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e DE or modified gravity!?

® |ate time acceleration typically attributed to dark energy; on large
scales acts as a perfect fluid which violates the strong energy
condition
"

1
EguvT)u“usz WS —— wW=—

® Could the acceleration be due to new gravitational physics on
large scales?

1 Introduce new matter component
R, - EgWR = 8nGT,,* dark energy

1 . ~ _
R, - EguvR + modified gravity = 8wGT

® Relax one or more of the assumptions upon which GR is based;
introduce additional field(s) which mediate gravity.
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LW f(R) models

® f(R) models S:JHd4x[R+f(R)+L }

167G

® FEquivalent to scalar-tensor gravity; there is an additional scalar
field which also mediates gravity (the ‘scalaron’.)

® The scalar field is a chameleon;its mass is ‘background’
dependent.

® Field equations

1 1
Ruv o Eg,uvR T R,uva o Eg,uvf + [gva_Vqu]fR A SﬂGTuv df
S fR — d_R
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TUM Modified gravity:
Observational constraints
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® Gravity is well described by General Relativity in the solar
system

® Shapiro time delay measured
by the Cassini probe

| ’}/ — 1 |< 2.3 X 10_5 B. Bertotti, L. less, P. Tortora (2003)

Ny

® |n f(R) models, this corresponds to the constraint (u etal,2007)
GM.
fR < (y o 1) - R
s | £ (R I~ —5—<49x%x107"
M, 5 12%10° Y M2
r

S
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TUM Modified gravity:
Observational constraints

® Solar system constraints are model independent

® Model-specific f(R) constraints at larger scales:

2\n
Strong lensing (T. Smith 2009) R)=-m’ a(R/m’) <10 —
f(R)=-m Ry 11 | fr(R,.)IS10 n=1
Combined cosmological data sets far H
ACDM B, <1.1x107 B=1+f R
(SN la, BAO,CMB,...) (Lombriser et al. 2010) R
Structure formation (Linder 2009)  f(R) = —cr(l — e_R/r) fi < 107
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LW f(R) models

® Solar system tests rule out f(R) models!?

® Not necessarily! The scalar field is a chameleon.

® Observational constraints place limits on the scalar field mass,
which is background dependent.

'cff

1

Justin Khoury and Amanda Weltman (2003)

Large p Small p
® What other constraints can we place on the mass of the scalar
field?
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® Background cosmology of f(R) models;

2
ds® = —dt’ +a2(t)L drk ~+7r°(d6” +sin” 9d¢2)}
— Kr
3H® =8nG(p, +p,)+3(H> + H)f, —g— 3Hf,

2H —3H® =87GP + J. + 2], +§—<H+3H2>fR

p+4Hp =0 General Relativity

® Fourth order field equations. Simplify with the quasi-static
approximation;

1
3 fre(Rer)

M?*(a) = > H.,
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® Background equations in the quasi-static approximation

H2
3H2:87IG(pC+pr+pA)+O( un Hég

M*(a)
p.+3Hp =0 p,+4Hp, =0
2
® Deviations from GR expansion history are suppressed by ( iIGR j
M~ (a)
' ' ' ' ' ' ' ' ' ' ‘Y T G}gi
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TUM Modified gravity:
Perturbations
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® Perturbation equations (scalar perturbations only, Newtonian
gaugE) Bean et al. 2006

ds’ = a’ | —(1+2y)dv” + (1-2¢)y dx'dx’ |

6"+ HS! +k*y —3¢” —3H¢' =0 : -
c 1 c ;/’ 0 0 ™~ Fluid perturbation

o) + gkzﬁy + gkzl// —4¢” =0 < equations are unchanged

3a’

I+ f )W —0)+ fRR6R — _WSﬂGZi(pi + p,)0;
(I+ f)| 2K°0 + 6H (¢ + Hy) |+ 3 fou H SR — (K frg + 3Hf{x)OR — 3Hfxo SR + f{(6Hy + 3¢") = -87Ga’Z .6,

SR = %[—6a—w - 3HY +ky —9H ¢ —3¢” — 2k2¢}
a

a
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TUM Modified gravity:
Evolution of perturbations
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® To solve these equations, we use the quasi-static limit

® At background level, the mass of the scalar field satisfies
M?*>H* H

® The dominant contributions arise from terms involving

»  k
ME

® Approximate equations

20 ) _3a2M2+2k2
k"9 =-4nGQ(a,k)a’o, 0= NETyERE
v =[1+n(a,k)l¢ o 2K
3a’M* + 2k’
) _4k* +3a’M?

