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Introduction

The search for TeV physics is underway.

@ LHC has switched on and is
running well.

@ We are all eagerly awaiting
(praying for) any signs of new
physics.
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T

@ Unfortunately so far we have only
seen ....

J.L dt~ 36 pby

Entries / 100 GeV

e Without large datasets can we
make difficult measurements?
(mg, mzg 2 1 TeV)

o 200 400 600 800 1000 1200 1400
e [GeV]

J. Tattersall Spin determination at the LHC



Supersymmetry (SUSY)

Supersymmetry relates fermions and bosons.
@ Q|boson >= |fermion >
@ Q|fermion >= |boson >

All SM particles get a 'Superpartner’.
@ Same quantum numbers.
@ Differ in spin by 1/2.
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Motivations

SUSY is one of the best motivated extensions of the SM.

@ Offers a solution to the ---".--O___"___

hierarchy problem. !

@ Provides a ’'natural’ dark L N
matter candidate.

o If R-parity is assumed.
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@ Unique extension of the
Poincaré group.
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@ Unification of coupling
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Extra dimensions models

@ Extend the spacetime by one
or more (compactified) extra

dimensions (ED). L 4R T

@ Allow some or all of SM to 2 3R =

propagate in ED. E 1 =

£ B ——— =

® SM will be accompaniedby a £ f}ao{b) =

‘tower’ of heavy Kaluza-Klein £ e i N —

states (same spin). = A =

@ Many extensions of SM - T _
possible, (e_g_ 5D vs. 6D Small Radius Large Radius

models, different
compactifications....)
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Introduction

Many models of new physics can look surprisingly similar.

Supersymmetry Universal extra dimensions
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@ Both models double the number of particles.
@ Couplings are similar as models ‘copy’ the SM content.

@ Masses are similar as we hope to find new physics at the
LHC.

@ Assume lightest partner is stable and neutral — dark
matter.
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SUSY vs UED

What is the unambiguous difference between SUSY and UED?

SM spin SUSY spin UED spin
electron e % selectron & p 0 KK-electron ey g %
quark q 3 squark g O KK-quark  giLr 3
Wboson W+ 1 | chargino %* @} KK-W wE 1
Zboson 20 1 neutralino {9 3 KK-Z Z 1
photon 107 1 neutralino 92? % KK-photon o) 1
gluon 9 1 gluino g 3 KK-gluon g1 1

@ Spin of SUSY partners — differ from SM by 1/2.
@ Spin of UED (KK) partners — same as SM.
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How can we determine the spin at the LHC?

@ The total cross-section.
(Datta, Kane and Toharia: hep-ph/0510204)

@ Observation of higher KK modes.
e For extra dimensional models.
(Datta, Kong and Matchev: Phys. Rev. D72 (2005), hep-ph/0509246)

@ Invariant mass distributions between particles in decay
chains.
(Barr: Phys. Lett. B596 (2004) 205-212, hep-ph/0405052)

@ Angular distributions of produced particles.
(Barr: JHEP 02 (2006) 042, hep-ph/0511115)

@ Many other papers on the subject......
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Cascade Decay

The similar particle spectrums of SUSY and UED can give
similar final states.

Supersymmetry Universal extra dimensions

lfa.r

b

@ The invariant distributions allow a measurement of mass
spectrum of the model.

@ The shape of the invariant distribution (//, glhear, Qltar)
depends on the spins of the particles in the decay chain.
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Invariant Masses

@ Most of the effort at parameter determination at the LHC

has focused on using mass edges.
(Gjelsten, Miller, Osland; hep-ph/0410303)
@ We take invariants between particles in the decay chain.

@ For example mj™,
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Spins in cascade decays

Try to be as model independent as possible by including all spin

configurations.
q 0, ¢
D / C / B / A
e Pr, :cRPR b Pr, :bRPR ar Py, :aRPR

m.2 mz WI,2

=T y=IF =33

D C ‘B
[Spins | D [ C ] B [ A ] Example

SFSF | Scalar | Fermion | Scalar | Fermion | §— %2 — 7 — %9
FSFS | Fermion | Scalar | Fermion Scalar | g1 > Zy — b1 — YH
FSFV | Fermion Scalar Fermion Vector Q1 — Zy — b — 7
FVFS | Fermion Vector Fermion Scalar G — 21—l —
FVFV | Fermion | Vector | Fermion | Vector g — 21 — 4 — 7
SFVF Scalar Fermion Vector Fermion —
(Athanasiou, Lester, Smillie, Webber: JHEP 08 (2006) 055, hep-ph/0605286)

(Burns, Kong, Matchev, Park: JHEP 10 (2008) 081, arXiv:0808.2472)
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Invariant Masses

Take invariant mass of g and near ¢~ as an example.

