
Machine Learning in Three Lectures

Sach Mukherjee

DZNE, Bonn

What is machine learning?

I Machine learning (ML) is a subfield located at the intersection of
computer science and computational statistics focused on making
decisions based on data

I Notion of “decisions” or “actions” is very broad and includes many
tasks currently done by humans hence close connection between ML
and Artificial Intelligence (AI)

What is machine learning?

I ML is both a technology/tool and a conceptual approach. Now
plays key – and often critical – role in many fields and sectors

I ML method = (model, estimator, computation), evaluated in
context of specific goal. Can mix-and-match, may be trade-offs
between three aspects

I Common thread is philosophy of learning from data and specific
notion of empirical testing wrt problem of interest

I Note that ML 6= AI 6= “deep learning”

What is machine learning?

I Although ML makes much use of probability, optimization, linear
algebra etc. its focus is very distinct and lies in systematically
building on three key ideas:

1. The generality of mappings: many practical problems can be viewed
as requiring a mapping from one set to another

2. Functions need not be specified upfront, but can be estimated
(“learned”) from data starting from essentially generic families.

3. Generic regularization approaches can allow effective learning of
flexible models. Statistical decision theory is critical

I Often the mathematics needed is surprisingly simple – ML is as
much as a way of thinking as anything else

I Easiest way to get a feeling is to look at examples

Plan for the lectures

I Aim of the lectures is to give a self-contained introduction to some
key ideas in ML

I Trade-off between presenting “unified” view and sticking to standard
names for tasks/models, will lean towards the latter, but show
connections throughout

I Sequence: first describe several concrete tasks, to fix ideas and give
a feeling for the field, and later take a step back to a more general
view

I Today: supervised learning

Supervised learning

Some notation

I Generic n × p data matrix X = [x1 . . . xn]T, understood as n
observations in p dimensions

I Where there is an “input” and “output”, usually x , y respectively

I f (·; θ) refers to family of functions or distributions, parameterized by
(possibly high-dimensional) θ

I Refer to θ as parameter, f as model

Some notation

I “Hat” indicates estimate from data, e.g. for unknown parameter θ,
corresponding estimate is θ̂ = θ̂(X)

I θ̂(X) is a function of data, should be thought of as a random
variable (RV)

I Variance of estimator means Var(θ̂(X)) (depends on sample size n)

I Likelihood is the joint distribution of the data under some model
p(X | θ) usually treated as a function of the parameter θ

I Warning: I will overload X ,Y , meaning should be clear from context

Supervised learning

I Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

I Problem: want to predict some y ∈ Y from available inputs x ∈ X
I Focus on

x ∈ Rp and
y ∈ {0, 1} (classification) or
y ∈ R (regression)

I Idea is to “learn” a function f̂ : X → Y using dataset
Dn=(xi , yi)i=1...n (i.e. with both x ’s and y ’s available in the data)

I f̂ should be “good” in a certain sense that we will discuss later

I Called “supervised” because both x , y available at outset, hence like
learning with a teacher

I Framework extremely general, x , y could be almost anything...

Supervised learning

I Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

I Problem: want to predict some y ∈ Y from available inputs x ∈ X
I Focus on

x ∈ Rp and
y ∈ {0, 1} (classification) or
y ∈ R (regression)

I Idea is to “learn” a function f̂ : X → Y using dataset
Dn=(xi , yi)i=1...n (i.e. with both x ’s and y ’s available in the data)

I f̂ should be “good” in a certain sense that we will discuss later

I Called “supervised” because both x , y available at outset, hence like
learning with a teacher

I Framework extremely general, x , y could be almost anything...

Supervised learning

I Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

I Problem: want to predict some y ∈ Y from available inputs x ∈ X
I Focus on

x ∈ Rp and
y ∈ {0, 1} (classification) or
y ∈ R (regression)

I Idea is to “learn” a function f̂ : X → Y using dataset
Dn=(xi , yi)i=1...n (i.e. with both x ’s and y ’s available in the data)

I f̂ should be “good” in a certain sense that we will discuss later

I Called “supervised” because both x , y available at outset, hence like
learning with a teacher

I Framework extremely general, x , y could be almost anything...

