Machine Learning in Three Lectures

Sach Mukherjee

DZNE, Bonn

What is machine learning?

» Machine learning (ML) is a subfield located at the intersection of
computer science and computational statistics focused on making
decisions based on data

> Notion of “decisions” or “actions” is very broad and includes many
tasks currently done by humans hence close connection between ML
and Artificial Intelligence (Al)

What is machine learning?

» ML is both a technology/tool and a conceptual approach. Now
plays key — and often critical — role in many fields and sectors

» ML method = (model, estimator, computation), evaluated in
context of specific goal. Can mix-and-match, may be trade-offs
between three aspects

» Common thread is philosophy of learning from data and specific
notion of empirical testing wrt problem of interest

» Note that ML # Al # “deep learning”

What is machine learning?

» Although ML makes much use of probability, optimization, linear

algebra etc. its focus is very distinct and lies in systematically
building on three key ideas:

1. The generality of mappings: many practical problems can be viewed

as requiring a mapping from one set to another
2. Functions need not be specified upfront, but can be estimated
("learned") from data starting from essentially generic families.
3. Generic regularization approaches can allow effective learning of
flexible models. Statistical decision theory is critical

» Often the mathematics needed is surprisingly simple — ML is as
much as a way of thinking as anything else

» Easiest way to get a feeling is to look at examples

Plan for the lectures

» Aim of the lectures is to give a self-contained introduction to some
key ideas in ML

» Trade-off between presenting “unified” view and sticking to standard
names for tasks/models, will lean towards the latter, but show
connections throughout

» Sequence: first describe several concrete tasks, to fix ideas and give
a feeling for the field, and later take a step back to a more general
view

» Today: supervised learning

Supervised learning

Some notation

» Generic n x p data matrix X = [x; ... x,]T, understood as n
observations in p dimensions

» Where there is an “input” and “output”, usually x, y respectively

> f(-;0) refers to family of functions or distributions, parameterized by
(possibly high-dimensional) 6

» Refer to 0 as parameter, f as model

Some notation

» “Hat” indicates estimate f[om gata, e.g. for unknown parameter 6,
corresponding estimate is 6§ = 6(X)

» O(X) is a function of data, should be thought of as a random
variable (RV)

» Variance of estimator means Var(d(X)) (depends on sample size n)

> Likelihood is the joint distribution of the data under some model
p(X | 0) usually treated as a function of the parameter 6

» Warning: | will overload X, Y, meaning should be clear from context

Supervised learning

» Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

Supervised learning

v

Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

Problem: want to predict some y €) from available inputs x € X

Focus on
x € RP and
y € {0,1} (classification) or
y € R (regression)
Idea is to “learn” a function f : X — Y using dataset
D,=(x;, yi)i=1...n (i.e. with both x's and y's available in the data)

f should be “good” in a certain sense that we will discuss later

Supervised learning

» Supervised learning is the base problem in machine learning, intuitive
and extraordinarily useful

> Problem: want to predict some y €) from available inputs x € X

» Focus on
x € RP and
y € {0,1} (classification) or
y € R (regression)
» ldea is to “learn” a function f : X — Y using dataset
D,=(x;, yi)i=1...n (i.e. with both x's and y's available in the data)

> f should be “good” in a certain sense that we will discuss later

> Called “supervised” because both x, y available at outset, hence like
learning with a teacher

» Framework extremely general, x, y could be almost anything...

o . .
Individual i I—) Biological X,
measurement

\—»Yi

Treatment

“Dear Mr Smith,
Input X

i .
Congratulations! You have won a X'L
prize! We are delighted...

Output Y; “Duck” “Tiger” /\

Spam Not spam Yz

Classification

Classification

» Task: given data
(Xis¥i)i=1..n» xi € RP, y € {0,1},

learn a function f : RP — {0,1}

» f should be an accurate classifier in the sense that for a new pair

~

(X', Y"), we would like Pr(f(X") = Y’) to be high

doi:10.1038/nature21056

Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'#, Brett Kuprel'*, Roberto A. Novoa®?, Justin Ko, Susan M. Swetter®*, Helen M. Blau® & Sebastian Thrun®

images (for example, smartphone images) exhibit variability in factors
such as zoom, angle and lighting, making classification substantially
more chal]enyng‘ 2 We e overcome thm challenée by usmi, a data—

