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The Universe 1s NOF periectly homogeneous |
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INFLATION: DRIVEN BY A
SCALAR FIELD ¢
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OSCILLATION

de Sitter ?




POWER SPECTRUM OF THE
FLUCTUATIONS

L _ Sinale field Flat Potential
Testing inflation: . <~

inflation V(¢)
R e 1 V3 o=l

The scalar power spectrum is given by Pr(k) = 19278 V72 x k

nilp k=aH
] ) ) dlog(PR)
and its spectral index is: n(k)—1 = = 2n—6e+. . .
dlog(k) |j—am

For gravity waves the situation is simpler since in fact they are perfectly massless... : the gravity waves

are generated by fluctuations in the metric, i.e. hz-j = 5gij.

1V
The tensor power spectrum is given by Pgra,v (k) = 6? I
Plk=aH
1 rav
and its spectral index is ngmv(k) = i og(Pg ) = — 2+
dlog(k) |,_,g




WANTED: DE SITTER !

¢ A positive cosmological constant, 1.e. a
(possibly metastable) de Sitter state provides
at the moment the best fit to the data...

¢ A quasi de Sitter solution describe very well an
inflationary phase since the slow roll parameters
have to be small...

¢ Try to find a model which starts and finishes
in a de Sitter vacuum !



WHY SUPERGRAVITY ?

¢ Theoretically attractive: supersymmetry gives
gauge unification, solves hierarchy problem,etc...

¢ Provides a coherent framework to study
different signal in high energy physics,

astrophysics and cosmology.

¢ Itis surely necessary to extend supersymmetry
to supergravity to discuss cosmology !

¢ Allows extension to string theory...:
the low energy 4D limit of some string theories

1s a N=1 supergravity of the no-scale type.



¢ A de Sitter or quasi-de Sitter phase 1s needed to account
for the present cosmological constant and for inflation

¢ But in SUGRA the absolute minima are either anti-de
Sitter or Minkowski... and do not break SUSY !

¢ Also inflation 1s difficult = 1) problem
the SUGRA potential is usually steep with 1/ ~ |/

as long as one does not resort to some tuning...

.. SLOW ROLL inflation not easy to realise !
[Copeland et al 94; Guth, Randall & Thomas 94, ....]
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¢ A de Sitter or quasi-de Sitter phase 1s needed to account
for the present cosmological constant and for inflation

¢ But in SUGRA the absolute minima are either anti-de
Sitter or Minkowski... and do not break SUSY !

v L(PXET (Wi + KW)(W; + K51W) - 3]W]2)

¢ Also inflation 1s difficult = 1) problem
the SUGRA potential is usually steep with 1/ ~ |/

as long as one does not resort to some tuning...

... SLOW ROLL inflation not easy to realise !
[Copeland et al 94; Guth, Randall & Thomas 94, ....]



DE SITTER VACUA AND
MODULI STABILISATION

¢ One of the historical problems of string theory 1s to
stabilise all the moduli fields.

¢ Progress in the last years: possible to stabilise most
moduli using flux compactifications !

| : KKLT 03
¢ But in some models one

has to rely to explicit
SUSY breaking terms to
stabilise all the moduli

and up-lift the vacuuim e e T volume modulus
(e.g. KKLT...)
SUSY AdS/non—perturbative effects

[ Kachru, Kallosh, Linde & Trivedi 03]
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SUGRA AND SCALAR FIELDS

Thanks to the Kaehler symmetry the scalar potential can be

written very simply as a function of a single function

G(®,®) = K(®,P) + In[W(P)] + In [W(D)]
1.e. the potential 1s ‘/v((I)7 (I)) — GG(CI)’(I)) (GZGZ = 3)

where G, = &sz(CI), (I)) 1s tl

he derivative w.r.t. fields

and 1indices are lowered and raised

gﬁ == 8@8@5(}(@, (I))

Supersymmetry 1s broken if <G z>

and the Goldstino field 1s given by

oy the metric and its inverse
gﬂgil} =k

£
=G0



¢ Project the scalar mass matrix along the Goldstino
direction for any V and obtain

e 2
= e_GV;jGZGJ — —ge_GV(e_GV +3)+o

2 .= = _
where [U = g(gz;GzG])Q — Rz G G G”ij

¢ A necessary condition for metastability is that A is
positive, thenif V>0 weneed o > (

¢ Note: the curvature tensor depends only on the

Kaehler potential, while the Goldstino direction on
the whole G, including W



¢ Canonical Kaehler potential: K = X X

Zero higher derivatives and no curvature !

For vanishing A : 2
.= =% 9-—265(
3
¢ Logarithmic Kaehler: K = —n In [T -+ T}
Constant curvature R ~ 2 / n
so we have 18

Go==0 >0 — n>3
n

Same result also for K = —n In [T + Jl = X'X}

¢ More 1n general the curvature 1s not constant...