Biological(
measurement(

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

Individual)i"

Treatment)

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

“Dear)Mr)Smith,)
)
Congratula8ons!)You)have)won)a)
prize!)We)are)delighted…)

Spam) Not)spam)

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

Input"

Output)

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

yi

xi

ŷi = f(xi)

Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)

Pr(yi = 1 | ŷi = 1)

PPV = Pr(yi = 1 | ŷi = 1)

=
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)

Pr(yi = 1 | ŷi = 1) =
Pr(ŷi = 1 | yi = 1)Pr(yi = 1)

Pr(ŷi = 1 | yi = 1)Pr(yi = 1) + Pr(ŷi = 1 | yi = 0)Pr(yi = 0)

=
Sens ⇥ Prevalence

Sens ⇥ Prevalence + (1 � Spec) ⇥ (1 � Prevalence)
y1 y2 yn

ŷ1 ŷ2 ŷn

{Xi, Yi}i=1...n

Xi 2 Rp, Yi 2 {0, 1}
Pr(Y = 1 | X)

Pr(Y = 0 | X)

1

“Duck”) “Tiger”)

Classification

Classification

I Task: given data

(xi , yi)i=1...n, xi ∈ Rp, y ∈ {0, 1},

learn a function f̂ : Rp → {0, 1}

I f̂ should be an accurate classifier in the sense that for a new pair
(X ′,Y ′), we would like Pr(f̂ (X ′) = Y ′) to be high

2 F E B R U A R Y 2 0 1 7 | V O L 5 4 2 | N A T U R E | 1 1 5

LETTER
doi:10.1038/nature21056

Dermatologist-level classification of skin cancer
with deep neural networks
Andre Esteva1*, Brett Kuprel1*, Roberto A. Novoa2,3, Justin Ko2, Susan M. Swetter2,4, Helen M. Blau5 & Sebastian Thrun6

Skin cancer, the most common human malignancy1–3, is primarily
diagnosed visually, beginning with an initial clinical screening
and followed potentially by dermoscopic analysis, a biopsy and
histopathological examination. Automated classification of skin
lesions using images is a challenging task owing to the fine-grained
variability in the appearance of skin lesions. Deep convolutional
neural networks (CNNs)4,5 show potential for general and highly
variable tasks across many fine-grained object categories6–11.
Here we demonstrate classification of skin lesions using a single
CNN, trained end-to-end from images directly, using only pixels
and disease labels as inputs. We train a CNN using a dataset of
129,450 clinical images—two orders of magnitude larger than
previous datasets12—consisting of 2,032 different diseases. We
test its performance against 21 board-certified dermatologists on
biopsy-proven clinical images with two critical binary classification
use cases: keratinocyte carcinomas versus benign seborrheic
keratoses; and malignant melanomas versus benign nevi. The first
case represents the identification of the most common cancers, the
second represents the identification of the deadliest skin cancer.
The CNN achieves performance on par with all tested experts
across both tasks, demonstrating an artificial intelligence capable
of classifying skin cancer with a level of competence comparable to
dermatologists. Outfitted with deep neural networks, mobile devices
can potentially extend the reach of dermatologists outside of the
clinic. It is projected that 6.3 billion smartphone subscriptions will
exist by the year 2021 (ref. 13) and can therefore potentially provide
low-cost universal access to vital diagnostic care.

There are 5.4 million new cases of skin cancer in the United States2
every year. One in five Americans will be diagnosed with a cutaneous
malignancy in their lifetime. Although melanomas represent fewer than
5% of all skin cancers in the United States, they account for approxi-
mately 75% of all skin-cancer-related deaths, and are responsible for
over 10,000 deaths annually in the United States alone. Early detection
is critical, as the estimated 5-year survival rate for melanoma drops
from over 99% if detected in its earliest stages to about 14% if detected
in its latest stages. We developed a computational method which may
allow medical practitioners and patients to proactively track skin
lesions and detect cancer earlier. By creating a novel disease taxonomy,
and a disease-partitioning algorithm that maps individual diseases into
training classes, we are able to build a deep learning system for auto-
mated dermatology.

Previous work in dermatological computer-aided classification12,14,15
has lacked the generalization capability of medical practitioners
owing to insufficient data and a focus on standardized tasks such as
 dermoscopy16–18 and histological image classification19–22. Dermoscopy
images are acquired via a specialized instrument and histological
images are acquired via invasive biopsy and microscopy; whereby
both modalities yield highly standardized images. Photographic

images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more challenging23,24. We overcome this challenge by using a data-
driven approach—1.41 million pre-training and training images
make classification robust to photographic variability. Many previous
techniques require extensive preprocessing, lesion segmentation and
extraction of domain-specific visual features before classification. By
contrast, our system requires no hand-crafted features; it is trained
end-to-end directly from image labels and raw pixels, with a single
network for both photographic and dermoscopic images. The existing
body of work uses small datasets of typically less than a thousand
images of skin lesions16,18,19, which, as a result, do not generalize well
to new images. We demonstrate generalizable classification with a new
 dermatologist-labelled dataset of 129,450 clinical images, including
3,374 dermoscopy images.

Deep learning algorithms, powered by advances in computation
and very large datasets25, have recently been shown to exceed human
 performance in visual tasks such as playing Atari games26, strategic
board games like Go27 and object recognition6. In this paper we
 outline the development of a CNN that matches the performance of
 dermatologists at three key diagnostic tasks: melanoma classification,
 melanoma classification using dermoscopy and carcinoma
 classification. We restrict the comparisons to image-based classification.