T T T
susy ——
FSFS, FSFV ——
FVFS, UED-FVFV ——
15k SFVF
1z
oS
€
i 1
5
ko]
05}k i
o . . . .
0 02 04 06 08 1
me _
qly

@ Clear differences between spin structures (scalar, fermion
or vector) can be seen.

@ Assume that model contains SUSY mSUGRA couplings
and masses (SPS1a)).
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Conjugate decay dilution

Unfortunately, life at the LHC is slightly more complicated.

2 T T
susy ——
FSFS, FSFV ——
FVFS, UED-FVFV ——
15k SFVF
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me _

@ Distribution from g* has an opposite shape to that of g.

@ Luckily LHC is a pp collider otherwise most distributions
would cancel.

@ Distributions are diluted.
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Lepton ambiguity

The same problem occurs with the final state leptons.

" SUSY-SFSF ——
FSFS ——
\ FSFY ——
i . FVFs —— |
= '\<uﬁa:-gVFv
a g X\ SFVF
RS ‘
5 -
|
S |

05 | -1

r“nge,
@ We cannot distinguish the near and far leptons.

@ Distributions become more messy when we take the
combination.

@ Is there a better observable?
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Invariant Masses

Use the difference between the g¢™ and g¢~ distributions.
(Barr: Phys. Lett. B596 (2004) 205-212, hep-ph/0405052)
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@ Spin structures again seem separable.

@ With 150 fb~' a measurement can be made.

® mj ~ 630 GeV, my ~ 720 GeV, BR(x3 — /*(T) ~ 25%

@ New LHC bounds, study begins to look difficult, (~ 1ab~1)

@ We also haven't discussed the couplings.....



Invariant Masses

my, offers the cleanest experimental observable.

" SUSY-SFSF ——
FSFS

Ao
)

do/

@ Under the assumption that the model contains mMSUGRA
couplings.
@ 100% polarised intermediate particle.
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Invariant Masses

If we instead allow the couplings to vary in each spin model,

'susy, UED, ... -
SFVE

2
144

do/m

05

0 1 1
0 0.2 0.4

0.6 0.8 1

A2
M,

@ Any spin structure can provide a good fit to the distribution.

@ Only the relative size of right and left couplings important.
@ Branching ratios can remain the same.
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Invariant Masses

The fit can be performed for all distributions.

'susy ——
FSFS, FSFV ——
FVFS, UED-FVFV ——

05k FVF i

2
qe—

m

-05 -

da/mgﬁ —do/
q
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2 _ 2
mqﬁ mqZ*

@ SUSY is now less distinguishable.

@ UED model can have the same shape.

@ Background rejection will be important.

@ Most optimistic SUSY scenario chosen (CMSSM).
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Distributions




Slepton spin measurement

Consider the process of sleptons/KK-leptons production.

q AN

qq — 2%y — (ti—  SUSY .20

qq — Z°/y — 74y  UED
g .
@ In SUSY, scalar sleptons are exclusively produced in
P-wave.

@ In UED, fermionic KK-leptons are produced in S-wave.

@ This results in a different angular behavior in the center of
mass frame.

Barr: JHEP 02 (2006) 042, hep-ph/0511115.
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Angular behavior

E2 — M?
(da > o1+ | —g——7 | cos?*
dcost* ) ygp E + M,

_do x 1 — cos?6*
dcost* ) qusy
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Spin sensitive observable

@ Production angles of sleptons/KK-leptons are not directly
accessible due to particles escaping detection in the final
state.

@ However, decay products carry some information about the

production angle,
Ei

0 — 3 90 susy EN
£1 €1 —>’y1€ ’y1£ UED 5{(1)’,),1

@ Use longitudinally boost invariant observable,
cos 6}, = tanh (Ang/2) , Ange = ng+ — Mg~

= cos#;, is cosine of the polar angle between leptons and
the beam axis in the frame where pseudo-rapidities of the
leptons are equal and opposite.
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Simulation results

@ Slepton production cross section is rather low at the LHC
(electroweak process).
@ Large luminosity required to obtain significant result.
e 0200 fb~" for m;_~ 150 GeV.

@ However, determination is unambiguous.
Barr: JHEP 02 (2006) 042. hen-ph/0511115.
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Sbottom production

@ Problem is low cross sections.

@ We would like a method that can be used with early data.
@ LHC is a hadron collider.

@ The cross section for QCD particle production is much
larger.

o Initial idea to measure bottom partner production.

p /B’b1
v

7’
N
p ~b*, by
@ More complicated as we have more channels.

