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Lecture Ill: Some connections, frontier topics and the
philosophy of ML

» Unifying themes: some connections between ML methodologies that
may historically have been studied independently

» Selected frontier topics: a (highly selective) view of a few areas of
current research

» The mindset of ML and its social and scientific outlook



Some connections



(1) Bayesian inference and regularization

» We saw several examples of constrained optimization used to e.g.
allow modelling in high dimensions

» Close connection between such optimization-based methods and
Bayesian inference

» First, a quick introduction to Bayesian inference...



Bayesian inference (in one slide)

> Assume data X from probability model f with unknown parameters 6
» Likelihood is joint probability of data given parameter, i.e. f(X | 9)

» View parameter itself as RV, encode “pre-data” knowledge via prior
distribution m(0)

» Posterior distribution describes knowledge about 6 after seeing the
data

1
p(0] X) = ZF(X | 0)x(0)
> This allows uncertainty quantification etc. (but may be difficult to
access in practice for high-dimensional )

» Maximum a posterori or MAP estimate is posterior mode, i.e.

Oriap = argmax p(6 | X)
9



Linear

regression revisited

Recall linear regression model: vector of n outputs Y, p-dimensional
inputs X and p-dimensional parameter

Probability model: Y; | Xi, 3,0 ~ N(BT X, 0?)
Likelihood p(Yi ... Y, | X, B,02) = [, N(Y; | BTX;,0?)
Set 7(8) = N(0, c) to discourage extreme values

Posterior

p(B,0 [ X, Y) o p(Y | X, B,0)m(B | o) 7(0)



Regularized estimation and Bayesian models

» Posterior proportional to p(Y | X, 3,0)w(8 | o) 7(o)

» Taking logs and maximizing wrt 3
BMAP = argmaxl’(ﬂ,U | X7 Y)
9
: 2 2
= argmin || Y — X8B3 + A[| B2
0 N =
log likelihood log prior
> ldentical to ridge regression! Quadratic regularizer can be viewed as

coming from the Gaussian prior on 3

» More generally, close connection to formal probability models,
constrained optimization can be viewed as MAP under some prior

» This is both illuminating and useful in designing and understanding
penalties



(2) PCA and K-means as matrix factorizations

» PCA can also be viewed as an approximate factorization of the data
matrix of the form X =~ ZU and interpreted as solving the least

squares problem
HZ,U) = |X - ZU|}2

s.t. identifiability constraint on U

» Recall that K-means models the data as K groups each with its own
mean py. Collect uy's together into a K x p matrix U. The
K-means objective sums distances to corresponding means and can
be written as

HZ,U) = |IX - zU||z

s.t. constraint on Z (binary with exactly one non-zero in each row)

» Thus, PCA and K-means are both matrix factorizations of the data,
subject to different constraints

» Many other matrix factorizations are possible, aimed at different
goals, leading to different objectives



(3) Decision theory and optimal model complexity

» Consider again the classification problem with two classes

» Suppose the groups are relatively well separated but that the
class-specific distributions are complicated (e.g. full covariance
Gaussians, or some more complicated high-dimensional density).

> Let the true model be f(+; 0*) and some simpler model (e.g. the
linear one) be g(+;v). Assume g is wrong in the sense that

- g(0) =F(0%)

» (For a given task/loss function) should we use the correct model
class f or the incorrect one g?



All models are wrong, some are useful

» The expected loss for the fitted model depends on the initial dataset
D, = {Xi, Y;}i=1..n via the parameter estimates

» If the initial data is fixed, and parameters are estimated from these
data, we can write the expected loss under the correct model as

Ra(f) = E[L(Y, F(X: 0(Dn)))]
and under the incorrect one as

Ri(8) = EIL(Y,g(X; $(Dy)))]

~

> In general, there is no guarantee that R,(f) < R,(&)! This depends
on an interplay between the true data-generating process, the model
classes f and g and the properties of the estimators 6 and v

» Easy to sketch examples for binary classification



Unifying ML models

» There are many more connections between ML methods that may
have been developed independently for seemingly different tasks

» Many models can be viewed: heuristically via an intuitive objective;
as motivated by a probability model; from a Bayesian viewpoint; and
so on

» Regularization is a key theme for high dimensional data and the art
is in defining suitable schemes that impose appropriate structure for
specific problems



Selected frontier topics



(1) Networks and causality

» Often data X come from systems where the connections between
the variables are of interest and not just predicting one output or
finding groups

» Network models are a natural tool. A class of statistical models
called graphical models are very widely used

> These allow potentially high-dimensional joint distributions (over
components of X) to be studied from the point of view of
conditional independence structure. Examples include Markov
random fields and Bayesian networks

> General idea is to factor the (potentially) large joint distribution
using a graph G, which is itself often of scientific interest



Networks and causality

» In Gaussian case zeros in the inverse covariance are non-edges in the
graph (these give conditional independence relationships)

» There are now many schemes for fitting high-dimensional models
(not necessarily Gaussian) using regularization as seen before

