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Lecture III: Some connections, frontier topics and the
philosophy of ML

I Unifying themes: some connections between ML methodologies that
may historically have been studied independently

I Selected frontier topics: a (highly selective) view of a few areas of
current research

I The mindset of ML and its social and scientific outlook



Some connections



(1) Bayesian inference and regularization

I We saw several examples of constrained optimization used to e.g.
allow modelling in high dimensions

I Close connection between such optimization-based methods and
Bayesian inference

I First, a quick introduction to Bayesian inference...



Bayesian inference (in one slide)

I Assume data X from probability model f with unknown parameters θ

I Likelihood is joint probability of data given parameter, i.e. f (X | θ)

I View parameter itself as RV, encode “pre-data” knowledge via prior
distribution π(θ)

I Posterior distribution describes knowledge about θ after seeing the
data

p(θ | X ) =
1

Z
f (X | θ)π(θ)

I This allows uncertainty quantification etc. (but may be difficult to
access in practice for high-dimensional θ)

I Maximum a posterori or MAP estimate is posterior mode, i.e.

θ̂MAP = argmax
θ

p(θ | X )



Linear regression revisited

I Recall linear regression model: vector of n outputs Y , p-dimensional
inputs X and p-dimensional parameter β

I Probability model: Yi | Xi , β, σ ∼ N(βTXi , σ
2)

I Likelihood p(Y1 . . .Yn | X , β, σ2) =
∏

i N(Yi | βTXi , σ
2)

I Set π(β) = N(0, c) to discourage extreme values

I Posterior

p(β, σ | X ,Y ) ∝ p(Y | X , β, σ)π(β | σ)π(σ)



Regularized estimation and Bayesian models

I Posterior proportional to p(Y | X , β, σ)π(β | σ)π(σ)

I Taking logs and maximizing wrt β

β̂MAP = argmax
θ

p(β, σ | X ,Y )

= argmin
θ
‖Y − Xβ‖2

2︸ ︷︷ ︸
log likelihood

+λ‖β‖2
2︸ ︷︷ ︸

log prior

I Identical to ridge regression! Quadratic regularizer can be viewed as
coming from the Gaussian prior on β

I More generally, close connection to formal probability models,
constrained optimization can be viewed as MAP under some prior

I This is both illuminating and useful in designing and understanding
penalties



(2) PCA and K -means as matrix factorizations

I PCA can also be viewed as an approximate factorization of the data
matrix of the form X ≈ ZU and interpreted as solving the least
squares problem

J(Z ,U) = ‖X − ZU‖2
F

s.t. identifiability constraint on U

I Recall that K -means models the data as K groups each with its own
mean µk . Collect µk ’s together into a K × p matrix U. The
K -means objective sums distances to corresponding means and can
be written as

J(Z ,U) = ‖X − ZU‖2
F

s.t. constraint on Z (binary with exactly one non-zero in each row)

I Thus, PCA and K -means are both matrix factorizations of the data,
subject to different constraints

I Many other matrix factorizations are possible, aimed at different
goals, leading to different objectives



(3) Decision theory and optimal model complexity

I Consider again the classification problem with two classes

I Suppose the groups are relatively well separated but that the
class-specific distributions are complicated (e.g. full covariance
Gaussians, or some more complicated high-dimensional density).

I Let the true model be f (·; θ∗) and some simpler model (e.g. the
linear one) be g(·;ψ). Assume g is wrong in the sense that
@ψ : g(·;ψ) = f (·; θ∗)

I (For a given task/loss function) should we use the correct model
class f or the incorrect one g?



All models are wrong, some are useful

I The expected loss for the fitted model depends on the initial dataset
Dn = {Xi ,Yi}i=1...n via the parameter estimates

I If the initial data is fixed, and parameters are estimated from these
data, we can write the expected loss under the correct model as

Rn(f̂ ) = E[L(Y , f (X ; θ̂(Dn)))]

and under the incorrect one as

Rn(ĝ) = E[L(Y , g(X ; ψ̂(Dn)))]

I In general, there is no guarantee that Rn(f̂ ) < Rn(ĝ)! This depends
on an interplay between the true data-generating process, the model
classes f and g and the properties of the estimators θ̂ and ψ̂

I Easy to sketch examples for binary classification



Unifying ML models

I There are many more connections between ML methods that may
have been developed independently for seemingly different tasks

I Many models can be viewed: heuristically via an intuitive objective;
as motivated by a probability model; from a Bayesian viewpoint; and
so on

I Regularization is a key theme for high dimensional data and the art
is in defining suitable schemes that impose appropriate structure for
specific problems



Selected frontier topics



(1) Networks and causality

I Often data X come from systems where the connections between
the variables are of interest and not just predicting one output or
finding groups

I Network models are a natural tool. A class of statistical models
called graphical models are very widely used

