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Non-linear supersymmetry => goldstino mode χ
Volkov-Akulov ’73

Why study goldstino interactions:

Effective field theory of SUSY breaking at low energies mχ << msusy

e.g. gauge mediation dominant vs gravity mediation

χ: longitudinal gravitino with mχ ≃
m2

susy

MPlanck

<∼ msoft << msusy

MPlanck →∞: SUGRA decoupled

massless χ coupled to matter ∼ 1/msusy

Brane dynamics: half SUSY of the bulk broken but NL realized

=> strongly constrain coupling of brane to bulk fields
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Non-linear SUSY transformations: [5]

δχα =
ξα
κ

+ κΛµ
ξ ∂µχα Λµ

ξ = −i
(

χσµξ̄ − ξσµχ̄
)

κ: goldstino decay constant (SUSY breaking scale) κ = 1/
(√

2m2
susy

)

Goldstino interactions: 3 formulations

Standard realization

Volkov-Akulov ’73, Clark-Love ’96, Clark-Lee-Love-Wu ’98

Superfield formalism Ivanov-Kapustnikov ’78, Samuel-Wess ’83

Brignole-Feruglio-Zwirner ’97, Luty-Ponton ’98, I.A.-Tuckmantel ’04

Constrained superfields

Rocek-Tseytlin ’78, Lindstrom-Rocek ’79, Komargodski-Seiberg ’09
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Standard realization

Define the ‘vierbein’: E a
µ = δaµ + κ2 ta

µ ta
µ = iχ

↔
∂µσ

aχ̄

δ(det E ) = κ∂µ

(

Λµ
ξ detE

)

=> invariant action:

SVA = − 1
2κ2

∫

d4x detE = − 1
2κ2 − i

2χσ
µ
↔
∂ µχ̄+ . . .

Generalization to matter and gauge fields:

Seff =

∫

d4x detE LSM(φ) invariant if δφ = κΛµ
ξ ∂µφ and so LSM

However problem with derivatives => define SUSY covariant ones:

Daφ ≡
(

E−1
)ν

a
Dνφ Fab ≡

(

E−1
)λ

a

(

E−1
)ρ

b
Fλρ

Leff = detE LSM(φ,Dµφ) = LSM(φ,Dµφ) + κ2 tµν Tµν + . . .

universal coupling to stress-tensor but NOT the most general inv action
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Superfield formalism

Recipe: φ(x)→ Φ(x , θ, θ̄) ≡ φ(x̃) x̃µ = xµ + Λµ
θ (x̃) [3] [10]

= φ(x) + κΛµ
θ∂µφ+ . . . =>

Goldstino (spinor) superfield: Gα = θα

κ
+ χα(x̃)

space-time derivatives: use the ‘vierbein’ E (x̃)

e.g. Fab(x , θ, θ̄) ≡
[

(

E−1
)λ

a

(

E−1
)ρ

b
Fλρ

]

(x̃)
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List of lowest dim operators

2 operators of dim 6 linear in χ [8]

S1 = C1

∫

d4x κ Fµνψσ
µ∂νχ̄+ h.c . S2 = C2

∫

d4x κ (ψ∂αχ)Dαφ+ h.c .

Quadratic in χ: 1 operator of dim 7

S7 = C7

∫

d4x κ3/2φ1φ2 ∂µχJ
µν

( 1
2 ,0)

∂νχ+ h.c . J
µν

( 1
2 ,0)

=
i

4
σ[µσ̄ν]

+ 5 operators of dim 8

S3 =C3

∫

d4x κ2(ψ1∂
µχ)(ψ̄2∂µχ̄) + h.c . S4 = C4

∫

d4x κ2(ψ1ψ2)(∂µχ∂
µχ) + h.c .

S5 =C5

∫

d4x κ2φ1

↔

Dµφ2i∂αχσ
µ∂αχ̄+ h.c .

S6 =C6

∫

d4x κ2∂αχσµ∂νχ̄∂αFµν + h.c .