We utilize a GoogleNet Inception v3 CNN architecture9 that was pre-
trained on approximately 1.28 million images (1,000 object categories)
from the 2014 ImageNet Large Scale Visual Recognition Challenge6,
and train it on our dataset using transfer learning28. Figure 1 shows the
working system. The CNN is trained using 757 disease classes. Our
dataset is composed of dermatologist-labelled images organized in a
tree-structured taxonomy of 2,032 diseases, in which the individual
diseases form the leaf nodes. The images come from 18 different
 clinician-curated, open-access online repositories, as well as from
clinical data from Stanford University Medical Center. Figure 2a shows
a subset of the full taxonomy, which has been organized clinically and
visually by medical experts. We split our dataset into 127,463 training
and validation images and 1,942 biopsy-labelled test images.

To take advantage of fine-grained information contained within the
taxonomy structure, we develop an algorithm (Extended Data Table 1)
to partition diseases into fine-grained training classes (for example,
amelanotic melanoma and acrolentiginous melanoma). During
 inference, the CNN outputs a probability distribution over these fine
classes. To recover the probabilities for coarser-level classes of interest
(for example, melanoma) we sum the probabilities of their descendants
(see Methods and Extended Data Fig. 1 for more details).

We validate the effectiveness of the algorithm in two ways, using
nine-fold cross-validation. First, we validate the algorithm using a
three-class disease partition—the first-level nodes of the taxonomy,
which represent benign lesions, malignant lesions and non-neoplastic

1Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2Department of Dermatology, Stanford University, Stanford, California, USA. 3Department of Pathology,
Stanford University, Stanford, California, USA. 4Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA. 5Baxter Laboratory for Stem Cell Biology, Department
of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA. 6Department of Computer Science, Stanford University,
Stanford, California, USA.
*These authors contributed equally to this work.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

•  Classifier%trained%on%images%of%lesions%

•  Y%:%melanoma%or%not%(biopsy%as%gold%standard)%

•  X%:%image%data%

•  Tested%on%unseen%data%(with%Y’s%available)%

2 F E B R U A R Y 2 0 1 7 | V O L 5 4 2 | N A T U R E | 1 1 7

LETTER RESEARCH

by choosing a threshold probability t and defining the prediction ŷ for
each image as ŷ = P ≥ t. Varying t in the interval 0–1 generates a curve
of sensitivities and specificities that the CNN can achieve.

We compared the direct performance of the CNN and at least
21 board-certified dermatologists on epidermal and melanocytic

lesion classification (Fig. 3a). For each image the dermatologists
were asked whether to biopsy/treat the lesion or reassure the patient.
Each red point on the plots represents the sensitivity and specificity
of a single dermatologist. The CNN outperforms any dermatologist
whose sensitivity and specificity point falls below the blue curve of

a

b

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Melanoma: 130 images

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Melanoma: 225 images

Algorithm: AUC = 0.96

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Melanoma: 111 dermoscopy images

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Carcinoma: 707 images

Algorithm: AUC = 0.96

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Melanoma: 1,010 dermoscopy images

Algorithm: AUC = 0.94

0 1
Sensitivity

0

1

S
pe

ci
fic

ity

Carcinoma: 135 images

Algorithm: AUC = 0.96
Dermatologists (25)
Average dermatologist

Algorithm: AUC = 0.94
Dermatologists (22)
Average dermatologist

Algorithm: AUC = 0.91
Dermatologists (21)
Average dermatologist

Figure 3 | Skin cancer classification performance of the CNN and
dermatologists. a, The deep learning CNN outperforms the average of
the dermatologists at skin cancer classification using photographic and
dermoscopic images. Our CNN is tested against at least 21 dermatologists
at keratinocyte carcinoma and melanoma recognition. For each test,
previously unseen, biopsy-proven images of lesions are displayed, and
dermatologists are asked if they would: biopsy/treat the lesion or reassure
the patient. Sensitivity, the true positive rate, and specificity, the true
negative rate, measure performance. A dermatologist outputs a single
prediction per image and is thus represented by a single red point. The
green points are the average of the dermatologists for each task, with
error bars denoting one standard deviation (calculated from n = 25, 22
and 21 tested dermatologists for keratinocyte carcinoma, melanoma
and melanoma under dermoscopy, respectively). The CNN outputs a
malignancy probability P per image. We fix a threshold probability t

such that the prediction ŷ for any image is ŷ = P ≥ t, and the blue curve is
drawn by sweeping t in the interval 0–1. The AUC is the CNN’s measure
of performance, with a maximum value of 1. The CNN achieves superior
performance to a dermatologist if the sensitivity–specificity point of
the dermatologist lies below the blue curve, which most do. Epidermal
test: 65 keratinocyte carcinomas and 70 benign seborrheic keratoses.
Melanocytic test: 33 malignant melanomas and 97 benign nevi. A second
melanocytic test using dermoscopic images is displayed for comparison:
71 malignant and 40 benign. The slight performance decrease reflects
differences in the difficulty of the images tested rather than the diagnostic
accuracies of visual versus dermoscopic examination. b, The deep learning
CNN exhibits reliable cancer classification when tested on a larger dataset.
We tested the CNN on more images to demonstrate robust and reliable
cancer classification. The CNN’s curves are smoother owing to the larger
test set.