NO-SCALE KAEHLER

[Cremmer, Ferrara, Kounas & Nanoupoulos 83, ....]

¢ The no-scale property requires K, K Lr 3
so that the cosmological constant 1s zero at tree
level since the potential vanishes if WW/; = ()

V =eK@® W, + K,W|? — 3|W|?]
= X (®:®) |Wi|? + 2Re[ K;WW;]]

¢ For a single field the no-scale Kaehler 1s simply
K =-3In[T+T]



¢ The problem i1s the logarithmic Kaehler potential...
K=-3In(T+7T) G=K+h({(W|°)
¢ For a single modulus in de Sitter one mass 1s always
negative for any superpotential W [Brustein & de Alwis 04]

¢ In general Minkowski metastable vacua with broken

SUSY need the holomorphic sectional curvature for
the metric K5 to be bounded: R, ., G'G’G"G™ < 6
[Gomez Reino & Scrucca 04]
¢ This result can be generalised to de Sitter into:

2 Py i -
o g(gﬁGZGJ)Q — Rz G*'G?G"G™ > (

|[LC, Gomez Reino, Gross, Luis, Palma & Scrucca I 08]



|LC, Gomez Reino, Gross, Luis, Palma & Scrucca I 08]

Heterotic Calabi-Yau

K = —log(V) e — oo
4 ] 1 (
V = gdijkv v P V= 48d TE 005Uk
| . . Jal e
R = RITY) = 1—6d”kvjvk

Then we have simply

3
C|* o ~ §64KAdetg\C\4

Where A 1s the discriminant of the cubic polynomial



|[LC, Gomez Reino, Gross, LLuis, Palma & Scrucca I 08]

Heterotic Calabi-Yau Type 11 b orientifolds
K = —log(V) e — oo
4 1
=D V= f@ e
3 48
. . | g
R(T) X v° RITY) = = TR0

Then we have simply

3 3
~ ——64K@|C|4 o ~ —64@6159 G

8 detq 8

Where A 1s the discriminant of the cubic polynomial



[t 1s possible also for NO-SCALE for more than 2 fields 11!

¢ Choose intersection numbers with the correct sign of A

¢ Taylor expand the superpotential W around the
minimum up to 3rd order and fix the coefficients such
that V' ~ 0, V' = 0 and all masses (apart for the
Goldstino partner fields) are positive; Wy fixes the
gravitino mass and the overall scale of the potential.

¢ Continue the potential away from the minimum using
linear and exponential terms (at least 7 parameters

needed for two helds with separable W)

|LC, Gomez-Reino, Gross, Palma, Scrucca 09]



EXPLICIT MODEL(S)

|LC, Gomez-Reino, Gross, Palma, Scrucca 09]

Expand the superpotential around the minimum as
W =Wy + Wi(T, — T)) + W (T; — TN T — T3)
Wt T (T, - 1) (T =~ B

heterotic: A < 0 orientifold: A > ()
T | 0.405666 T | 0.412741
T02 0.749277 T02 0.714888
Wo 1.00000 Wo | 1.000000
Wi 1.64415 W, 2.021311
W 2.60392 W, 0.931223
Wy | —17.4400 Wi | 0.999657
Wy | 3.82418 Was | —0.797685
Wit 616.732 Wi | —0.827204
Waso | 2.31275 Wass | 3.308820




Match to a string-inspired superpotential like

|LC, Gomez-Reino, Gross, Palma, Scrucca 09]

W — A —+ AlealTl -+ BleblTl -+ A2€a2T2 —+ BQ€b2T2

heterotic:

()

—5.97604 x 107!

—3.62358 x 10°

—1.46692 x 10°
7.98841 x 107!
7.49672 x 1071

4.36876 x 10!
2.66924 x 10°
—1.28225 x 10°
5.33848 x 10°

orientifold: A > ()

mg/QV}{/Q

2.63036 x 10?
7.37726 x 101
—9.77287 x 10*
—1.50213 x 10°
—2.80545 x 10°

3.49830 x 1071
2.79764 x 107!
7.30908 x 10V

4.19646 x 101

In units of

p=1/3

ms3 /2 Vo

2/3




ANOTHER WAY:
CORRECTED DE SITTER

Subleading corrections can help, if they spoil the
no-scale property and change the Kaehler curvature...

K = —nlog [V+é]

Then we obtain g o £ positive for positive ¢

A\

But then the mass along the Goldstino direction 1s
suppressed compared to the gravitino mass:

=22

m, A
m2 2
3/2

[LC, Gomez-Reino, Gross, Louis, Palma, Scrucca 08 I]



ITINO M/

—
-
P




WHAT ABOUT INFLATION ?
A NEW 7] PROBLEM !

|LC, Gomez Reino, Gross, Luis, Palma & Scrucca 11 08]

¢ In modular inflation eta 1s constrained:

2 o

5 = O/

A e
H2

where = —L for mg/Q — e = & W2
W5l
¢ To realise slow roll inflation, i.e. €, [1| ~ 0, we need
g~ 671 +~)

For 7 << 1this reduces to o > 0 as for pure de Sitter,

while for v > 1 it is more stringent |

INFLATION at HIGH SCALE is more dithcult !




