
Machine Learning in Three Lectures

Sach Mukherjee

DZNE, Bonn

Lecture II: outline

I Focus on unsupervised learning

I Wide class of problems where there are either no labels available in
the data or where the goal is less explicit

I Specifically focus on clustering (and connections to related models),
dimensionality reduction and matrix completion

I General way to think about such models is as having hidden or
latent variables or some form of “simple” structure

Clustering

Recap: classification

I Task: given data

(xi , yi)i=1...n, xi ∈ Rp, y ∈ {0, 1},

wanted to learn a function f̂ : Rp → {0, 1}

I Wanted f̂ accurate in the sense that for a new pair (X ′,Y ′),
Pr(f̂ (X ′) = Y ′) is high

I Saw two specific approaches via conditional probability distributions
and via a logistic function

I What if labels are not available at all ? That is, initial data is only
X = [x1 . . . xn]T (no y ’s)?

o"
o"
o"

o"
o"

o" o"

o"o"
o"o"
o"o" o"
o"

o"

x"
x"
x"

x"
x"

x"x"
x"

x"

Variable(#1(

Va
ria

bl
e(
#2
(Y=1$

Y=0$

o"
o"
o"

o"
o"

o" o"

o"o"
o"o"
o"o" o"
o"

o"

x"
x"
x"

x"
x"

x"x"
x"

x"

Variable(#1(

Va
ria

bl
e(
#2
(

Clustering

I This is the classical “clustering” problem, direct latent variable
analogue of classification

I Task: given data
(xi)i=1...n, xi ∈ Rp

assign each point to one of K classes (“clusters”)

I First we will look at a classical method called K-means clustering,
then at a probabilistic formulation with a hidden variable
interpretation, and then at the connection between the two

Applications of clustering

I Vast number of applications of clustering due to the fact that we
can often make high-dimensional measurements but have only rough
ideas, if any, of how to categorize objects

I Medicine/biology: discovering new subtypes of disease, often
clusters correspond to different underlying biology that was not
previously known, or (usefully) contradict disease classes that were
more historical than truly evidence-based

I Retail: clustering to identify specific customer subtypes to then
target marketing/product development etc.

I Signal processing: to compress data, by so-called vector quantization

Some%examples%
•  Images:%finding%groups%of%pixels%which%have%similar%RGB%

vector%(“vector%quan@za@on”)%

•  Q:#What#are#the#“data#vectors”#here,#i.e.#the#objects#being#
clustered?#

(Bishop, 2006)

K-means clustering

I Task: given data
(xi)i=1...n, xi ∈ Rp

and specified number of classes K assign each point to one of K
classes (“clusters”)

I As the name suggests, K-means parameterizes each cluster with a
cluster specific mean µk ∈ Rp and gives an assignment
C (i) ∈ {1 . . .K} for each of the n points.

K-means clustering: objective function

I The idea is to choose the µk ’s and C (i)’s to minimize the distances
between the sample points (xi)i=1...n and their assigned means.

I The objective function is

J({µk}, {C (i)}) =
K∑

k=1

∑
i :C(i)=k

‖xi − µk‖22

I Notice that if µk ’s are known, the C (i) that minimizes J is just to
assign each point to its closest mean

I Similarly, if C (i) is known, the optimal µk ’s are simply the means of
only those points with C (i) = k

K-means clustering: optimization

I This suggests a simple alternating scheme. Initialize the µk ’s.

(1) Keeping µk ’s fixed, for i = 1 . . . n set

C (i)← argmin
k
‖xi − µk‖22

(2) Then, keeping assignments C (i) fixed for each k update the
means

µ̂k ←
1

|{i : C (i) = k}|
∑

i :C(i)=k

xi

I Repeat (1), (2) until convergence criterion is met

I This is the classical K-means algorithm

I Provides a local optimum, still (surprisingly?) effective and fast

K-means: example Example(

(Figures)from)Bishop,)Chapter)9))
(Bishop, 2006)

Mixture models: probability models for hidden groups

I Can be illuminating (and useful) to look at the clustering problem
from a probabilistic point of view