I These allow potentially high-dimensional joint distributions (over
components of X ) to be studied from the point of view of
conditional independence structure. Examples include Markov
random fields and Bayesian networks

I General idea is to factor the (potentially) large joint distribution
using a graph G , which is itself often of scientific interest



Networks and causality

I In Gaussian case zeros in the inverse covariance are non-edges in the
graph (these give conditional independence relationships)

I There are now many schemes for fitting high-dimensional models
(not necessarily Gaussian) using regularization as seen before

I Example: the graphical lasso estimates Ω = Σ−1 as

Ω̂ = argmax
Ω

log |Ω| − Tr(n−1XTXΩ)︸ ︷︷ ︸
Likelihood

−λ‖Ω‖1︸ ︷︷ ︸
Penalty

This induces sparsity directly in the inverse and is a scalable and
powerful way to model in high dimensions

I However, graphical models are models of joint statistical
distributions and do not necessarily have a casual interpretation



Networks and causality

I A long-term goal remains to extract causal insights from data

I Much progress, we now know this is possible, at least to some
extent, in some circumstances

I General problem is confounding – many correlations may be due to
shared causation by some other factor (the confounder)

I Current efforts focus on a range of ways to extract causal insights
from high-dimensional data and to test such procedures in a
systematic way



(2) Deep learning

I A neural network (NN) is a composition of layers each of which is a
linear function pushed through a nonlinearity and which overall maps
an input X to an output Y

I Thus, a NN learns a function Y = f (X ; θ) where the overall f is
nonlinear and θ collects all model parameters

I Deep neural networks (DNNs) have many layers (hence “deep”).
These are very flexible models with typically ultra-high-dimensional θ

I In applications like computer vision intermediate layers can be seen
to learn “features” at different levels



Deep learning

I Recall, ML method = (model, estimator, computation). All three
aspects have been critical for making DNNs work

I There have been several breakthroughs in fitting DNNs based on a
combination of innovations in the models, computing and
regularization coupled with many heuristics and engineering details

I DNNs have made huge gains in a number of specific tasks, notably
image classification and also in some non-obvious settings where the
models are used provide a data representation that then allows for
greater generalization



Deep learning – some history

I Historically, after much interest in early days of ML, much of the
community essentially stopped working on NNs, and most
applications – from image analysis to speech recognition – settled on
other approaches

I But performance on standardized “challenges” made the community
sit up and take notice

I On an image classification challenge, error rates dropped
dramatically in 2012 (and are now even lower). This was entirely
unprecedented

I Achieved using DNNs with ∼6×107 parameters (and a lot of
regularization). Illustrated again the statistical power of flexible
models with sufficient regularization



Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

(Krizhevsky et al., NIPS, 2012)

Consider also again the “captioning” example, and think about how large
the output set is and how difficult this is de novo...



Flickr8K Flickr30K MSCOCO 2014
Model B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4 METEOR CIDEr
Nearest Neighbor — — — — — — — — 48.0 28.1 16.6 10.0 15.7 38.3
Mao et al. [38] 58 28 23 — 55 24 20 — — — — — — —
Google NIC [54] 63 41 27 — 66.3 42.3 27.7 18.3 66.6 46.1 32.9 24.6 — —
LRCN [8] — — — — 58.8 39.1 25.1 16.5 62.8 44.2 30.4 — — —
MS Research [12] — — — — — — — — — — — 21.1 20.7 —
Chen and Zitnick [5] — — — 14.1 — — — 12.6 — — — 19.0 20.4 —
Our model 57.9 38.3 24.5 16.0 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0 19.5 66.0

Table 2. Evaluation of full image predictions on 1,000 test images. B-n is BLEU score that uses up to n-grams. High is good in all columns.
For future comparisons, our METEOR/CIDEr Flickr8K scores are 16.7/31.8 and the Flickr30K scores are 15.3/24.7.

Figure 6. Example sentences generated by the multimodal RNN for test images. We provide many more examples on our project page.

4.2. Generated Descriptions: Fulframe evaluation
We now evaluate the ability of our RNN model to describe
images and regions. We first trained our Multimodal RNN
to generate sentences on full images with the goal of veri-
fying that the model is rich enough to support the mapping
from image data to sequences of words. For these full im-
age experiments we use the more powerful VGGNet image
features [47]. We report the BLEU [44], METEOR [7] and
CIDEr [53] scores computed with the coco-caption
code [4] 2. Each method evaluates a candidate sentence
by measuring how well it matches a set of five reference
sentences written by humans.

Qualitative. The model generates sensible descriptions of
images (see Figure 6), although we consider the last two
images failure cases. The first prediction “man in black
shirt is playing a guitar” does not appear in the training set.
However, there are 20 occurrences of “man in black shirt”
and 60 occurrences of “is paying guitar”, which the model
may have composed to describe the first image. In general,
we find that a relatively large portion of generated sentences
(60% with beam size 7) can be found in the training data.
This fraction decreases with lower beam size; For instance,
with beam size 1 this falls to 25%, but the performance also
deteriorates (e.g. from 0.66 to 0.61 CIDEr).