Squamous cell carcinomas

Basal cell carcinomas

Nevi

Melanomas

Seborrhoeic keratoses

Epidermal benign
Epidermal malignant
Melanocytic benign
Melanocytic malignant

Figure 4 | t-SNE visualization of the last hidden layer representations
in the CNN for four disease classes. Here we show the CNN’s internal
representation of four important disease classes by applying t-SNE,
a method for visualizing high-dimensional data, to the last hidden layer
representation in the CNN of the biopsy-proven photographic test sets

(932 images). Coloured point clouds represent the different disease
categories, showing how the algorithm clusters the diseases. Insets show
images corresponding to various points. Images reprinted with permission
from the Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/
software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

(Esteva/et/al.,/2017)/

Output sets can be very complicated...

Flickr8K Flickr30K MSCOCO 2014
Model B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 METEOR CIDEr
Nearest Neighbor — — — — — — — — 48.0 28.1 16.6 10.0 15.7 38.3
Mao et al. [38] 58 28 23 — 55 24 20 — — — — — — —
Google NIC [54] 63 41 27 — 66.3 42.3 27.7 18.3 66.6 46.1 32.9 24.6 — —
LRCN [8] — — — — 58.8 39.1 25.1 16.5 62.8 44.2 30.4 — — —
MS Research [12] — — — — — — — — — — — 21.1 20.7 —
Chen and Zitnick [5] — — — 14.1 — — — 12.6 — — — 19.0 20.4 —
Our model 57.9 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0 19.5 66.0

Table 2. Evaluation of full image predictions on 1,000 test images. B-n is BLEU score that uses up to n-grams. High is good in all columns.
For future comparisons, our METEOR/CIDEr Flickr8K scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7.

Figure 6. Example sentences generated by the multimodal RNN for test images. We provide many more examples on our project page.

4.2. Generated Descriptions: Fulframe evaluation
We now evaluate the ability of our RNN model to describe
images and regions. We first trained our Multimodal RNN
to generate sentences on full images with the goal of veri-
fying that the model is rich enough to support the mapping
from image data to sequences of words. For these full im-
age experiments we use the more powerful VGGNet image
features [47]. We report the BLEU [44], METEOR [7] and
CIDEr [53] scores computed with the coco-caption
code [4] 2. Each method evaluates a candidate sentence
by measuring how well it matches a set of five reference
sentences written by humans.

Qualitative. The model generates sensible descriptions of
images (see Figure 6), although we consider the last two
images failure cases. The first prediction “man in black
shirt is playing a guitar” does not appear in the training set.
However, there are 20 occurrences of “man in black shirt”
and 60 occurrences of “is paying guitar”, which the model
may have composed to describe the first image. In general,
we find that a relatively large portion of generated sentences
(60% with beam size 7) can be found in the training data.
This fraction decreases with lower beam size; For instance,
with beam size 1 this falls to 25%, but the performance also
deteriorates (e.g. from 0.66 to 0.61 CIDEr).

Multimodal RNN outperforms retrieval baseline. Our
first comparison is to a nearest neighbor retrieval baseline.

2https://github.com/tylin/coco-caption

Here, we annotate each test image with a sentence of the
most similar training set image as determined by L2 norm
over VGGNet [47] fc7 features. Table 2 shows that the Mul-
timodal RNN confidently outperforms this retrieval method.
Hence, even with 113,000 train set images in MSCOCO
the retrieval approach is inadequate. Additionally, the RNN
takes only a fraction of a second to evaluate per image.

Comparison to other work. Several related models have
been proposed in Arxiv preprints since the original submis-
sion of this work. We also include these in Table 2 for com-
parison. Most similar to our model is Vinyals et al. [54].
Unlike this work where the image information is commu-
nicated through a bias term on the first step, they incorpo-
rate it as a first word, they use a more powerful but more
complex sequence learner (LSTM [20]), a different CNN
(GoogLeNet [51]), and report results of a model ensemble.
Donahue et al. [8] use a 2-layer factored LSTM (similar
in structure to the RNN in Mao et al. [38]). Both models
appear to work worse than ours, but this is likely in large
part due to their use of the less powerful AlexNet [28] fea-
tures. Compared to these approaches, our model prioritizes
simplicity and speed at a slight cost in performance.