Alves, Eboli: Phys Rev. D75 (2007) 115013 arXiv:0704.0254.
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Simulation results

@ More stringent cuts are required to remove background.
@ Bottom tagging efficiency is a limiting factor.

@ Large luminosity still required to obtain significant result.
e 0300 fb~".
e my ~ 630 GeV.

mm fotal bkg
bz s5
7 | = others 300 f5 3

0
-1 -08 -06 -04 -02 0 02 04 06 08 1

5
cost’,,
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Coloured Production

Similar analysis in case of squark/KK-quarks and
gluino/KK-gluon production.

susy UED
— Tot
,g ,g 99 — 47, aqi
P
4 4 — @ @, o
E E -~ 49— 30 aa
-] o
£ £
€ € i
.§ § 99 = 48" @@
S S
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Moortgat-Pick, Rolbiecki, JT: Phys.Lett. B699, arXiv:1102.0293
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Squark spin measurement

UED production significantly more in forward direction.
@ Enhanced cross section (QCD).
o Earliest discovery channel for many models (2-jet + MET).
@ Applicable for many decay chains/models.

@ Consider production process,
= 50 5 =x()
pp — qiq; ", pp—qiq;",
pp—399, pPP—34a:.

Angular distributions in the center
of mass frame.

1
-1.0 —0.5 0.0 0.5 1.
cos 07,
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Spin sensitive observable at the parton level

Production angles of squarks/KK-quarks are not directly
accessible due to particles escaping detection in the final state.

@ Include decays, e.g.
pp— Grdr— qqx0%]  SUSY
PP — qr1qr1 — 9 Q7171 UED

@ Production boost is imprinted onto decay products.
@ Assume mass spectrum is identical in both models

Rapidity difference as the spin
sensitive observable,

. Angq
Cos 0y, = tanh <2> ,

Angg = Ng, — Ng,-

0 —0.5 0.0 0.5 1.
cos 67;
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Simulation results

@ [f particle masses < 900 GeV hints of spin structure can be
seen already with integrated luminosity of 1 fb=! (14 TeV).

@ This assumes a SUSY mass spectrum.

@ Cuts and SM background included, hardest jets taken to
construct spin observable cos 0;

@ Works even for a; = ag.

SU3, 10 fb~' at 14 TeV SU6, 10 fb~! at 14 TeV

00 Susy

—1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0
cos 0 cos 0j;
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Fitting to mass spectrum

@ Argument assumes that we (approximately) know the new

particle masses and spectrum.

@ As mgkk) — oo, KK-gluon distributions can begin to mimic

SUSY-quark.

@ An independent measurement of quark and gluon partner

masses is not always so easy.

[_jets pseudorapidity difference |

eveats
2 o
3 8
S S

»
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»
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ST T T[T T T T

o

I I | I I L 1 L L
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cos 0“

SUSY: Black
UED: Red
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Disentangling to mass spectrum

@ Gluon partners have to decay to quarks.
@ If quarks are heavier, this means three body decays
(off-shell quark partner).

mg 2, Mg (‘Normal’) mg > mg (UED faking SUSY)
q
e q
g q
Ta g q
q
~0
. X
% 1
q
g —=-
i3

@ We can expect alternative distributions to show differences.
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Azimuthal distribution of jets

@ Azimuthal angle can indicate extra jet activity.

@ If two jets are in opposite directions in the azimuthal plane,
a difference in pseudorapidity is required to produce
missing energy.

@ Extra jets allow events to pass missing energy cut more

distance in transverse plane distance in transverse plane
a F — e F
L b SUSY:
o000 1 Sooo}— gt Y
800 800/ B I aCk
600 7} -3 600/ U E D .
E |; - Red
400~ LFL'—]T 400~
200 - 200~
T | I |
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 10
cos SM cos 9“
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Hr distribution

@ Hy distribution shows a nice distinction between the
2-body decays of SUSY and 3-body decays of UED.

@ Due to extra jet activity in this UED model leading to a talil
in HT.

@ Jets are more 'visible’ than missing energy.

Hr =" ph + Ess

SUSY:
Black
UED:
Red

500 1000 1500 2000 2500 3"(‘){00

500 1000 1500 2000 2500 1:200

@ Other observables as well: jet energies, jet multiplicity .....
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@ New models of physics can share many similar properties.

@ We must determine the spin of any new states to
determine the model.

@ Aim to be as model independent as possible.

@ Production distributions are a spin sensitive observable.
e Hints of the spin structure maybe seen with early data.

@ Distributions in cascade decays can shed light on the
particle spins.

o Will require a substantial amount of data.

@ A linear collider will provide the final word!
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