Multimodal RNN outperforms retrieval baseline. Our
first comparison is to a nearest neighbor retrieval baseline.

2https://github.com/tylin/coco-caption

Here, we annotate each test image with a sentence of the
most similar training set image as determined by L2 norm
over VGGNet [47] fc7 features. Table 2 shows that the Mul-
timodal RNN confidently outperforms this retrieval method.
Hence, even with 113,000 train set images in MSCOCO
the retrieval approach is inadequate. Additionally, the RNN
takes only a fraction of a second to evaluate per image.

Comparison to other work. Several related models have
been proposed in Arxiv preprints since the original submis-
sion of this work. We also include these in Table 2 for com-
parison. Most similar to our model is Vinyals et al. [54].
Unlike this work where the image information is commu-
nicated through a bias term on the first step, they incorpo-
rate it as a first word, they use a more powerful but more
complex sequence learner (LSTM [20]), a different CNN
(GoogLeNet [51]), and report results of a model ensemble.
Donahue et al. [8] use a 2-layer factored LSTM (similar
in structure to the RNN in Mao et al. [38]). Both models
appear to work worse than ours, but this is likely in large
part due to their use of the less powerful AlexNet [28] fea-
tures. Compared to these approaches, our model prioritizes
simplicity and speed at a slight cost in performance.

4.3. Generated Descriptions: Region evaluation
We now train the Multimodal RNN on the correspondences
between image regions and snippets of text, as inferred by
the alignment model. To support the evaluation, we used
Amazon Mechanical Turk (AMT) to collect a new dataset

(Karpathy & Li, CVPR, 2015)

DNNs reinforce again importance of model complexity, representation
learning and empirical risk



(3) Very high dimensional data

I Advances in high-dimensional inference have cumulatively
completely changed our view – now clear that it is very much
possible to effectively and robustly fit very high-dimensional models,
using various forms of regularization

I Hard to overstate how mindset has changed in last ∼15 years or so

I Typically regularization imposes some generic structure – like
sparsity – leaving the models to work out the details of which
sparsity pattern works

I Very different from strong scientific prior knowledge, because the
models are general and can be run on problems where little or
nothing is understood in a real scientific sense



Very high dimensional data

I High dimensionality can be viewed as a modelling choice: is it better
to include more (and regularize more strongly) or include less (but
run the risk of missing the signal)?

I Sparse methods negotiate the tradeoffs of high-dimensional data
automatically



(4) Real world prediction

I As the basic machinery has become more powerful, a range of issues
that arise in real problems have become more important

I A model that works well on a given dataset may not generalize to
data from a seemingly similar problem due to subtle differences in
the underlying distributions

I This dataset shift is a bit different to the train/test issue because
the new dataset is not even a sample from the same distribution

I Flexible models can end up subtly “tuned” to details that do not
transfer to the new setting

I Real-world implications of decisions need to be understood and used
to inform/constrain learning



Real world prediction

I Transfer learning refers to the task of adapting a model to a new
setting without throwing away what was already learned

I Multi-task learning is a general term for learning jointly over
somehow related outputs/tasks

I Many issues arise in designing risk estimators. Questions relating to
precisely how training and testing should be done, how models
should be monitored and updated and so on



ML: the philosophy, mindset and outlook



The machine learning mindset

I ML can be viewed as a natural outcome of advances in computing
coupled with an empirical mindset that gained ground during the
20th century

I The main difference from other fields – even much of statistics or
econometrics – is the view of models

I In ML – and much of modern statistics – the idea is to work on
problems where there is no satisfactory model (due to scale,
complexity etc.)

I Related to fact that understanding causality and predicting specific
aspects are obviously related but not identical.



The machine learning mindset

I The idea is that even if the system is very complicated, given suitable
data (not necessarily huge), one can detect useful patterns that can
essentially substitute for what one would have done with a model

I Almost any current ML application bears this view out – the
effectiveness does not rest on having a good model in the usual
sense

I Thus, the philosophy is that flexible formulations (high-dimensional
data, relatively complex models or both) coupled with systematic
and empirically-guided regularization can often bring very complex
problems – diagnosis, decision making, AI – into reach



ML: the outlook

I It is now clear that ML can transform many processes – this is only
in its infancy – and in some cases allow entirely new tasks to be
taken on

I The economics of ML are remarkable. A fitted model may have
low-to-zero marginal cost

I Adaptation to ML has in some ways been slow, much to be done

I Outlook: ML will become much more embedded in society, the
economy and science. Important to foster understanding and to
have a much broader conversation going forward
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