4.3. Generated Descriptions: Region evaluation
We now train the Multimodal RNN on the correspondences
between image regions and snippets of text, as inferred by
the alignment model. To support the evaluation, we used
Amazon Mechanical Turk (AMT) to collect a new dataset

(Karpathy & Li, CVPR, 2015)

A probability model for classification

I Treat X ,Y as RVs and classify via

P(Y = 1|X) =
p(X |Y=1)P(Y=1)

p(X |Y=1)P(Y=1) + p(X |Y=0)P(Y=0)

I Classifier is
f̂ (X) = argmax

k∈{0,1}
P̂(Y = k |X),

with P̂ being analogue of P estimated from data

I In practice, need a model for X , e.g. X |Y=k ∼ N(µk ,Σk)

o"
o"
o"

o"
o"

o" o"

o"o"
o"o"
o"o" o"
o"

o"

x"
x"
x"

x"
x"

x"x"
x"

x"

Variable(#1(

Va
ria

bl
e(
#2
(Y=1$

Y=0$

Gaussian class conditionals

I The boundary between the classes is

P̂(Y = 1 | X) = P̂(Y = 0 | X) = 1/2,

known as the decision boundary

I For X | Y=k ∼ N(µk ,Σk) this is linear for Σ0 = Σ1 and quadratic
otherwise

Logistic regression
I Assume Σ1 = Σ0 (linear boundary)
I A different view of the model comes from writing the class

probability as

P(Y = 1 | X = x) =
p(X |Y=1)P(Y=1)

p(X |Y=1)P(Y=1)︸ ︷︷ ︸
=p1

+ p(X |Y=0)P(Y=0)︸ ︷︷ ︸
=p0

=
1

1 + p0
p1

=
1

1 + exp(−βTx + c)

with β, c being unknown parameters

I This approach is called logistic regression, since it is a linear
regression pushed through a logistic function

I The approach – of pushing a high-dimensional linear combination
through a nonlinearity – is common in ML and is e.g. what happens
in a single layer of a neural network

Logistic regression
I Assume Σ1 = Σ0 (linear boundary)
I A different view of the model comes from writing the class

probability as

P(Y = 1 | X = x) =
p(X |Y=1)P(Y=1)

p(X |Y=1)P(Y=1)︸ ︷︷ ︸
=p1

+ p(X |Y=0)P(Y=0)︸ ︷︷ ︸
=p0

=
1

1 + p0
p1

=
1

1 + exp(−βTx + c)

with β, c being unknown parameters

I This approach is called logistic regression, since it is a linear
regression pushed through a logistic function

I The approach – of pushing a high-dimensional linear combination
through a nonlinearity – is common in ML and is e.g. what happens
in a single layer of a neural network

Neural network with hidden layers

be seen as a kind of hilly landscape in the high-dimensional space of
weight values. The negative gradient vector indicates the direction
of steepest descent in this landscape, taking it closer to a minimum,
where the output error is low on average.

In practice, most practitioners use a procedure called stochastic
gradient descent (SGD). This consists of showing the input vector
for a few examples, computing the outputs and the errors, computing
the average gradient for those examples, and adjusting the weights
accordingly. The process is repeated for many small sets of examples
from the training set until the average of the objective function stops
decreasing. It is called stochastic because each small set of examples
gives a noisy estimate of the average gradient over all examples. This
simple procedure usually finds a good set of weights surprisingly
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured
on a different set of examples called a test set. This serves to test the
generalization ability of the machine — its ability to produce sensible
answers on new inputs that it has never seen during training.

Many of the current practical applications of machine learning use
linear classifiers on top of hand-engineered features. A two-class linear
classifier computes a weighted sum of the feature vector components.
If the weighted sum is above a threshold, the input is classified as
belonging to a particular category.

Since the 1960s we have known that linear classifiers can only carve
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant
variations of the input, such as variations in position, orientation or
illumination of an object, or variations in the pitch or accent of speech,
while being very sensitive to particular minute variations (for example,
the difference between a white wolf and a breed of wolf-like white
dog called a Samoyed). At the pixel level, images of two Samoyeds in
different poses and in different environments may be very different
from each other, whereas two images of a Samoyed and a wolf in the
same position and on similar backgrounds may be very similar to each
other. A linear classifier, or any other ‘shallow’ classifier operating on

