

Running-mass Inflation Model and Primordial Black Holes

Encieh Erfani

Bethe Center for Theoretical Physics
Universität Bonn

erfani@th.physik.uni-bonn.de

4th October 2010

Based on work with Manuel Drees

Outline

1 Primordial Black Holes (PBHs)

- PBHs properties
- PBHs formation

2 Running-mass inflation model

3 Conclusion

Definition

A PBH is a hypothetical type of black hole that is **not** formed by the gravitational collapse of a large star but by the extreme density of matter present during the Universe's early expansion.

Definition

A PBH is a hypothetical type of black hole that is **not** formed by the gravitational collapse of a large star but by the extreme density of matter present during the Universe's early expansion.

PBHs properties

$$\text{Mass: } M_{\text{BH}} \approx 10^{15} \left(\frac{t}{10^{-23} \text{s}} \right) \text{ g}$$

$$M_{\odot} \simeq 2 \times 10^{33} \text{ g}$$

Definition

A PBH is a hypothetical type of black hole that is **not** formed by the gravitational collapse of a large star but by the extreme density of matter present during the Universe's early expansion.

PBHs properties

$$\text{Mass: } M_{\text{BH}} \approx 10^{15} \left(\frac{t}{10^{-23} \text{s}} \right) \text{ g} \quad M_{\odot} \simeq 2 \times 10^{33} \text{ g}$$

$$\text{Temperature: } T_{\text{BH}} \approx 10^{-7} \left(\frac{M}{M_{\odot}} \right)^{-1} \text{ K}$$

Definition

A PBH is a hypothetical type of black hole that is **not** formed by the gravitational collapse of a large star but by the extreme density of matter present during the Universe's early expansion.

PBHs properties

$$\text{Mass: } M_{\text{BH}} \approx 10^{15} \left(\frac{t}{10^{-23} \text{s}} \right) \text{ g} \quad M_{\odot} \simeq 2 \times 10^{33} \text{ g}$$

$$\text{Temperature: } T_{\text{BH}} \approx 10^{-7} \left(\frac{M}{M_{\odot}} \right)^{-1} \text{ K}$$

$$\text{Lifetime: } \tau_{\text{BH}} \approx 10^{64} \left(\frac{M}{M_{\odot}} \right)^3 \text{ yr}$$

Why PBHs are useful?

- PBHs as a probe of the early Universe ($M < 10^{15}$ g)
- PBHs as a probe of gravitational collapse ($M > 10^{15}$ g) ✓
DM candidates $\Omega_{\text{PBH}}^0 \lesssim \Omega_{\text{CDM}}^0 (= 0.25)$
- PBHs as a probe of High Energy Physics ($M \sim 10^{15}$ g)
- PBHs as a probe of quantum gravity ($M \sim 10^{-5}$ g)
(DM candidates)

PBHs Formation

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.

PBHs Formation

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.

- Collapse of overdense regions
- Primordial density inhomogeneities ✓
- Soft equation of state (like phase transition)

PBHs Formation

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.

- Collapse of overdense regions
 - Primordial density inhomogeneities ✓
 - Soft equation of state (like phase transition)
- Collapse of cosmic loops

PBHs Formation

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.

- Collapse of overdense regions
 - Primordial density inhomogeneities ✓
 - Soft equation of state (like phase transition)
- Collapse of cosmic loops
- Bubble collisions of broken symmetry

PBHs Formation

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.