I A mixture model g is a combination of component densities gk

g(x) =
K∑

k=1

πk gk(x)

with 0 ≤ πk ≤ 1 and
∑

k πk = 1

I Identifying the components k with clusters/classes, we can see that
this is a general analogue to the classification model, but gives a
“marginal” model for the X ’s only

Gaussian mixture models

I Consider mixture of K Gaussians

g(x) =
∑
k

πkN(x | µk ,Σk)

I Complete model parameter is θ = (πk , µk ,Σk)k=1..K

I If we knew which point Xi came from which groups, estimation
would simply a Gaussian per class/cluster

I But we don’t, so as for K-means, we use an alternating scheme,
using current estimates of θ to “soft assign” the points and then
using these assignments to re-estimate the Gaussians

Gaussian mixture models: estimation

I First, initialize parameters (πk , µk ,Σk)k=1..K

I Next, compute probabilistic assignments (responsibilities) for each
point i and each component k as

γik ←
πkN(xi | µk ,Σk)∑
l πlN(xi | µl ,Σl)

I Thinking of a latent Zi ∈ {1 . . .K} this is the current estimate of
Pr(Zi = k | xi), with πk playing the role of the “prior” Pr(Zi = k)

Gaussian mixture models: estimation

I Next, update Gaussian parameters using all data but weighted by
these probabilities

π̂k ←
1

n

∑
i

γik

µ̂k ←
∑

i γik xi∑
i γik

Σ̂k ←
∑

i γik (xi − µ̂k)(xi − µ̂k)T∑
i γik

I Alternate until convergence or stopping criterion met

I This is an instance of a general algorithm known as the
Expectation-Maximization or EM algorithm

EM: example

EM:$example$

(From&Bishop,&Chap&9)&(Bishop, 2006)

K-means vs. mixture models

I K-means and mixture modelling noticeably similar

I K-means can be recovered as a limiting case of a Gaussian mixture
model with all Gaussians isotropic, i.e. with all Σk ’s equal to σ2Ip
and taking σ2 → 0

I Then the probabilistic assignment becomes 0-1 and the EM steps
become K-means

I Mixture models are much more flexible because they allow
interesting covariance structure

I EM is highly general and notion of latent variables can be used in
many settings, not just clustering

Dimensionality reduction

Dimensionality reduction

I Second broad class of unsupervised learning

I Task: given data (xi)i=1...n, xi ∈ Rp, with p typically large, find a
transformation f : Rp → Rq, with q � p, such that the transformed
data points zi = f (xi) retain information/structure in the lower
dimensional space

I f may be linear or nonlinear, many different potential criteria

Linear dimensionality reduction: PCA

I Consider linear projection down to one dimension, i.e. project data
as Z = Xw1, where w1 is a unit-length p-vector. Want to retain as
much variance as possible after projection

I Maximize projected variance, i.e. objective

J(w1) = wT
1 Sw1︸ ︷︷ ︸

=Var(Z)

+λ1(1− wT
1 w1)

with S = 1
nX

TX being the sample covariance. The constraint
enforces unit length of w1

I Solution satisfies Sw1 = λw1, i.e. w1 is eigenvector of sample
covariance

I Projected variance is wT
1 Sw1 = λ, hence should choose eigenvector

with largest eigenvalue

Linear dimensionality reduction: PCA

I For projection down to q dimensions, subsequent directions follow
similar argument, variance maximizing projection is Z = XW , with
W = [w1 . . .wq], wj ’s being q eigenvectors with largest eigenvalues

I This is the variance-maximizing linear projection into a
q-dimensional subspace

I This approach is known as (classical) principal components analysis
or PCA

I Regularized variants are possible, simply by augmenting the
objective with additional constraints

I In practice – and despite some concerns from high-dimensional
theory – PCA is often very effective

PCA: example

Here, the data are images, treated as vectors with p = 104

PCA: example

 An example from Bishop. The data are handwritten digits:

 These are 100x100 images, so d=10,000

 Here are the first few principal components, notice how since they're
vectors in the same space as the original data, we can view them as
sort of prototype images:

(From Bishop, Chap 12)

Samples(

PCA: example

 An example from Bishop. The data are handwritten digits:

 These are 100x100 images, so d=10,000

 Here are the first few principal components, notice how since they're
vectors in the same space as the original data, we can view them as
sort of prototype images:

(From Bishop, Chap 12)

PCs(

PCA: example

 Reconstructions are the low-dimensional projections (as points in the
high-d space). Here are a few:

 You can see the compressive effect, and the trade-off with k

(From Bishop, Chap 12)

Reconstruc2ons(

(Bishop, 2006)

Nonlinear dimensionality reduction

1388 M. Belkin and P. Niyogi

−10 −5 0 5 10 15
0

50

100

−15

−10

−5

0

5

10

15

Figure 1: 2000 Random data points on the swiss roll.

Note that t = ∞ corresponds to the case when the weights are set to 1. Unlike
Isomap, our algorithm does not attempt to isometrically embed the swiss
roll into R2. However, it manages to unroll the swiss roll, thereby preserving
the locality, although not the distances, on the manifold. We observe that for
small values of N, we obtain virtually identical representations for different
t’s. However, when N becomes bigger, smaller values of t seemingly lead to
better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, that is, the curvature tensor is zero, which is the
case with the swiss roll. However, a classical result due to gauss shows that
even for a two-dimensional sphere (or any part of a sphere), no distance-
preserving map into the plane can exist.

6.2 A Toy Vision Example. Consider binary images of vertical and hori-
zontal bars located at arbitrary points in the visual field. Each image contains
exactly one horizontal or vertical bar at a random location in the image plane.
In principle, we may consider each image to be represented as a function

f : [0, 1] × [0, 1] → {0, 1},

where f (x) = 0 means the point x ∈ [0, 1] × [0, 1] is white and f (x) = 1
means the point is black. Let v(x, y) be the image of a vertical bar. Then

Laplacian Eigenmaps 1389

N = 5 t = 5.0 N = 10 t = 5.0 N = 15 t = 5.0

N = 5 t = 25.0 N = 10 t = 25.0 N = 15 t = 25.0

N = 5 t = ∞ N = 10 t = ∞ N = 15 t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.

all images of vertical bars may be obtained from v(x, y) by the following
transformation:

vt(x, y) = v(x − t1, y − t2).

The space of all images of vertical bars is a two-dimensional manifold, as is
the space of all horizontal bars. Each of these manifolds is embedded in the
space of functions (L2([0, 1] × [0, 1])). Notice that although these manifolds
do not intersect, they come quite close to each other. In practice, it is usually
impossible to tell whether the intersection of two classes is empty.

To discretize the problem, we consider a 40 × 40 grid for each image.
Thus, each image may be represented as a 1600-dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = ∞.

In Figure 3, the left panel shows a horizontal and vertical bar to provide
a sense of the scale of the image. The middle panel is a two-dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice

p=3#data#

q=2#projec.on#

Nonlinear dimensionality reduction

I Data may have nonlinear, low-dimensional structure that cannot be
captured by a linear projection

I Wide range of nonlinear methods. One important class creates a
weighted similarity graph between data points, i.e. a n-vertex graph
with weights Wi,i ′ capturing some notion of similarity

I Idea is to find a mapping f that preserves this structure. One way to
do so is to minimize ∑

i,i ′

‖f (xi)− f (xi ′)‖22 Wi,i ′

s.t. identifiability constraints on f

I This can be solved as an eigenvalue problem wrt the so-called graph
Laplacian derived from W . This is called a Laplacian eigenmap

I Details in construction of W can be influential

Nonlinear dimensionality reduction: example

1388 M. Belkin and P. Niyogi

−10 −5 0 5 10 15
0

50

100

−15

−10

−5

0

5

10

15

Figure 1: 2000 Random data points on the swiss roll.