¢ We need more than one field contributing to
modular inflation..., possibly one which has
a Kaehler potential with zero curvature, e.g.

K=-3In(T+T)+ XX

¢ We can rely on quantum corrections to
modify the curvature and allow de Sitter or
inflation, but with some tuning...

€ An early inflationary phase, makes present
(at least metastable) de Sitter possible...

¢ Explicit model building still ongoing work !



[t seemed possible for NO-SCALE with 2 or more fields...

2 Choose dz- ik with the correct sign of A

¢ Define two orthogonal directions, one along K;

¢ If SUSY 1s broken along - there 1s one tachyonic

state at tree-level and ‘77| is large since 0 = 0

¢ It SUSY 1s broken along [V, inflation cannot proceed
along that direction since |/ < ()
[t can proceed along [, , but not for long... Need to
keep a restricted phase.

Mixed case 7?7 [BunaeerbCr Gl



INFLATION WITH 2 FIELDS ?

SUSY Inflation N | Burrage, L.C, Gross 10]
N z\/K Z 7’
020—>77||<—§ G K" =03} <A
A N\/K
2 |
o=0—n<—3 7~0—arg[K'V;V] #0



GENERAL PREDICTIONS:

¢ We need more than one modular field to
allow for inflation: if 1t 1s not possible for
realistic W to make all other states heavy,
we can expect both 1socurvature
perturbations and non-gaussianities

¢ Low scale inflation 1s preferred !
Probably no gravity waves signal for
modular inflation... apart if the gravitino
mass was very large during inflation.






COUPLED FIELDS &
HYBRID INFLATION

[ Baacke, LC, Kevlishwvili10]

¢ Consider a system of coupled fields with non-minimal

coupling with gravity and gravity counterterms O(RR):
23 | P -
L=+/—g 5 OuD: 0" P — V(D) — E&(I)?

1 1
where V((I)) — 57713(1)? = ZAZ](I)?(I)JZ

¢ Treat the scalar fields as quantum helds in the one loop
approx., but keep gravity classical. Regularise the model
in n dimensions and renormalise 1t in a scheme such to
make e.o.m. of the fluctuations numericaﬂy stable.



EQUATIONS OF MOTION
®; = ¢;(t) + 09i(¢, x)

¢ Classical field: G
7 + (mi + (& — &n)R)a’di+
a* ™" Nij [(95 — G )i — 2iGijh5] = 0
¢ Quantum fluctuations:
fi' (7, k) + K fi(r, k) + Mi; (7, k) = 0
where
M = (m + (& — &) R)a® +a* ™" (3is] + Xij3)
./\/l@'j = 2a4_n)\ij¢? 2 ?é J



FLUCTUATION INTEGRAL

[Baacke, LC, Kevlishwvili10]

¢ The regularised Greens functions can be written as

: L € 2 fin
where L. contains the divergent part, F zf " the finite
parts and the numerical subtracted integrajl, while

are finite pieces due to taking GR in n dimensions

¢ The lagrangian counterterm is simply

L
5[: — —CLn_4 647‘(‘2/\/12[ Ml2k

1t contains all the usual renormalisation counterterms

for cosmological constant, masses & couplings.



ENERGY-MOMENTUM TENSOR

[Baacke, LC, Kevlishwvili10]

¢ The renormalised energy-momentum tensor can be
written as a function of the renormalised fluctuation
integrals and 1s covariantly conserved.

¢ There 1s a contribution from the conformal anomaly,

which 1s finite and has to be added “by hand”.

¢ The renormalisation 1s independent of time, but some
of the analytical finite pieces contain Log(a) terms,
which are compensated by the numerical integrals.
For a single free field, we can show analytically that
the only terms surviving are of the form Log(m;/u)



TWO FIELDS SIMULATIONS

[Baacke, LC, Kevlishwvili10]
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TWO FIELDS SIMULATIONS

[ Baacke, L.C, Kevlishvili10]
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TWO FIELDS SIMULATIONS

[Baacke, LC, Kevlishvili10]
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OUTLOOK
de Sitter in SUGRA 1s not so hopeless:

¢ We were able to build a model with a tree-level
metastable de Sitter vacuum, but we need more
than one modulus...

¢ No inflation 1n this model yet, but we are still
exploring new directions:
- exploit even more scalar fields
- try to change substantially the gravitino
mass during cosmological evolution

¢ Also some of the fields have a mass not larger than
the gravitino mass: moduli problem ???