Skin cancer, the most common human malignancy’~?, is primarily

diagnosed visually, beginning with an initial clinical screening

and followed potenually by dermoscoplc analyms, a blopsy and
i

PO SN,

Liotooaat

Melanoma: 111 dermoscopy images

a Carcinoma: 135 images Melanoma: 130 images
§ . 1

Specificity
Specificity
Specificity

— Algorithm: AUG = 0.96 — Algorithm: AUC = 0.94 — Algorithm: AUC = 0.91
© Dermatologists (25) © Dermatologists (22) o Dermatologists (21)
Average dermatologist # Average dermatologist ® Average dermatologist |
0
0 1 1 0 o 1
Sensitivity

Sensitivity Sensitivity

Output sets can be very complicated...

man in black shirt is playing guitar. construction worker in orange safety
vest is working on road.

(Karpathy & Li, CVPR, 2015)

A probability model for classification

» Treat X, Y as RVs and classify via

p(X|Y=1)P(Y=1)
p(X[Y=1)P(Y=1) + p(X|Y=0)P(Y=0)

P(Y =1|X) =

» Classifier is

f(X) = argmax P(Y = k|X),
ke{0,1}

with P being analogue of P estimated from data

» In practice, need a model for X, e.g. X|Y=k ~ N(ux, k)

=0

C# 9|qelEA

Variable #1

Gaussian class conditionals

» The boundary between the classes is
P(Y=1|X)=P(Y=0|X)=1/2,

known as the decision boundary

» For X | Y=k ~ N(u, Xx) this is linear for Xy = ¥; and quadratic
otherwise

Logistic regression
> Assume X; = ¥ (linear boundary)
» A different view of the model comes from writing the class

probability as
p(XIY=1)P(Y=1)
P(Y=1|X=x)=
(| X =X) = SXIV=DP(Y=1) + p(X|Y =0)P(Y=0)
=p1 =ho
!
1+ £

T 1+ exp(—08Tx + ¢)

with 3, ¢ being unknown parameters

Logistic regression
> Assume X; = X (linear boundary)
» A different view of the model comes from writing the class
probability as
X|Y=1)P(Y=1
p(X|Y=1)P(Y=1)+ p(X|Y=0)P(Y=0)

=p1 =Po

T 1+ exp(—08Tx + ¢)

with 3, ¢ being unknown parameters

» This approach is called logistic regression, since it is a linear
regression pushed through a logistic function

» The approach — of pushing a high-dimensional linear combination
through a nonlinearity — is common in ML and is e.g. what happens
in a single layer of a neural network

Neural network with hidden layers

Output units g} O
Wy

d

Hidden units H2
Hidden units H1 ()

Input units

(LeCun et al., Nature, 2015)

Generative vs. discriminative learning

» Consider the foregoing classification model. The parameters need to
be set from observed data to obtain a useable classifier. How should
the parameters be set?

» The discussion suggests two broad strategies: (i) treat as a density
estimation problem, i.e. try to model the assumed data-generating
process directly or (ii) optimize the logistic function to maximize
prediction accuracy

» Two approaches are called generative and discriminative in the ML
literature, reflecting the fact that modelling the (assumed)
data-generating process and directly optimizing predictive ability are
in general different goals

Regression

Regression

» Task: given data
(Xivyi)izl...na Xj € Rpa VAS Ra

learn a function f : RP — R

> For prediction, f should be accurate in the sense that for a new pair
(x',y"), we would like f(x') =y’

Linear regression

» Consider the linear model f(x) = xT3, with p-dimensional
parameter 3

» The parameters have to be fitted using the available data

» Let X =[x;...x,]T be anx pdata matrixand Y = [y;...y,]* an
n-vector of corresponding outputs, then we want X3 ~ Y

Linear regression

» One approach is to consider the optimization

B = argmin || Y — X583
B

» This is a least squares problem and has solution

B=(XTX)"XTy

» For probability model Y | X=x, 3 ~ N(xT3,0?) the maximum
likelihood solution is the same

Digression: expected loss (more later)

» A statistical decision is an action taken on the basis of data. Want
to evaluate the quality of a candidate f

» The expected loss or risk associated with f is
R(F) = E[L(Y . F(X))]q0x.v)

where g is the joint distribution over (X, Y) (this is unknown)

