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Q Hints for Light WIMPs
o Constraints from Neutrino Telescopes
o Constraints from Antiproton Searches

° A Model of Light Dark Matter



@ Dark Matter relic density: Q,h? ~ 0.1 (WMAP)

@ Thermal WIMPs

O 2~ 3x107%"cm3s!
T {ov)

@ Velocity expansion: ov = a + bv?

N\

S-wave p-wave

® Freeze-Out: (v?) ~ 1/10




@ WIMP y passes detector

¢ ()
— liquid noble gas (Xenon...)
— crystal (CRESST...) \ /

@ scatters off target nucleus

@ Er ~ Light, Heat
Nucleus

| U

detector signal Egr




modulation sig-
nal at DAMA

Bernabei et al., Eur. Phys
J. C67 (2010)
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Aalseth et al., arXiv:1106.0650 [astro-ph] (2011)

@ CoGeNT: exponential rise

modulation

Angloher et al
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® CRESST: event
excess
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XENON 10/100, CDMS, CoGeNT rate, CRESST from official papers,
CoGeNT modulation from Fox et al. arXiv:1107.0717




@ Background, e.g. neutrons
Ralston, arXiv:1006.5255 [hep-ph] (2010)

@ Inelastic Dark Matter, isospin violation,
Smith et al., Phys. Rev. D64 (2001), Feng et al., Phys. Lett. B703 (2011)
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Schwetz et al., JCAP 08 (2011)

@ More exotic dark matter




@ Non-standard astrophysics
Frandsen et al., arXiv:1111.0292 [hep-ph] (2011)

@ Xenon uncertainties Leg, Qy
Collar, arXiv:1106.0653 [astro-ph] (2011)
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Bezrukov et al., Astropart. Phys. 35 (2011)

What can we learn from indirect detection?



@ Gamma ray excess from the galactic center
Hooper et al., arXiv:1110.0006 (2011)

@ Radio filament structures near the galactic center
Hooper et al., Astrophys. J. 741 (2011)

@ Isotropic radio emission
Fornengo et al., arXiv:1108.0569 (2011)

astrophysics?



‘ ‘ ‘ ] @ WIMPs scatter, get trapped in the
\ gravitational potential of the sun

spin-independer { @ Capture rate on element i

i

107 1 dr

1020 L

1029 L

C,, [sY/ph)

~ Flux - Kinematics - pi(r) - o

@ Spin-dependent:
17k spin-depender ] On|y H

o %0 20 o @ Spin-independent:
miee o o« A2, kinematics = H, He, ..., Ni




@ Captured WIMPs thermalize
—m, v?
f X
(V) exp( o7, >

n(r) o exp (M)

X
Wlth TX (g T®’Core

@ Annihilation rate ', = A;N? with
(oV)e
Veff
@ Careful with p-wave: (v?), ~ 107

A@Z



@ By scattering v > Vesc — €scape from sun
@ Relevant for light WIMPs

@ Evaporation rate per particle

1 (—30(mx - mevap)>

Eo ~ —exp
to

Mevap
o evaporation mass:

Mevap ~ 3.5 GeV + 0.32 GeV - log,, (m>



@ WIMP number
N = C,—-2A,N?>—E,N

C .
lann = 76 -tanh(\/ 2C-A; t®) (evaporation neglected)

@ For /2C,Axt; > 1 equilibrium:

rann = C@/Z

@ Example: thermal WIMP (m, = 10 GeV, o, = 107%° cm?):

4 R
\/m% - { 00 (s-wave)

0.7 (p-wave)



@ Model-independent approach
XX — CC, bb, 77, v

@ Neutrino spectrum

dN‘f dN/f

Y matter-, vacuum oscil., absorption “n

dE TS

® earth
@ Neutrino Flux 0
_ T dN,,
v 47Td(% dE
earth

@ Angular distribution from position of the earth
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@ Rate for FC events

RFC /dEV d cos g, dx? dg% occ Pstop(Evs 6, X)

@ analysis: vDM + vAtm < vMeasured + error
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@ DAMA not from
WIMPs annihilating
into 7, v pairs



@ New precision measurement by BESS-Polar I
Abe et al., arXiv:1107.6000

= Consistent with background? Exotic sources?
@ Secondary antiproton background

p, He + Hisu, Heisy = p+ X

da)
o Ntgy P
(dT sorod | C

@ Source term

q%e(T) ~ /dT’
/

DTUNUC model or
Fit to experimental data




Spallation

L=3-10 kpe

h=0.1 kpe |

Diffusion on magnetic inhomogeneities

Acceleration by shock waves fro m D. Mau ri n

Diffusion equation:

V(—K VNﬁ +Vc Nﬁ) +6E (bloss Np‘) —Kee aE Np‘)) + I-emn Np‘) =0p + qz_)er




@ 2 Zone diffusion model
Maurin et al. Astrophys. J. 555 (2001)

@ Five propagation parameters: Ko, d, L, V¢, Va.

@ (Partly) fixed by B/C analysis

Putze et al., A & A 516 (2010)

@ Solar Modulation:
— Complicated
— Force-field approximation (solar minimum):

OTOA(T) = ;’ PS(Tis) with Tis=T +¢.
IS
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[
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+ BESS-Polar Il

—— This Work

---- Donato eta

103
107
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@ Reduced flux compared

to Donato et al.
Donato et al., Astrophys. J.
563 (2001)

@ BESS-Polar Il
consistent with pure
secondary background



@ Model-independent approach
xx — ul, dd, s§, cC, bb, WW,ZZ

@ Primary source term

£ {oamV) dNj

m2 2 dT

@ neglecting low energy effects (energy losses,
reaccelleration, tertiaries)

pnm(r T)

‘Dﬁ ~ qprim . R@

@ Higher sensitivity to propagation parameters



BESS-Polar Il
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@ Ko, 4, V¢, Va from B/C
@ several hints for

L > 4 kpc
@ New B/C: Higher V.