S8 =C8

∫

d4x κ2φ1φ2φ3(∂µχJ
µν

( 1
2 ,0)

∂νχ) + h.c .
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D-brane examples

Type II (closed) strings on 4d Minkowski M4 × X6 internal 6d manifold

X6 flat => N = 8 SUSY ; X6 Calabi-Yau => N = 2 SUSY

Single stack of N Dp-branes => half SUSY is spontaneously broken p ≥ 3

(p − 3) dims wrapped around cycles in X6 => 4d effective field theory

Gauge group: G = U(N) (generically)

SUSY: half remains unbroken Qe ; other half NL realized Qo

broken SUSY commutes with G => goldstino = U(1) gaugino of Qe

Intersecting branes: all SUSY is generally broken except for special angles

e.g. θ1 + θ2 + θ3 = 0 for X6 = T 2 × T 2 × T 2

goldstino becomes a combination of the 2 gauginos
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String computation I.A.-Tuckmantel ’04

1) Goldstino decay constant: sum of brane tensions

1

2κ2
= T1 + T2 Ti =

M4
s

4π2g2
i

Ni

2) Goldstino couplings: only 3 non-vanishing up to order κ2
[6]

C1 =
√

2 ; C2 = 2 ; C3 = 2

universal coefficients independent of brane-angles

C3: fixes the field theory ambiguity of 4-fermion operator

Brignole-Feruglio-Zwirner ’97, I.A.-Benakli-Laugier ’01

I. Antoniadis (CERN) 8 / 26



Constrained superfields

spontaneous global SUSY� : no supercharge but still conserved supercurrent

=> superpartners exist in operator space (not as 1-particle states)

=> constrained superfields: ‘eliminate’ superpartners

Goldstino: chiral superfield XNL satisfying X 2
NL = 0 => [21]

XNL(y) =
χ2

2F
+
√

2θχ+ θ2F yµ = xµ + iθσµθ̄

= FΘ2 Θ = θ +
χ√
2F

LNL =

∫

d4θXNLX̄NL −
1√
2κ

{
∫

d2θXNL + h.c .

}

= LVA

F = 1√
2κ

+ . . .
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Constrained matter superfelds

Fermions: QNL satisfying QNLXNL = 0 (eliminate sfermions) =>

QNL =
√

2

(

ψ − FQχ

F

)

Θ + FQΘ2

Complex scalars: HNL with XNLH̄NL = chiral (eliminate ‘higgsinos’) [5]

=> HNL = H(ŷ) ŷ = yµ + i
√

2θσµχ̄(ŷ)/F̄ (ŷ)

Gauge fields: VNL convenient gauge choice: XNLVNL = 0

eliminate gauginos: XNLWNL = 0 field strength W = −1
4D̄2DV

=> VNL = −Θ
(

σmVm + D
|F |2χχ̄

)

Θ̄ + 1
2Θ2Θ̄2D + derivatives
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Goldstino couplings to matter supermultiplets

Before: goldstino coupling to non-SUSY matter E << msoft ,msusy
ր տ

sparticle masses 1/
√
κ

→ constrained matter superfelds

However if msoft
<∼ E << msusy => linear SUSY in matter sector

→ goldstino coupling to ordinary matter superfields

constrained XNL coupled to MSSM
Komargodski-Seiberg ’09

Assumption in the following: gaugino, higgsino, slepton masses << msusy

results independent on squark masses => can be much higher
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Equivalence theorem => leading goldstino couplings:

∼
∫

∂µχ Jµ = −
∫

χ∂µJµ ← supercurrent

Equations of motion: ∂µJµ ∼ soft terms

→ generalization to non-linear terms: superfield formalism

Usually parametrization of soft SUSY/ terms using auxiliary spurion:

S = msoftθ
2

Non-linear MSSM: replace S →
√

2κmsoftXNL =
msoft

msusy

XNL

F -auxiliary in XNL: dynamical field with no derivatives to be solved

−F̄ = m2
susy +

Bµ

m2
susy

h1h2 +
Au

m2
susy

ũR q̃h2 + · · ·

=> compact form for all goldstino couplings at linear and non-linear level

I. Antoniadis (CERN) 12 / 26



Non-linear MSSM

L = LSUSY + LXNL
+ LH + Lm + LAB + Lg

with

LH =
∑

i=1,2

m2
i

m4
susy

∫

d4θ X
†
NLXNL H

†
i eVi Hi

Lm =
∑

Φ

m2
Φ

m4
susy

∫

d4θ X
†
NLXNL Φ†eV Φ ; Φ = Q,Uc ,Dc ,L,E c

LAB =
1

m2
susy

∫

d2θXnl (Au H2 Q Uc + Ad Q Dc H1 + Ae LE c H1)

+
Bµ

m2
susy

∫

d2θXNL H1 H2 + h.c .