- Collapse of overdense regions
 - Primordial density inhomogeneities ✓
 - Soft equation of state (like phase transition)
- Collapse of cosmic loops
- Bubble collisions of broken symmetry
- Collapse of domain walls

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

$$\delta_{th} = 0.3 \quad \text{or} \quad 0.7$$

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

$$\delta_{th} = 0.3 \quad \text{or} \quad 0.7$$

$$\delta^2(k, t) \equiv \mathcal{P}_{\delta}(k, t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \quad w = 1/3$$

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

$$\delta_{th} = 0.3 \quad \text{or} \quad 0.7$$

$$\delta^2(k, t) \equiv \mathcal{P}_{\delta}(k, t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \quad w = 1/3$$

$$\sigma_{\delta}^2(R) = \int_0^{\infty} W^2(kR) \mathcal{P}_{\delta}(k) \frac{dk}{k}$$

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

$$\delta_{th} = 0.3 \quad \text{or} \quad 0.7$$

$$\delta^2(k, t) \equiv \mathcal{P}_{\delta}(k, t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \quad w = 1/3$$

$$\sigma_{\delta}^2(R) = \int_0^{\infty} W^2(kR) \mathcal{P}_{\delta}(k) \frac{dk}{k}$$

$$W(kR) = \exp\left(-\frac{k^2 R^2}{2}\right)$$

Press-Schechter Formalism

The Press-Schechter formalism is a model for predicting the number density of bound objects such as galaxies or galaxy clusters of a certain mass.

$$f(> M) = 2 \int_{\delta_{th}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{\delta}(R)} \exp\left(-\frac{\delta^2(R)}{2\sigma_{\delta}^2(R)}\right) d\delta(M)$$

$$\delta_{th} = 0.3 \quad \text{or} \quad 0.7$$

$$\delta^2(k, t) \equiv \mathcal{P}_{\delta}(k, t) = \frac{4(1+w)^2}{(5+3w)^2} \left(\frac{k}{aH}\right)^4 \mathcal{P}_{\mathcal{R}_c}(k) \quad w = 1/3$$

$$\sigma_{\delta}^2(R) = \int_0^{\infty} W^2(kR) \mathcal{P}_{\delta}(k) \frac{dk}{k}$$

$$W(kR) = \exp\left(-\frac{k^2 R^2}{2}\right)$$

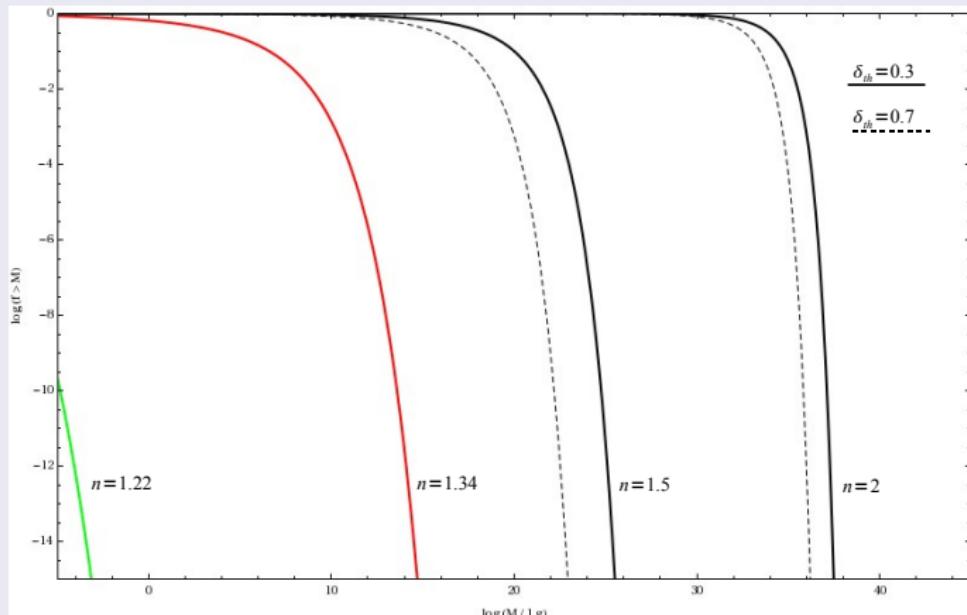
$$M_{\text{PBH}} = \gamma M_{\text{PH}} \xrightarrow{\gamma=w^{3/2}} \frac{R}{1 \text{ Mpc}} = 5.54 \times 10^{-24} \gamma^{-\frac{1}{2}} \left(\frac{M_{\text{PBH}}}{1 \text{ g}}\right)^{1/2} \left(\frac{g_*}{3.36}\right)^{1/6}$$