Putze et al., A & A 516 (2010)

@ comparison with earlier
work:

model 5 Kol%Z] Lkpd] Ve[<P] ValT)
MIN 0.85 0.0016 1 135 22.4
MED 0.70 0.0112 4 12 52.9
MAX 0.46 0.0765 15 5 117.6

NORM 0.86 0.0042 4 187 355
SMALL 0.86 0.0031 3 18.6 305
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@ Stronger limits for annihilation into light quarks

@ Thermal WIMPs with m, = 3.

annihilation is non-hadronic or p-wave suppressed

.. 20 GeV disfavored unless



Upper limits, Joint Likelihood of 10 dSphs

constraints on <ow> from CMB
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@ Limits from Dwarfs @ Limits from WMAP

Fermi-LAT, arXiv:1108.3546 (2011) Galli et al., Phys. Rev. D84 (2011)
Hutsi et al., arXiv:1103.2766 (2011)

= Relatively robust exclusion light WIMPs with hadronic
annihilation (s-wave)



@ Standard Model:
@ neutrino



@ Standard Model:
@ neutrino hot dark matter, mass too small
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@ wino, higgsino

@ bino
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@ Standard Model:
@ neutrino hot dark matter, mass too small

@ Minimal Supersymmetric Standard Model:
@ sneutrino Z width

o Wi i ino collider searches
@ bino cross section too small

@ mixture bino higgsino?

op maximal at very large tan 3, my ~ 100 GeV, cosa = 1:
Belikov et al., arXiv:1009.0549 [hep-ph] (2010)

N2
op ~ 107 cm? x 0—1;’ but NZ; <0.1



@ Standard Model:
@ neutrino hot dark matter, mass too small

@ Minimal Supersymmetric Standard Model:
@ sneutrino Z width

o Wi i ino collider searches

@ bino cross section too small

@ mixture bi iggsino?

op maximal at very large tan 3, my ~ 100 GeV:
Belikov et al., arXiv:1009.0549 [hep-ph] (2010)

2

N
op ~ 107 cm? xﬁ but NZ; <0.1



introduce one singlet superfield S
new particles: singlino s, singlet scalar hs, pseudoscalar ag

most general superpotential (including S2-term)
Drees, Int. J. Mod. Phys. A4 (1989)

W = WMSSM—F/\SHqu—l—%SZ—f—gSs
+ corresponding soft terms
interaction between singlet and MSSM controlled by A

interaction in singlet sector controlled by ~



Assumption

Effect

all singlet mass
terms O(10 GeV)

Mg e as ~ 10 GeV

suppressed A

MSSM and Singlets
“almost decouple”
hy =hs+sinéh

sizeable x

significant singlet
self-interactions



@ correct mass range (by assumption)

@ WIMP nucleon cross section dominated by h;-exchange

5 5

\‘// @ suppressed by sind

hi

P

n n

2 /sinf\? /4GeV\*
~ 1040 cm? K
op ~ 1077 em (0.08) 0.03 M,

@ but: enhanced by 1/mp,




@ correct mass range (by assumption)

@ WIMP nucleon cross section dominated by h;-exchange

5 5

\‘// @ suppressed by sind

ha

P

2 /sinf\? /4GeV\*
~ 1040 cm2 K
op ~ 1077 em (0.08) 0.03 M,

= CRESST & Co explanation for sizeable «, small my,

@ but: enhanced by 1/mp,




@ thermal relic density  oc (oVe) ™2

@ sizeable «, small m,, opens annihilation channel(s)
s hl 5 Qs
s i hi 5 i hi

K41 { v2,  (hih;-channel)

— — X
167 mZ 1 (hias-channel)

@ Q:=Qpy fork=0.01...0.1

0‘V|’e| ~ 0(1)




Input Parameters Predictions
Quantity Value Quantity Value

I 370 GeV Mg, 28 GeV
(s) 163 GeV mz 7 GeV
A -9 GeV My, 4 GeV

s —19 GeV sinég 0.03
Bus 0 op ~ 10740 ¢cm?

A —0.003 Qn? ~0.1

K 0.08

@ CoGeNT, DAMA, CRESST N\/ (not XENON)

@ Relic density \/

@ Indirect detection constraints \/

@ Experimental constraints ?



Higgs-like particles at LEP ~ Belle: h; in meson decays

L3-limit ZZ h;-coupling Br(B — Xs+putu~) <1078



Higgs-like particles at LEP ~ Belle: h; in meson decays

€

e

L3-limit ZZ h;-coupling Br(B — Xs+putu~) <1078

@ can be translated
into limits on sin @

sin 6

@ benchmark point
viable




@ Signals at several DM direct detection experiments might
hint at light WIMPs (but tension)

@ Such WIMPs can be strongly constrained by indirect
detection

@ Super-Kamiokande disfavors annihilation into neutrinos and
taus

@ BESS-Polar disfavors annihilation into quarks
@ Exception: p-wave annihilation

@ A simple singlet extension of the MSSM offers a promising
light dark matter candidate
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