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input
space to make the classes of data (examples of which are on the red and
blue lines) linearly separable. Note how a regular grid (shown on the left)
in input space is also transformed (shown in the middle panel) by hidden
units. This is an illustrative example with only two input units, two hidden
units and one output unit, but the networks used for object recognition
or natural language processing contain tens or hundreds of thousands of
units. Reproduced with permission from C. Olah (http://colah.github.io/).
b, The chain rule of derivatives tells us how two small effects (that of a small
change of x on y, and that of y on z) are composed. A small change Δx in
x gets transformed first into a small change Δy in y by getting multiplied
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change
Δy creates a change Δz in z. Substituting one equation into the other
gives the chain rule of derivatives — how Δx gets turned into Δz through
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x,
y and z are vectors (and the derivatives are Jacobian matrices). c, The
equations used for computing the forward pass in a neural net with two
hidden layers and one output layer, each constituting a module through

which one can backpropagate gradients. At each layer, we first compute
the total input z to each unit, which is a weighted sum of the outputs of
the units in the layer below. Then a non-linear function f(.) is applied to
z to get the output of the unit. For simplicity, we have omitted bias terms.
The non-linear functions used in neural networks include the rectified
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as
well as the more conventional sigmoids, such as the hyberbolic tangent,
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic,
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward
pass. At each hidden layer we compute the error derivative with respect to
the output of each unit, which is a weighted sum of the error derivatives
with respect to the total inputs to the units in the layer above. We then
convert the error derivative with respect to the output into the error
derivative with respect to the input by multiplying it by the gradient of f(z).
At the output layer, the error derivative with respect to the output of a unit
is computed by differentiating the cost function. This gives yl − tl if the cost
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk
is known, the error-derivative for the weight wjk on the connection from
unit j in the layer below is just yj ∂E/∂zk.

Input
(2)

Output
(1 sigmoid)

Hidden
(2 sigmoid)

a b

dc

y
y

x
y xx

x=y
z

x
x

x
y

x
x

z y
zz yx

x=Δ Δ

Δ Δ

Δ Δz y
z

x
y xx

x
x
x=

x
z

y
z

xx
y

x
x

x
x

x
x=

Compare outputs with correct
answer to get error derivatives

j

k

E
yl

=yl tl

E
zl

= E
yl

yl

zl

l

E
yj

= wjk
E
zk

E
zj

= E
yj

yj

zj

E
yk

= wkl
E
zl

E
zk

= E
yk

yk

zk

wkl

wjk

wij

i

j

k

yl = f (zl)

zl = wkl yk
l

yj = f (zj)

zj = wij xi

yk = f (zk)

zk = wjk yj

Output units

Input units

Hidden units H2

Hidden units H1

wkl

wjk

wij

k H H2

k H H2

I H out

j H H1

i H Input

i

2 8 M A Y 2 0 1 5 | V O L 5 2 1 | N A T U R E | 4 3 7

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

(LeCun et al., Nature, 2015)

Generative vs. discriminative learning

I Consider the foregoing classification model. The parameters need to
be set from observed data to obtain a useable classifier. How should
the parameters be set?

I The discussion suggests two broad strategies: (i) treat as a density
estimation problem, i.e. try to model the assumed data-generating
process directly or (ii) optimize the logistic function to maximize
prediction accuracy

I Two approaches are called generative and discriminative in the ML
literature, reflecting the fact that modelling the (assumed)
data-generating process and directly optimizing predictive ability are
in general different goals

Regression

Regression

I Task: given data

(xi , yi)i=1...n, xi ∈ Rp, y ∈ R,

learn a function f̂ : Rp → R

I For prediction, f̂ should be accurate in the sense that for a new pair
(x ′, y ′), we would like f̂ (x ′) ≈ y ′

Linear regression

I Consider the linear model f (x) = xTβ, with p-dimensional
parameter β

I The parameters have to be fitted using the available data

I Let X = [x1 . . . xn]T be a n × p data matrix and Y = [y1 . . . yn]T an
n-vector of corresponding outputs, then we want Xβ ≈ Y

Linear regression

I One approach is to consider the optimization

β̂ = argmin
β
‖Y − Xβ‖22

I This is a least squares problem and has solution

β̂ = (XTX)−1XTY

I For probability model Y | X=x , β ∼ N(xTβ, σ2) the maximum
likelihood solution is the same

Digression: expected loss (more later)

I A statistical decision is an action taken on the basis of data. Want
to evaluate the quality of a candidate f̂

I The expected loss or risk associated with f̂ is

R(f̂) = E[L(Y , f̂ (X))]q(X ,Y)

where q is the joint distribution over (X ,Y) (this is unknown)

I Notice that this is not wrt the parameter, but wrt the prediction

Overfitting and higher dimensional models

I Consider a transformation of X via some Φ : Rp → Rd and write
Φ(X) = [Φ(x1) . . .Φ(xn)]T for the resulting n × d data matrix

I Model is
ŷi=Φ(xi)

Tβ̃, β̃ ∈ Rd ,

solution as before, matrix Φ(X) replacing X

I Consider the transformed model for one dimensional x ’s and with Φk

as the kth order polynomial

I Fix number of data n and as before let Dn = (xi , yi)i=1...n

Overfitting and higher dimensional models

I Consider expected loss

R = E[(Y − Ŷ (X))2]q(X ,Y)

= E[(Y − Φk(X)Tβ̂(Dn))2]q(X ,Y)

I What happens to R as k gets larger, keeping n fixed?