» Notice that this is not wrt the parameter, but wrt the prediction

Overfitting and higher dimensional models

» Consider a transformation of X via some ® : R? — R9 and write
D(X) = [P(x1) ... D(x,)]T for the resulting n x d data matrix

» Model is o
9i=0(x)" B, B eR?,

solution as before, matrix ®(X) replacing X

» Consider the transformed model for one dimensional x's and with &
as the k*® order polynomial

» Fix number of data n and as before let D, = (X, ¥i)i=1..n

Overfitting and higher dimensional models

» Consider expected loss

R=E[(Y — Y(X))lax.v)
=E[(Y — ®(X)"B(Dn))?lq(x.v)

» What happens to R as k gets larger, keeping n fixed?

Overfitting and higher dimensional models

> This phenomenon is known as overfitting

> Note that the sequence of models indexed by k are nested in the
sense that the simpler models are always special cases

> That is, larger k means a strictly richer model class

» The issue arises due to the fact that as k gets larger the statistical
variance increases and so does the risk

> Issue is central to real world ML — how many variables to include?
How complex a model? More variables means a strictly richer model
but at some point risk will increase (depends on the precise
estimator)

Regularization for higher dimensional models

» Return to the linear model, recall the optimization

B = argmin ||Y — X533
B

» Obviously with p > n, this does not work and for p close to n will
have poor behaviour (most modern applications have p > n)

Regularization for higher dimensional models

» Return to the linear model, recall the optimization

B = argmin ||Y — X533
B

» Obviously with p > n, this does not work and for p close to n will
have poor behaviour (most modern applications have p > n)

» Consider instead the constrained optimization

5= argmin 1Y — XB|3 + A18I3

» This can be viewed as “penalizing” extreme entries in 8 and has

solution A
B=XTX+ M) IXTY

» Known as ridge regression, simple but very effective in practice,
widely used to build predictive models in high dimensions

Sparse high dimensional models

» Return (again!) to the linear model, recall the optimization

3 =argmin||Y — XB||§
B

» For large p, an interesting question is whether some subset
AcC{1,...,p} of the variables might be sufficient

» If so, the sparsity would itself be a kind of regularization (lower
effective model dimension) and it may be interesting to understand
which variables are selected

Sparse high dimensional models: a direct approach

» A direct approach would be to explore subsets up to some maximum
size c, i.e. to consider the constrained optimization

B = argg’nin |Y = XB|3, s.t.||Bllo < ¢

» This would indeed regularize the problem and improve prediction
performance

» But the problem is that the optimization is non-convex and the
discrete model space is huge

Sparse high dimensional models: a convex approach

» Counting non-zeros is not a tractable approach
» Consider instead

B= argmin 1Y = XBI5 + Al Bl

» This is convex and can be efficiently optimized for large p but
induces sparsity in 8

» So-called ¢;-penalized methods are widely used for many kinds of
models in supervised learning and beyond

Digression: estimation in high-dimensions

» Unconstrained estimation in high dimensions does not scale!
» Nice example from classical density estimation

» Silverman (1986) computes n needed to achieve specified relative
mean squared error wrt true density, for samples from a
p-dimensional Gaussian

» For equivalent of n = 4 in one dimension, one needs n = 842,000 in
p = 10 dimensions!

Why is learning in high dimensions possible?

» Even “big" data is essentially never enough to allow simple
estimation of high-dimensional densities, coefficients etc.

» Historically, this set things back, because of a belief that nothing
could be done for large p, so instead better to try to pre-select
variables, focus the problem etc.

Why is learning in high dimensions possible?

» High-dimensional estimation now better understood, a main message
is that properties of (regularized) estimators often better than
expected, some classical results in a way too general/pessimistic

» In parallel, empirical evidence is that in many settings
"high-dimensional-plus-regularization” can outperform
“low-dimensional-and-unconstrained” in practice

> Essentially due to the fact that real data have (usually hidden)
low-dimensional structure and it is possible to design regularization
schemes which can themselves adapt efficiently to the data

Evaluating predictors

“With four parameters | can fit an elephant, and with five |
can make him wiggle his trunk”

» Today, models with millions of free parameters are routinely used

» How should one evaluate a fitted predictor in practice?
> For regularized approaches, how should one guide the regularization?