Lg =
3

∑

i=1

1

8g2
i

mλi

m2
susy

∫

d2θ XNL Tr [W α Wα]i + h.c .

I. Antoniadis (CERN) 13 / 26



Phenomenological analysis
I.A.-Dudas-Ghilencea-Tziveloglou ’10

Higgs potential is modified:

V = VMSSM + 2κ2
∣

∣m2
1|h1|2 + m2

2|h2|2 + Bµh1h2

∣

∣

2
+O(κ4) =>

m1,2,Bµ: soft mass parameters, µ: higgsino mass

Classical value of light higgs mass can be increased above the LEP bound

for msusy ∼ a few TeV

large tanβ limit: m2
h = m2

Z +
v2

2m2
susy

(2µ2 + m2
Z )2 + · · ·

→ e.g. µ = 900 GeV, msusy = 2 TeV => mh = 114.4 GeV

Quartic higgs coupling increases for large soft masses => [18]

MSSM ‘little’ fine tuning of the EW scale is alleviated
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Mild dependence on tan β

µ = 400− 1000 GeV ↑ mA = 150 GeV; tanβ = 5
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Validity of perturbative expansion: m
2
i v

2/m
4
susy << 1

m2
1v

2

m4
susy
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Invisible decays of Higgs and Z boson

Other relevant couplings at order O(κ):
1

m2
susy

×
(

m2
1 χψh0

1
h0 ∗
1 + m2

2 χψh0
2
h0 ∗
2

)

+ Bµ
(

χψh0
2
h0
1 + χψh0

1
h0
2

)

+

∑

i=1,2

mλi√
2

D̃a
i χλ

a
i +

2
∑

i=1

mλi√
2
χσµν λa

i F a
µν, i + h.c .

=> invisible higgs decay h→ χ+ NLSP if NLSP is light enough

otherwise inverse decay studied in the past

taking also into account the goldstino components of higgsinos/gauginos

from SUSY terms: ∼ h0
i λh̃0

i

Similarly Z → χ+ NLSP => msusy >∼ 400-700 GeV from Z -width

∆ΓZ
<∼ 2.3 MeV
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Γh→χ+NLSP mA = 150 GeV; tanβ = 50; (mλ1
,mλ2

) = (70, 150) GeV
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NL extended supersymmetry N = 1L + 1NL

Goldstino in multiplet of N = 1 SUSY: vector or chiral?

brane dynamics => Maxwell goldstino multiplet

gauge chiral multiplet
∣

∣

N=2
W = (vector W + chiral X )N=1 [23]

W(y , θ, θ̃) = X (y , θ) + i
√

2θ̃W (y , θ)− θ̃2
[

1
4DDX (y , θ)+ 1

2κ

]

ր
allow partial SUSY breaking N = 2→ N = 1

δ∗X = i
√

2ηαWα δ∗Wα = i√
2κ
ηα + . . . ← linear SUSY

LN=2
Maxwell = −1

8

∫

d2θ d2θ̃W2 + h.c . =

∫

d2θ

[

1

2
W 2 − 1

4
XDDX− 1

2κ
X

]

+ h.c .

Partial SUSY breaking: non trivial prepotential f (W)

I.A.-Partouche-Taylor ’96
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DBI action

Non-linear N = 2 constraint: W2
NL = 0

=> X 2 = 0 , XWα = 0 , WW − 1
2XDDX = 1

κ
X [9]

X = κW 2 − κ3D̄2 W 2W
2

1+A++
√

1+2A++A2
−

A± = κ2

2

(

D2W 2 ± D̄2W
2
)

= ±A∗
±

=> LN=2
NL = 1

4κ

∫

d2θX + h.c .