Overfitting and higher dimensional models

I This phenomenon is known as overfitting

I Note that the sequence of models indexed by k are nested in the
sense that the simpler models are always special cases

I That is, larger k means a strictly richer model class

I The issue arises due to the fact that as k gets larger the statistical
variance increases and so does the risk

I Issue is central to real world ML – how many variables to include?
How complex a model? More variables means a strictly richer model
but at some point risk will increase (depends on the precise
estimator)

Regularization for higher dimensional models

I Return to the linear model, recall the optimization

β̂ = argmin
β
‖Y − Xβ‖22

I Obviously with p > n, this does not work and for p close to n will
have poor behaviour (most modern applications have p � n)

I Consider instead the constrained optimization

β̂ = argmin
β
‖Y − Xβ‖22 + λ‖β‖22

I This can be viewed as “penalizing” extreme entries in β and has
solution

β̂ = (XTX + λIp)−1XTY

I Known as ridge regression, simple but very effective in practice,
widely used to build predictive models in high dimensions

Regularization for higher dimensional models

I Return to the linear model, recall the optimization

β̂ = argmin
β
‖Y − Xβ‖22

I Obviously with p > n, this does not work and for p close to n will
have poor behaviour (most modern applications have p � n)

I Consider instead the constrained optimization

β̂ = argmin
β
‖Y − Xβ‖22 + λ‖β‖22

I This can be viewed as “penalizing” extreme entries in β and has
solution

β̂ = (XTX + λIp)−1XTY

I Known as ridge regression, simple but very effective in practice,
widely used to build predictive models in high dimensions

Sparse high dimensional models

I Return (again!) to the linear model, recall the optimization

β̂ = argmin
β
‖Y − Xβ‖22

I For large p, an interesting question is whether some subset
A ⊂ {1, . . . , p} of the variables might be sufficient

I If so, the sparsity would itself be a kind of regularization (lower
effective model dimension) and it may be interesting to understand
which variables are selected

Sparse high dimensional models: a direct approach

I A direct approach would be to explore subsets up to some maximum
size c , i.e. to consider the constrained optimization

β̂ = argmin
β
‖Y − Xβ‖22, s.t.‖β‖0 ≤ c

I This would indeed regularize the problem and improve prediction
performance

I But the problem is that the optimization is non-convex and the
discrete model space is huge

Sparse high dimensional models: a convex approach

I Counting non-zeros is not a tractable approach

I Consider instead

β̂ = argmin
β
‖Y − Xβ‖22 + λ‖β‖1

I This is convex and can be efficiently optimized for large p but
induces sparsity in β

I So-called `1-penalized methods are widely used for many kinds of
models in supervised learning and beyond

Digression: estimation in high-dimensions

I Unconstrained estimation in high dimensions does not scale!

I Nice example from classical density estimation

I Silverman (1986) computes n needed to achieve specified relative
mean squared error wrt true density, for samples from a
p-dimensional Gaussian

I For equivalent of n = 4 in one dimension, one needs n = 842, 000 in
p = 10 dimensions!

Why is learning in high dimensions possible?

I Even “big” data is essentially never enough to allow simple
estimation of high-dimensional densities, coefficients etc.

I Historically, this set things back, because of a belief that nothing
could be done for large p, so instead better to try to pre-select
variables, focus the problem etc.

Why is learning in high dimensions possible?

I High-dimensional estimation now better understood, a main message
is that properties of (regularized) estimators often better than
expected, some classical results in a way too general/pessimistic

I In parallel, empirical evidence is that in many settings
“high-dimensional-plus-regularization” can outperform
“low-dimensional-and-unconstrained” in practice

I Essentially due to the fact that real data have (usually hidden)
low-dimensional structure and it is possible to design regularization
schemes which can themselves adapt efficiently to the data

Evaluating predictors

“With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk”

I Today, models with millions of free parameters are routinely used

I How should one evaluate a fitted predictor in practice?

I For regularized approaches, how should one guide the regularization?

I Often the regularization parameter λ can be thought of as
controlling model complexity (e.g. level of sparsity)

I If the model is too simple, it may not be able to mimic the unknown
underlying process but if too complex it will overfit

I First, consider what we would like to do but cannot

Expected loss

I The expected loss or risk associated with f̂ is

R(f̂) = E[L(Y , f̂ (X))]q(X ,Y)

where q is the joint distribution over (X ,Y) (this is unknown)

I Making initial data Dn explicit write

R(f̂) = E[L(Y , f (X ; θ̂(Dn)))]q(X ,Y)

where θ̂(Dn) is the estimated model parameter

I This is arguably the right measure of how effective f̂ is – notice how
this addresses the “fitting an elephant” concern

I Unfortunately we don’t have access to R

Expected loss

I The expected loss or risk associated with f̂ is

R(f̂) = E[L(Y , f̂ (X))]q(X ,Y)

where q is the joint distribution over (X ,Y) (this is unknown)

