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Thermal WIMPs

Dark Matter relic density: Ωχh2 ≃ 0.1 (WMAP)

Thermal WIMPs

Ωχh2 ≃
3 × 10−27 cm3 s−1

〈σv〉

Velocity expansion: σv = a + bv2

s-wave p-wave

Freeze-Out: 〈v2〉 ∼ 1/10
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Direct Detection of WIMPs

WIMP χ passes detector

→ liquid noble gas (Xenon...)

→ crystal (CRESST...)

scatters off target nucleus

ER  Light, Heat

detector signal
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Possible Signals

modulation sig-
nal at DAMA
Bernabei et al., Eur. Phys.
J. C67 (2010)

2-6 keV
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DAMA/LIBRA ≈ 250 kg   (0.87 ton×yr)

Aalseth et al., arXiv:1106.0650 [astro-ph] (2011)

CoGeNT: exponential rise
modulation

Angloher et al., arXiv:1109.0702 [astro-ph] (2011)

CRESST: event
excess

Martin W. Winkler (TUM) Bethe Forum 2011 November 18 5



Direct Detection of WIMPs

XENON 10/100, CDMS, CoGeNT rate, CRESST from official papers,

CoGeNT modulation from Fox et al. arXiv:1107.0717

DAMA, CoGeNT,
CRESST close

Tension with
XENON, CDMS
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Attempts

Background, e.g. neutrons
Ralston, arXiv:1006.5255 [hep-ph] (2010)

Inelastic Dark Matter, isospin violation, . . .
Smith et al., Phys. Rev. D64 (2001), Feng et al., Phys. Lett. B703 (2011)

Schwetz et al., JCAP 08 (2011)

More exotic dark matter
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Attempts

Non-standard astrophysics
Frandsen et al., arXiv:1111.0292 [hep-ph] (2011)

Xenon uncertainties Leff, Qy
Collar, arXiv:1106.0653 [astro-ph] (2011)

Bezrukov et al., Astropart. Phys. 35 (2011)

What can we learn from indirect detection?
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Indirect Detection of Light Dark Matter:
Possible Weak Hints

Gamma ray excess from the galactic center
Hooper et al., arXiv:1110.0006 (2011)

Radio filament structures near the galactic center
Hooper et al., Astrophys. J. 741 (2011)

Isotropic radio emission
Fornengo et al., arXiv:1108.0569 (2011)

astrophysics?
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WIMP Capture in the Sun
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spin-dependent

WIMPs scatter, get trapped in the

gravitational potential of the sun

Capture rate on element i

dCi

dr
∼ Flux · Kinematics · ρi(r) · σi

Spin-dependent:

Only H

Spin-independent:

σ ∝ A2, kinematics ⇒ H, He, ..., Ni
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Annihilation in the Sun

Captured WIMPs thermalize

f (v) ∝ exp
(
−mχv2

2Tχ

)

n(r) ∝ exp
(
−mχφ(r)

Tχ

)

with Tχ ∼ T⊙,core

Annihilation rate Γ⊙ = A⊙N2 with

A⊙ =
〈σv〉⊙
Veff

Careful with p-wave: 〈v2〉⊙ ∼ 10−6
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WIMP Evaporation

By scattering v > vesc → escape from sun

Relevant for light WIMPs

Evaporation rate per particle

E⊙ ≃
1
t⊙

exp
(
−30 (mχ − mevap)

mevap

)

evaporation mass:

mevap ≃ 3.5 GeV + 0.32 GeV · log10

( σp

10−40 cm2

)
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Total Annihilation Signal

WIMP number

Ṅ = C⊙ − 2 A⊙ N2 − E⊙ N

Γann =
C⊙

2
· tanh

(√
2 C⊙A⊙ t⊙

)
(evaporation neglected)

For
√

2 C⊙A⊙t⊙ ≫ 1 equilibrium:

Γann = C⊙/2

Example: thermal WIMP (mχ = 10 GeV, σp = 10−40 cm2):

√
2 C⊙A⊙ t⊙ ≃

{
400 (s-wave)

0.7 (p-wave)
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Neutrinos from Dark Matter

Model-independent approach

χχ → cc̄, bb̄, τ τ̄ , νν̄

Neutrino spectrum

dN f f̄
ν

dE

∣∣∣∣∣
⊙

matter-, vacuum oscil., absorption
−−−−−−−−−−−−−−−−−−−−−−−−−−→

dN f f̄
νµ

dE

∣∣∣∣∣
earth

Neutrino Flux

Φν =
Γ⊙

4πd2
⊙

dN f f̄
νµ

dE

∣∣∣∣∣
earth

Angular distribution from position of the earth
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Event Types at Super-Kamiokande

