon Detectors
(37, Total ~270)

Ti Cryostat
(or low rad. stainless steel)
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XENON1T
@ LNGS (Hall B)

- 5 m water shield
acting as

ICARUS :
active muon veto

* Proposal and TDR submitted to LNGS
* Approved by INFN end of April 2011

M. Schumann (U Zurich) — XENON



Material Selection
Radioactive Screening

[

-]

Measurements of trace
amounts of Kr, Rn
Kr/Rn removal

i
W

I i on i thae TS [omy

B

a 15 A X MM X 4 45 SO
Distacre=s fesm TP i o]

w w3 long drift

I;(Igh vo]Ictagte Xenon1T

e purification Cryostat TPC

|| TPC I Xe storage
Calibration|

Muon Veto

High power LN2
Cold head

... and many
more things...

DAQ, rigger
EllecI;tronics
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Fast gaseous
purification circuit




DARWIN — Dark Matter WIMP Search with Noble Liquids
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Two new projects upcoming:

« XENONI1T
1 ton LXe target mass

 DARWIN
multiton LXe/LAr detector

10"

WIMP-Nucleon Cross Section [cm?]
2 g 3§ 3
s & & ¢t

M. Schumann (U Zirich) — marc.schumann@physik.uzh.ch

e Dark Matter: One of the
big unsolved puzzles

« XENON100
62 kg dual-phase LXe TPC

« extremely low background

* new results from 100d data:
PRL 107, 131302 (2011)
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Backup
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Kr-85-Removal

» Xe has no long lived radioactive isotope . 10786y
- = 85
« BUT: Xe contains Kr-85 , JoKr g€
. . p-" : t
iNn air. KI‘/Xe -~ 10 0.434% 9.5, 92+ b-z;; 3? 5140083 1 015
in Xe gas (commercial) Kr/Xe ~ ppm-ppb <4.7107% >16.73_ Al2- Fﬁ?ﬁégﬁ 280.986 40
necessary (Xe100) Kr/Xe ~ 100 ppt e ik it st o7
(<1 evtin 0.5yr) ST e BRD stable
31

— dedicated Kr-85 removal to ppt level

= 10°
2
5
3 10 r 0.1ppm
i!i
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o E
5 f
E 10°E 1
c = THE
= |".-"|fll‘.|l=II sﬁnal 132131}\. ’F,, |
(2 otH107° | ¢t |
: ji |
f Kr/Xe levels of
107E O(ppt) necessary |
n and possible ..I
1|:|¢ [ R L 11l 1 R
1 10 1o Energy[keV’

=

used successfully =
M. Schumann (U Zirich) — XENON XMASS, Astro.Part.Phys. 31 (2008)



ionization energy (keV)

Mistake

(argumentation adapted from P. Sorensen, talk at TAUP)

Measurements in germanium

Barbeau, Collar and Tench, JCAP 09 009 (2007)
10" 4
: s

-

. T.... pall
A —
F = i.

=
=

5 inelast. n scattering [14]
-~ & clast. n scattering [28]
z [ thermal n capture [14]
B elast. n scattering (this work)
----- Lindhard theory (k = 0.2)

04 0.7 1 4
recoil energy (keV)

wrong
prediction

10

inferred recoil energy scale (kc\{_)

1 10 100
ionization yield (electrons)

in Collar Prediction

Lindhard gives an expression for the
expected fraction of NR energy transferred
to electrons (=detectable), the rest is lost to heat

Mat. Fvs, Medd. Dan. Vid. Selsk, 33, no. 10 (1963)

Maore prés-
cigely, for an incoming parlicle of energy & we ask for that parl y of the
lotal energy bogs, £, which is ullimately given 1o electrons, and thal parl ».
which 15 ullimately lefl in atomic medion.

&L

fddY cme A copec bl B oo A

\do), T @ = \z@a FE P e-) P @+7)
LR

In xenon, energy is not only transformed 10—
into charge but also into light; the fraction | b

is energy dependent.
Lindhard theory applies to the total
energy loss which is ultimatively

given to electrons, i.e. the total number

of quanta:
En[ - E(n ‘.F + HH )/fn i | Sorensen & Dahl, Phys. Rev. D 83 063501 (2011) ‘

\ \ 1
nb of primary fraction of NR

ionization energy transferred
electrons to electrons

o
3

electron fraction

photon or electron fraction
o
o

=4
o

10 ‘”1100

av. energy to nuclear recoil energy [keV]

create a single
quantum (~14 eV)

nb of primary
scintillation
photons

note: in Ge, n,=0 80
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