I Making initial data Dn explicit write

R(f̂) = E[L(Y , f (X ; θ̂(Dn)))]q(X ,Y)

where θ̂(Dn) is the estimated model parameter

I This is arguably the right measure of how effective f̂ is – notice how
this addresses the “fitting an elephant” concern

I Unfortunately we don’t have access to R

Expected loss

I The expected loss or risk associated with f̂ is

R(f̂) = E[L(Y , f̂ (X))]q(X ,Y)

where q is the joint distribution over (X ,Y) (this is unknown)

I Making initial data Dn explicit write

R(f̂) = E[L(Y , f (X ; θ̂(Dn)))]q(X ,Y)

where θ̂(Dn) is the estimated model parameter

I This is arguably the right measure of how effective f̂ is – notice how
this addresses the “fitting an elephant” concern

I Unfortunately we don’t have access to R

Empirical analogue: sample risk

I We don’t have access to the risk

R(f̂) = E[L(Y , f̂ (X))]q(X ,Y),

but we do have a sample Dn from q. Why not use the sample
analogue? I.e.:

R̂(f̂) =
1

n

∑
i

L(yi , f̂ (xi))

I But making initial data Dn explicit

R̂(f̂) =
1

n

∑
i

L(yi , f (xi ; θ̂(Dn)))

makes the problem clear – we are using the same data to build and
evaluate the model!

I This is another way of looking at over-fitting – the model can
choose to fit the “noise” rather than the signal and this will show up
as “good” performance

Empirical analogue: train and test

I This suggests a simple fix. Randomly split the data Dn into two
halves Dtrain and Dtest. Each is now a random sample (of size n/2)
from q. Let the corresponding indices be Itrain and Itest (i.e. these
partition {1 . . . n})

I Now consider the quantity

R̂(f̂) = (n/2)−1
∑

i∈Itest

L(yi , f (xi ; θ̂(Dtrain)))

I Here the data used to fit (“train”) the model are disjoint from those
used to test it, hence any over-fitting should show up in R̂

I Train/test is a core paradigm in ML. Key idea is to note that f is fit
on (finite) Dn, but the quantity R we’d really like to minimize scores
performance on unseen data – fitting is not predicting

Empirical analogue: train and test

I This suggests a simple fix. Randomly split the data Dn into two
halves Dtrain and Dtest. Each is now a random sample (of size n/2)
from q. Let the corresponding indices be Itrain and Itest (i.e. these
partition {1 . . . n})

I Now consider the quantity

R̂(f̂) = (n/2)−1
∑

i∈Itest

L(yi , f (xi ; θ̂(Dtrain)))

I Here the data used to fit (“train”) the model are disjoint from those
used to test it, hence any over-fitting should show up in R̂

I Train/test is a core paradigm in ML. Key idea is to note that f is fit
on (finite) Dn, but the quantity R we’d really like to minimize scores
performance on unseen data – fitting is not predicting

Empirical analogue: cross validation

I Splitting the data into train and test is fine but note two things
(1) Optimal regularization depends on n – more data means one can
“afford” a richer model
(2) The dataset size under splitting is in fact halved

I Hence this may lead to a too simple model

I Alternative is to randomly split data into K same sized blocks,
training on K − 1 and testing on the left out one

I Iterate so that all data are used to test (and train)

I Then, the training sample is of size K−1
K n, i.e. closer to the n of

interest

I This is called K -fold cross-validation and is the most widely-used
empirical testing scheme in ML

Empirical analogue: cross validation

I Splitting the data into train and test is fine but note two things
(1) Optimal regularization depends on n – more data means one can
“afford” a richer model
(2) The dataset size under splitting is in fact halved

I Hence this may lead to a too simple model

I Alternative is to randomly split data into K same sized blocks,
training on K − 1 and testing on the left out one

I Iterate so that all data are used to test (and train)

I Then, the training sample is of size K−1
K n, i.e. closer to the n of

interest

I This is called K -fold cross-validation and is the most widely-used
empirical testing scheme in ML

K-fold cross validation

Iterate&over&folds&

K&“folds”&

Learning curves

I More generally, the behaviour of training error and true risk R with
n and model complexity d is central to ML

I Learning curves refer to plots of training and test error vs. n

I Asymptotes – wrt complexity and n – are conceptually important

I ML methods are geared towards negotiating the interplay between
regularization and model complexity in light of available data and
against behavior wrt the loss function.

Lecture I: summary

I Machine learning: a highly general approach to solving potentially
complex problems

I Core ideas are simple, but a very specific mindset

I Regularization is essential for high-dimensional problems, has
statistical and not just numerical effects

I Decision theory and empirical risk are critical in keeping track of
whether models are effective or not and to guard against over- or
under-fitting