= 1
8κ2

(

1−
√

−det(ηµν + 2
√

2κFµν)

)

+ . . .= LDBI ← D-brane

The FI-term is also invariant under NL SUSY

LFI = ξ

∫

d4θV ; W = −1
4D̄2DV ; δ∗V = i

2κ

(

ηD + η̄D̄
)

θ2θ̄2 + . . .

=> LNL
Max = LN=2

NL + LFI [24]
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Coupling to bulk hypermultiplets e.g. the universal dilaton

at least one isometry → single-tensor multiplet (RR 2-forms)

offers an off-shell formulation of matter (hyper) multiplet

N = 2 tensor Y = (tensor L + chiral Φ)N=1 D2L = D̄2L = 0

general action: LST =

∫

d4θH(L,Φ, Φ̄) with
(

∂2
L + 2∂Φ∂Φ̄

)

H = 0

L supersymmetrizes the field-strength of a 2-index tensor H = dB2

analog of W = −1
4D̄2DV for vector multiplet F = dA

To supersymmetrize the 2-index gauge potential B :

L = Dαℓα + h.c . ℓα: chiral spinor superfield analog of V

N = 2 => add auxiliary chiral superfield Y ∼ θ2ǫ·C4 ← 4-form
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Single-tensor multiplet

Y(y , θ, θ̃) = Y (y , θ) + i
√

2 θ̃ ℓ(y , θ)− i
2 θ̃

2 Φ(y , θ) [20]

Bononic field content:

N = 1 superfield Field Gauge invariance Number of fields

ℓα Bµν δBµν = 2 ∂[µΛν] 6B − 3B = 3B

ℓ 1B

Φ Φ 2B

FΦ 2B (auxiliary)
Y Cµνρσ δ Cµνρσ = 4 ∂[µΛνρσ] 1B − 1B = 0B

coupling to N = 2 vector W via Chern-Simons interaction:

LCS ∼ g

∫

d2θd2θ̃ YW = g

∫

d2θ

(

ℓαWα +
1

2
ΦX − i

2κ
Y

)

+ h.c .

=> global SUSY limit of D-brane coupling to bulk hypermultiplets
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N = 2 NL QED and novel super-higgs mechanism

General action: LNL
tot = LCS + LNL

Max(W ) + LST (L,Φ) => [21]

superhiggs mechanism without gravity:

Maxwell goldstino WNL(W ) is ‘absorbed’ by N = 2 tensor Y(L,Φ)

→ N = 1 massive vector (W ,L) + massless chiral Φ:

tensor of L + vector of W → massive vector

scalar of L ∈ same massive vector multiplet

goldstino + fermion of L → Dirac spinor

System identical to Higgs phase of N = 2 NL QED (up to LST )

Φ ∼ Q1Q2 L ∼ |Q1|2 − |Q2|2 (Q1,Q2): charged hypermultiplet

adding mass-term m
∫

d2θΦ => also Coulomb phase for ξ = 0
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Vacuum structure of N = 2 NL QED

3 parameters: κ, ξ,m

m = 0: Higgs phase and super-higgs without gravity

〈Q1〉 = v (real) arbitrary 〈Q2〉 =
√

ξ + v2

m 6= 0, ξ = 0: Coulomb phase with N = 2 NL SUSY unbroken

m 6= 0, ξ 6= 0: N = 1 (linear) SUSY is also broken

Ambrosetti-I.A.-Derendinger-Tziveloglou ’09
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Conclusions

Non-linear supersymmetry: powerful tool for studying:

low energy SUSY breaking E << msusy ∼ 1/
√
κ

Volkov-Akulov action and goldstino χ couplings to matter

standard coupling to stress-tensor not the most general

msoft
<∼ E << msusy : goldstino ≡ spurion coupled to supermultiplets

→ Non-linear MSSM : narrow but interesting region

- new quartic higgs coupling => • can increase the higgs mass

• reduce the MSSM fine tuning of the EW scale

brane effective actions => brane dynamics

N = 2 NL SUSY => DBI action and couplings to bulk fields

vacuum structure of NL QED and superhiggs without gravity
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