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n-1}$$

Power Spectrum

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n-1}$$

$f(> M)$ diagram for the mass range $10^{-5} - 10^{50}$ g



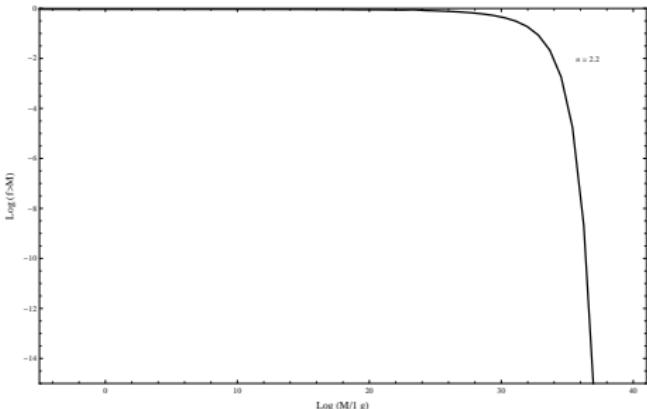
Scale dependent spectral index

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \dots$$

$$n_s \equiv \frac{d \ln \mathcal{P}_{\mathcal{R}_c}}{d \ln k} \Big|_{k=k_0}$$

$$\alpha_s \equiv \frac{dn}{d \ln k} \Big|_{k=k_0}$$



WMAP 7+BAO+ H_0 [arXiv:1001.4538]

$$n_s = 1.008 \pm 0.042 \quad k_0 = 0.002 \text{ Mpc}^{-1}$$
$$\alpha_s = -0.022 \pm 0.020$$

Running-mass Inflation Model

The inflation potential is dominated by the soft SUSY breaking mass term generated by V_0 and its radiative corrections

$$V = V_0 + \frac{1}{2} m_\phi^2(\phi) \phi^2 + \dots$$

RGE $\frac{dm^2}{d\ln\phi} \equiv \beta_m$ with $\beta_m = -\frac{2C}{\pi} \alpha \tilde{m}^2 + \frac{D}{16\pi^2} |\lambda_Y|^2 m_{\text{loop}}^2$

Over a sufficiently small range of ϕ , or small inflaton coupling, we can do the Taylor expansion:

$$V = V_0 + \frac{1}{2} m^2(\phi_0) \phi^2 + \frac{1}{2} \frac{dm^2}{d\ln\phi} \Big|_{\phi=\phi_0} \ln\left(\frac{\phi}{\phi_0}\right) + \frac{1}{4} \frac{d^2 m^2}{d(\ln\phi)^2} \Big|_{\phi=\phi_0} \ln^2\left(\frac{\phi}{\phi_0}\right)$$

where ϕ_0 is the inflaton value at the epoch of the horizon exit for the pivot scale k_0 .