» Often the regularization parameter A\ can be thought of as
controlling model complexity (e.g. level of sparsity)

> If the model is too simple, it may not be able to mimic the unknown
underlying process but if too complex it will overfit

» First, consider what we would /ike to do but cannot

Expected loss

» The expected loss or risk associated with f is
R(F) = E[L(Y, F(X))qrx,v)

where g is the joint distribution over (X, Y) (this is unknown)

Expected loss

» The expected loss or risk associated with f is
R(F) = E[L(Y, FX)Dq0x.v)
where g is the joint distribution over (X, Y) (this is unknown)
» Making initial data D, explicit write
R(f) = E[L(Y, F(X; 6(Dn))ax.v)

where A(D,) is the estimated model parameter

Expected loss

v

The expected loss or risk associated with fis
R(F) = E[L(Y, FX)Dq0x.v)
where g is the joint distribution over (X, Y) (this is unknown)
Making initial data D,, explicit write
R(f) = E[L(Y, F(X; 6(Dn))ax.v)
where A(D,) is the estimated model parameter

This is arguably the right measure of how effective f is — notice how
this addresses the “fitting an elephant” concern

Unfortunately we don't have access to R

Empirical analogue: sample risk

» We don’t have access to the risk
R(F) = E[L(Y, F(X)qx.v)»

but we do have a sample D, from g. Why not use the sample

analogue? l.e.:
A A 1 A
R(F) == L(yi, f(x)

n =
i

» But making initial data D, explicit
U 1 A
R(F) == Ly f(x:0(Dy)))

makes the problem clear — we are using the same data to build and
evaluate the model!

» This is another way of looking at over-fitting — the model can
choose to fit the “noise” rather than the signal and this will show up
as “good” performance

Empirical analogue: train and test

» This suggests a simple fix. Randomly split the data D, into two
halves Diyain and Diess. Each is now a random sample (of size n/2)
from q. Let the corresponding indices be Zyqin and Ziess (i.€. these
partition {1...n})

» Now consider the quantity

R(F)=(n/2)™" Y L(yi, f(xi: 0(Dixain)))

1€Ltest

> Here the data used to fit (“train”) the model are disjoint from those
used to test it, hence any over-fitting should show up in R

Empirical analogue: train and test

» This suggests a simple fix. Randomly split the data D, into two
halves Diyain and Diess. Each is now a random sample (of size n/2)
from q. Let the corresponding indices be Zyqin and Ziess (i.€. these
partition {1...n})

» Now consider the quantity

R(F)=(n/2)7" Y L(yi, F(xi; O(Dirain)))

1€Ltest

> Here the data used to fit (“train”) the model are disjoint from those
used to test it, hence any over-fitting should show up in R

» Train/test is a core paradigm in ML. Key idea is to note that f is fit
on (finite) D,, but the quantity R we'd really like to minimize scores
performance on unseen data — fitting is not predicting

Empirical analogue: cross validation

» Splitting the data into train and test is fine but note two things
(1) Optimal regularization depends on n — more data means one can
“afford” a richer model
(2) The dataset size under splitting is in fact halved

» Hence this may lead to a too simple model

Empirical analogue: cross validation

» Splitting the data into train and test is fine but note two things
(1) Optimal regularization depends on n — more data means one can
“afford” a richer model
(2) The dataset size under splitting is in fact halved

» Hence this may lead to a too simple model

> Alternative is to randomly split data into K same sized blocks,
training on K — 1 and testing on the left out one

> lterate so that all data are used to test (and train)

» Then, the training sample is of size %n, i.e. closer to the n of
interest

» This is called K-fold cross-validation and is the most widely-used
empirical testing scheme in ML

K-fold cross validation

&
<

Iterate over folds

S
>

8§ ____§ ¢ B ;N |
K “folds”

Learning curves

» More generally, the behaviour of training error and true risk R with
n and model complexity d is central to ML

» Learning curves refer to plots of training and test error vs. n
» Asymptotes — wrt complexity and n — are conceptually important

» ML methods are geared towards negotiating the interplay between
regularization and model complexity in light of available data and
against behavior wrt the loss function.

Lecture |: summary

» Machine learning: a highly general approach to solving potentially
complex problems

» Core ideas are simple, but a very specific mindset

> Regularization is essential for high-dimensional problems, has
statistical and not just numerical effects

» Decision theory and empirical risk are critical in keeping track of
whether models are effective or not and to guard against over- or
under-fitting