Our analysis

Super-K analysis
Desai et al., Phys. Rev. D70 (2004)
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Event Rates

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
-1

1 10

CCFR 90
CDHSW 87
IHEP-JINR 96
IHEP-ITEP 79
CCFRR 84
BNL 82

ANL 82
BNL 86

ANL
GGM 77
GGM 79
Serpukhov

CCQE CC single π Total σ

Eν (GeV)

σ/
E

ν 
(1

0-3
8  c

m
-2

G
eV

-1
)

(a)

Super-Kamiokande, Phys. Rev. D 71 (2005)

Eν > 10 GeV: νDIS

Eν < 10 GeV: νQE, νπ

νµ + p → µ+∆++ → p + π

Monte Carlo: NEUGEN
Gallagher, Nucl. Phys. Proc. Suppl. 112 (2002)

Rate for FC events

RFC ∝

∫
dEν d cos θν dx3 dΦν

d cos θν
σcc pstop(Eν , θν , x)

analysis: νDM + νAtm < νMeasured + error
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Limits from Super-Kamiokande

DAMA, CoGeNT,
CRESST not from
WIMPs annihilating
into τ , ν pairs
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Limits from Super-Kamiokande

DAMA not from
WIMPs annihilating
into τ , ν pairs
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Antiprotons in Cosmic Rays

New precision measurement by BESS-Polar II
Abe et al., arXiv:1107.6000

⇒ Consistent with background? Exotic sources?

Secondary antiproton background

p, He + HISM, HeISM → p̄ + X

Source term

qsec(T ) ∼

∫
dT ′

(
dσ
dT

)

p̄ prod

nHISM
Φp

DTUNUC model or
Fit to experimental data
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Antiproton Propagation I

from D. Maurin

Diffusion equation:

∇(−K ∇Np̄ +Vc Np̄)+∂E (bloss Np̄ −KEE ∂ENp̄)+Γann Np̄ = qp̄ +qter
p̄
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Antiproton Propagation II

2 Zone diffusion model
Maurin et al. Astrophys. J. 555 (2001)

Five propagation parameters: K0, δ, L, Vc, VA.

(Partly) fixed by B/C analysis
Putze et al., A & A 516 (2010)

Solar Modulation:

→ Complicated

→ Force-field approximation (solar minimum):

ΦTOA
p̄ (T ) =

p2

p2
IS

ΦIS
p̄ (TIS) with TIS = T + φ .
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Comparison with Experiment
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Donato et al.

This Work

BESS-Polar II

Reduced flux compared

to Donato et al.
Donato et al., Astrophys. J.
563 (2001)

BESS-Polar II

consistent with pure

secondary background
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Antiprotons from Dark Matter

Model-independent approach

χχ → uū, dd̄ , ss̄, cc̄, bb̄,WW ,ZZ

Primary source term

qprim
p̄ (r,T ) =

ρ2
χ

m2
χ

〈σannv〉
2

dNf̄ f

dT

neglecting low energy effects (energy losses,

reaccelleration, tertiaries)

Φp̄ ∼ qprim · R⊙

Higher sensitivity to propagation parameters
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Propagation Parameters
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BESS-Polar II K0, δ, Vc, VA from B/C

several hints for

L & 4 kpc

New B/C: Higher Vc
Putze et al., A & A 516 (2010)

comparison with earlier

work:

model δ K0[
kpc2

Myr ] L[kpc] Vc [
km
s ] VA[

km
s ]

MIN 0.85 0.0016 1 13.5 22.4
MED 0.70 0.0112 4 12 52.9
MAX 0.46 0.0765 15 5 117.6

NORM 0.86 0.0042 4 18.7 35.5
SMALL 0.86 0.0031 3 18.6 30.5
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Primary Flux
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non-negligible
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Constraints from BESS-Polar II
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Stronger limits for annihilation into light quarks

Thermal WIMPs with mχ = 3 . . .20 GeV disfavored unless

annihilation is non-hadronic or p-wave suppressed
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Other Indirect Searches

Limits from Dwarfs
Fermi-LAT, arXiv:1108.3546 (2011)

Limits from WMAP
Galli et al., Phys. Rev. D84 (2011)

Hutsi et al., arXiv:1103.2766 (2011)

⇒ Relatively robust exclusion light WIMPs with hadronic
annihilation (s-wave)