- i .
5. +2HS, —AnGp.6(a,k)8, =0 NEFEIYE
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e CMB angular power spectrum;
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® Very low modified gravity signal in the angular power spectrum,
even on large scales.
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® The matter power spectrum is modified at late times

5.(z.k) )
0.(z=10,k)

® f(R) models generically lead to increased power at
intermediate’ scales

100000 ¢

® P(z,k)=P,.(z= IO,k)(

10000 £

fo(R)=—fro =

1000 |

P(a=1,k) (Mpc/h)®

100 ¢
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TUT Modified gravity:
Perturbations

® We use weak lensing forecast data to place constraints on
f(R) mOdeIS (Appleby Thomas Weller, in prep).

Technische Universitat Munchen

® The weak lensing power spectrum
is sensitive to the modified gravity
signal in the matter power
spectrum

90 Hy ™ . rg()1%, (1
P.(l) = —m-0 d —} Ps( =,
(1) 1o A X a(x) a(x. x)

® TJo maximize the constraining

power of weak lensing probes, we must also compute the
non-linear power spectrum!
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TUM Modified gravity:
Non-linear regime
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® Use higher order perturbation theory for the mildly

nonlinear regime . -
b, — (7, k) T = log[a
@ —6(1, k) o
8®,(r, k d’k,d’k
0(7_ ) + Qap®s(7, k) = / (217‘_)3 251)(k — k1 = ko) Yabe (7, k) @s (k1, 7) Do (k2, T)
0 . ! o
o —M;(;z (1 :;a-'lﬁ-?a.k)) 2+ 4z
K M
[I{a, k) = ( + ) _1fi kK .
a? 3 M=o\ e Higher order vertex
1 ki .k '
o = (1 N |11<2|22) functions
| 1k, ko |k, + ko2
(I) _@\]] . @2) +_¢)5 + ... 7222=§ l|k21||21|k2|22|
Pu(k,7) = SV (k,7) + PSP (k,7) + YV (k,7) + ... 1 (87Gpn\? (K, My(a)
211 = T o ( 3 ) a? II(7, ko )TI(7, ko )II(7, ko)

® Extra terms; backreaction of the metric perturbations on the
scalar field mass (the chameleon mechanism!)
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TUM Modified gravity:
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Non-linear regime

® Ve observe the effect of the chameleon mechanism in the
mildly non-linear regime
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® Can use the mildly non-linear regime to calibrate fully non-

linear fitting formulas.
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® Perturbation theory cannot be trusted above k ~0.1% Mpc™

Modified gravity:
Non-linear regime

® Beyond this, we must use alternative approaches (N-body

simulations,...?)

® [he PPF formalism,

P(a, k) =

Pno—cham(aa k) + Cnl(a')zz(aa k)P(}l{(a: k)

® Requires simulations
to calibrate!

1 + cufa)X?(a, k)

Gr(K)

(PKk) - Per(k) ) / T

o(K)

l)(k) /l)nuclmm-lcn

04

- z=0 f(R)
06+ - — - 4 nochameleon
- —— e chameleon

" Smith et.al.
" Lines: PPF
~ Symbols: N-body
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Koyama et al. (2009)
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TUT Modified gravity:
Constraints
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® FEuclid weak lensing forecast

® Choose a simple functional
form for the mass of the

scalaron
H, A<l
Aa" + A n>?2

® [ake two cuts

M(a) =

® Conservative [ = 400 (only consider the linear regime)

® Include nonlinear physics /[ . = 10000 (using Smith et al;
incorrect!)
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Modified gravity:

Forecast constraints

Preliminary!
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® f(R) models are capable of reproducing the standard
expansion history.

® We expect to find modified gravity signals in the growth of
structure.

® The linear growth of perturbations is now well understood.

® To fully utilize the constraining power of upcoming surveys,
we must have a better understanding of the nonlinear regime.

® Higher order perturbation theory, fitting functions calibrated
by simulations, ...?
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