Note that t = ∞ corresponds to the case when the weights are set to 1. Unlike
Isomap, our algorithm does not attempt to isometrically embed the swiss
roll into R2. However, it manages to unroll the swiss roll, thereby preserving
the locality, although not the distances, on the manifold. We observe that for
small values of N, we obtain virtually identical representations for different
t’s. However, when N becomes bigger, smaller values of t seemingly lead to
better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, that is, the curvature tensor is zero, which is the
case with the swiss roll. However, a classical result due to gauss shows that
even for a two-dimensional sphere (or any part of a sphere), no distance-
preserving map into the plane can exist.

6.2 A Toy Vision Example. Consider binary images of vertical and hori-
zontal bars located at arbitrary points in the visual field. Each image contains
exactly one horizontal or vertical bar at a random location in the image plane.
In principle, we may consider each image to be represented as a function

f : [0, 1] × [0, 1] → {0, 1},

where f (x) = 0 means the point x ∈ [0, 1] × [0, 1] is white and f (x) = 1
means the point is black. Let v(x, y) be the image of a vertical bar. Then

Laplacian Eigenmaps 1389

N = 5 t = 5.0 N = 10 t = 5.0 N = 15 t = 5.0

N = 5 t = 25.0 N = 10 t = 25.0 N = 15 t = 25.0

N = 5 t = ∞ N = 10 t = ∞ N = 15 t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.

all images of vertical bars may be obtained from v(x, y) by the following
transformation:

vt(x, y) = v(x − t1, y − t2).

The space of all images of vertical bars is a two-dimensional manifold, as is
the space of all horizontal bars. Each of these manifolds is embedded in the
space of functions (L2([0, 1] × [0, 1])). Notice that although these manifolds
do not intersect, they come quite close to each other. In practice, it is usually
impossible to tell whether the intersection of two classes is empty.

To discretize the problem, we consider a 40 × 40 grid for each image.
Thus, each image may be represented as a 1600-dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = ∞.

In Figure 3, the left panel shows a horizontal and vertical bar to provide
a sense of the scale of the image. The middle panel is a two-dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice

p=3#data#

q=2#projec.on#

(Belkin & Niyogi, Neural Computation, 2003)

Matrix completion

Matrix completion

I Another related problem is so-called matrix completion – idea is that
you have an n × p matrix X that is incomplete but you assume that
the underlying “complete” matrix Z has some specific structure

I Canonical example is Netflix customers-by-films matrix – here each
film only seen by some of the customers, want to know which other
customers might like to see the film, but large fraction is missing

I Recommender systems is a general term and collaborative filtering
for the approach of pooling preferences to filter results

I Having the “completed” matrix would allow e.g. specific films to be
targeted to specific customers

Matrix completion

I The available data are X . Some of the entries are unavailable

I Denote the completed matrix Z . This is a latent matrix, having the
property that it should agree with X and satisfy some additional
constraints

I Intuition is that in real matrices from such applications, there are
correlations between rows and columns

I Suggests constraining Z to be low rank: if true, entries could be
recovered by pooling the information across all rows and columns

Matrix completion

I One version of matrix completion can then be viewed as an
optimization with objective

J(Z) = ‖M ◦ X −M ◦ Z‖2F + λ
∑
j

σ(Z)j

where σ(Z)j are the singular values of Z and M is a n × p binary
matrix with Mij = 1 if Xij is a non-missing entry

I Compare with sparse regression: the penalty induces sparsity – here
low rank of Z – analogous to sparsity via `1-penalization of the
regression model

I The problem can be efficiently solved and is widely used in practice

I However, note that (as with many ML methods) vanilla matrix
completion may not be sufficient to fully address real problems and
in practice many other approaches and heuristics are combined

Lecture II summary

I Today we looked at unsupervised learning problems

I Broad class that go beyond simply predicting something that is
already in the available data towards all kinds of hidden structure in
potentially high-dimensional data

I Exceptionally rich range of applications

Lecture II summary

I Recurrent themes of sparse/low-rank/low-dimensional structure,
general idea is automatically finding representations that are
“simple” in some sense

I Tools are mostly highly scalable, creative use can open up many
practical problems