Martin W. Winkler (TUM) Bethe Forum 2011 November 18 27



Candidates for Light WIMPs

Standard Model:

neutrino
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Candidates for Light WIMPs

Standard Model:

(
(
(

((neutrino hot dark matter, mass too small
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Candidates for Light WIMPs

Standard Model:

(
(
(

((neutrino hot dark matter, mass too small

Minimal Supersymmetric Standard Model:

sneutrino

wino, higgsino

bino
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Candidates for Light WIMPs

Standard Model:

(
(
(

((neutrino hot dark matter, mass too small

Minimal Supersymmetric Standard Model:

(
(
(

((sneutrino Z width

(
(
(

(
(
(
((

wino, higgsino collider searches

�
��bino cross section too small

mixture bino higgsino?

σp maximal at very large tanβ, mH ≃ 100 GeV, cosα = 1:
Belikov et al., arXiv:1009.0549 [hep-ph] (2010)

σp ∼ 10−41 cm2 ×
N2

13

0.1
but N2

13 . 0.1
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A Supersymmetric Model

introduce one singlet superfield S

new particles: singlino s̃, singlet scalar hs, pseudoscalar as

most general superpotential (including S2-term)
Drees, Int. J. Mod. Phys. A4 (1989)

W = WMSSM + λS HuHd +
µs

2
S2 +

κ

3
S3

+ corresponding soft terms

interaction between singlet and MSSM controlled by λ

interaction in singlet sector controlled by κ
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Towards light WIMPs

Assumption Effect

all singlet mass ms̃,hs,as ∼ 10 GeV
terms O(10 GeV)

suppressed λ MSSM and Singlets
“almost decouple”
h1 = hs + sin θ h

sizeable κ significant singlet
self-interactions
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Can Singlinos explain CRESST & Co

correct mass range (by assumption)

WIMP nucleon cross section dominated by h1-exchange

h1

n

s̃

n

s̃

suppressed by sin θ

but: enhanced by 1/m4
h1

σp ∼ 10−40 cm2
( κ

0.08

)2
(

sin θ

0.03

)2 (
4 GeV

mh1

)4
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Can Singlinos explain CRESST & Co

correct mass range (by assumption)

WIMP nucleon cross section dominated by h1-exchange

h1

n

s̃

n

s̃

suppressed by sin θ

but: enhanced by 1/m4
h1

σp ∼ 10−40 cm2
( κ

0.08

)2
(

sin θ

0.03

)2 (
4 GeV

mh1

)4

⇒ CRESST & Co explanation for sizeable κ, small mh1
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Singlinos as Thermal Relics

thermal relic density Ω ∝ 〈σvrel〉
−1

sizeable κ, small mh1 opens annihilation channel(s)

s̃

s̃

h1

h1

s̃

s̃

h1

as

σvrel ∼ O(1)
κ4

16π

1
m2

s̃

×

{
v2

rel (h1h1-channel)

1 (h1as-channel)

Ωs̃ = ΩDM for κ = 0.01 . . . 0.1
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A Benchmark Scenario

Input Parameters

Quantity Value
µ 370 GeV
〈s〉 163 GeV
Aκ −9 GeV
µs −19 GeV

Bµs 0
λ −0.003
κ 0.08

Predictions

Quantity Value
mas 28 GeV
ms̃ 7 GeV
mh1 4 GeV
sin θ 0.03
σp ∼ 10−40 cm2

Ω h2 ∼ 0.1

CoGeNT, DAMA, CRESST ∼X (not XENON)

Relic density X
Indirect detection constraints X
Experimental constraints ?
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Experimental Constraints on Light Scalar
Higgs-like particles at LEP

Z

e+

e−

Z

h1

L3-limit ZZ h1-coupling

Belle: h1 in meson decays

W−

t
h1

b

d

µ+

µ−

s

d

Br(B → Xs +µ+µ−) . 10−6
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Experimental Constraints on Light Scalar
Higgs-like particles at LEP

Z

e+

e−

Z

h1

L3-limit ZZ h1-coupling

Belle: h1 in meson decays

W−

t
h1

b

d

µ+

µ−

s

d

Br(B → Xs +µ+µ−) . 10−6

can be translated

into limits on sin θ

benchmark point

viable
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Conclusion

Signals at several DM direct detection experiments might

hint at light WIMPs (but tension)

Such WIMPs can be strongly constrained by indirect

detection

Super-Kamiokande disfavors annihilation into neutrinos and

taus

BESS-Polar disfavors annihilation into quarks

Exception: p-wave annihilation

A simple singlet extension of the MSSM offers a promising

light dark matter candidate
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