» Example: the graphical lasso estimates Q = ¥ 7! as

Q = argmax log|Q| — Tr(n*XTXQ) — \|Q||1
Q ~——

Likelihood Penalty

This induces sparsity directly in the inverse and is a scalable and
powerful way to model in high dimensions

» However, graphical models are models of joint statistical
distributions and do not necessarily have a casual interpretation



Networks and causality

v

A long-term goal remains to extract causal insights from data

Much progress, we now know this is possible, at least to some
extent, in some circumstances

General problem is confounding — many correlations may be due to
shared causation by some other factor (the confounder)

Current efforts focus on a range of ways to extract causal insights
from high-dimensional data and to test such procedures in a
systematic way



(2) Deep learning

v

A neural network (NN) is a composition of layers each of which is a
linear function pushed through a nonlinearity and which overall maps
an input X to an output Y

Thus, a NN learns a function Y = f(X;8) where the overall f is
nonlinear and @ collects all model parameters

Deep neural networks (DNNs) have many layers (hence “deep”).
These are very flexible models with typically ultra-high-dimensional 6

In applications like computer vision intermediate layers can be seen
to learn “features’ at different levels



Deep learning

» Recall, ML method = (model, estimator, computation). All three
aspects have been critical for making DNNs work

» There have been several breakthroughs in fitting DNNs based on a
combination of innovations in the models, computing and
regularization coupled with many heuristics and engineering details

» DNNs have made huge gains in a number of specific tasks, notably
image classification and also in some non-obvious settings where the
models are used provide a data representation that then allows for
greater generalization



Deep learning — some history

» Historically, after much interest in early days of ML, much of the
community essentially stopped working on NNs, and most
applications — from image analysis to speech recognition — settled on
other approaches

» But performance on standardized “challenges” made the community
sit up and take notice

» On an image classification challenge, error rates dropped
dramatically in 2012 (and are now even lower). This was entirely
unprecedented

» Achieved using DNNs with ~6x 107 parameters (and a lot of
regularization). Illustrated again the statistical power of flexible
models with sufficient regularization
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(Krizhevsky et al., NIPS, 2012)

Consider also again the “captioning” example, and think about how large
the output set is and how difficult this is de novo...



man in black shirt is playing guitar. construction worker in orange safety
vest is working on road.

(Karpathy & Li, CVPR, 2015)

DNNs reinforce again importance of model complexity, representation
learning and empirical risk



(3) Very high dimensional data

» Advances in high-dimensional inference have cumulatively
completely changed our view — now clear that it is very much
possible to effectively and robustly fit very high-dimensional models,
using various forms of regularization

» Hard to overstate how mindset has changed in last ~15 years or so

» Typically regularization imposes some generic structure — like
sparsity — leaving the models to work out the details of which
sparsity pattern works

» Very different from strong scientific prior knowledge, because the
models are general and can be run on problems where little or
nothing is understood in a real scientific sense



Very high dimensional data

» High dimensionality can be viewed as a modelling choice: is it better
to include more (and regularize more strongly) or include less (but
run the risk of missing the signal)?

» Sparse methods negotiate the tradeoffs of high-dimensional data
automatically



(4) Real world prediction

> As the basic machinery has become more powerful, a range of issues
that arise in real problems have become more important

» A model that works well on a given dataset may not generalize to
data from a seemingly similar problem due to subtle differences in
the underlying distributions

> This dataset shift is a bit different to the train/test issue because
the new dataset is not even a sample from the same distribution

» Flexible models can end up subtly “tuned” to details that do not
transfer to the new setting

» Real-world implications of decisions need to be understood and used
to inform/constrain learning



Real world prediction

» Transfer learning refers to the task of adapting a model to a new
setting without throwing away what was already learned

» Multi-task learning is a general term for learning jointly over
somehow related outputs/tasks

» Many issues arise in designing risk estimators. Questions relating to
precisely how training and testing should be done, how models
should be monitored and updated and so on



ML: the philosophy, mindset and outlook



The machine learning mindset

» ML can be viewed as a natural outcome of advances in computing
coupled with an empirical mindset that gained ground during the
20th century

» The main difference from other fields — even much of statistics or
econometrics — is the view of models

» In ML — and much of modern statistics — the idea is to work on
problems where there is no satisfactory model (due to scale,
complexity etc.)

» Related to fact that understanding causality and predicting specific
aspects are obviously related but not identical.



The machine learning mindset

» The idea is that even if the system is very complicated, given suitable
data (not necessarily huge), one can detect useful patterns that can
essentially substitute for what one would have done with a model

» Almost any current ML application bears this view out — the
effectiveness does not rest on having a good model in the usual
sense

» Thus, the philosophy is that flexible formulations (high-dimensional
data, relatively complex models or both) coupled with systematic
and empirically-guided regularization can often bring very complex
problems — diagnosis, decision making, Al — into reach



ML: the outlook

» |t is now clear that ML can transform many processes — this is only
in its infancy — and in some cases allow entirely new tasks to be
taken on

» The economics of ML are remarkable. A fitted model may have
low-to-zero marginal cost

» Adaptation to ML has in some ways been slow, much to be done

» Outlook: ML will become much more embedded in society, the
economy and science. Important to foster understanding and to
have a much broader conversation going forward
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