Slow-roll parameters

$$\epsilon \equiv \frac{M_P^2}{2} \left(\frac{V'}{V} \right)^2$$

$$\eta \equiv M_P^2 \frac{V''}{V}$$

$$\xi^2 \equiv M_P^4 \frac{V' V'''}{V^2}$$

$$\sigma^3 \equiv M_P^6 \frac{V'^2 V''''}{V^3}$$

Spectral index and its running

$$n_s = 1 - 6\epsilon + 2\eta$$

$$\alpha_s = -24\epsilon^2 + 16\epsilon\eta - 2\xi^2$$

Slow-roll parameters

$$\epsilon \equiv \frac{M_P^2}{2} \left(\frac{V'}{V} \right)^2$$

$$\eta \equiv M_P^2 \frac{V''}{V}$$

$$\xi^2 \equiv M_P^4 \frac{V' V'''}{V^2}$$

$$\sigma^3 \equiv M_P^6 \frac{V'^2 V''''}{V^3}$$

Spectral index and its running

$$n_s = 1 - 6\epsilon + 2\eta$$

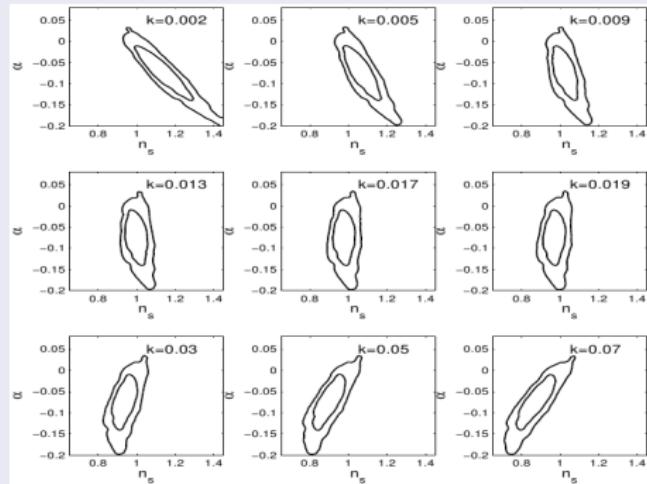
$$\alpha_s = -24\epsilon^2 + 16\epsilon\eta - 2\xi^2$$

Value of running index

$$\alpha_s \sim \mathcal{O}(10^{-2})$$

Correlation of spectral index and its running

[astro-ph/0702170]



Solution ?

Running of running

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \frac{1}{3!} \beta_s \ln^2 \left(\frac{k}{k_0} \right) + \dots$$

$$\beta_s \equiv \frac{d^2 n}{d(\ln k)^2} \Big|_{k=k_0}$$

Solution ?

Running of running

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \frac{1}{3!} \beta_s \ln^2 \left(\frac{k}{k_0} \right) + \dots$$

$$\beta_s \equiv \frac{d^2 n}{d(\ln k)^2} \Big|_{k=k_0} \quad 0 < \beta_s < 0.042$$

Solution ?

Running of running

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \frac{1}{3!} \beta_s \ln^2 \left(\frac{k}{k_0} \right) + \dots$$

$$\beta_s \equiv \frac{d^2 n}{d(\ln k)^2} \Big|_{k=k_0} \quad 0 < \beta_s < 0.042$$

$$\beta_s = -192\epsilon^3 + 192\epsilon^2\eta - 32\epsilon\eta^2 - 24\epsilon\xi^2 + 2\eta\xi^2 + 2\sigma^3$$

Solution ?

Running of running

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \frac{1}{3!} \beta_s \ln^2 \left(\frac{k}{k_0} \right) + \dots$$

$$\beta_s \equiv \frac{d^2 n}{d(\ln k)^2} \Big|_{k=k_0} \quad 0 < \beta_s < 0.042$$

$$\beta_s = -192\epsilon^3 + 192\epsilon^2\eta - 32\epsilon\eta^2 - 24\epsilon\xi^2 + 2\eta\xi^2 + 2\sigma^3$$

Results

$$n_s = 1.008, \quad \alpha_s = 6 \times 10^{-3}, \quad \beta_s = 4 \times 10^{-4}$$

$$n(k) = 1.24 \quad \text{for } M_{\text{PBH}} > 10^{15} \text{ g}$$

Solution ?

Running of running

$$\mathcal{P}_{\mathcal{R}_c}(k) = \mathcal{P}_{\mathcal{R}_c}(k_0) \left(\frac{k}{k_0} \right)^{n(k)-1}$$

$$n(k) = n_s + \frac{1}{2!} \alpha_s \ln \left(\frac{k}{k_0} \right) + \frac{1}{3!} \beta_s \ln^2 \left(\frac{k}{k_0} \right) + \dots$$

$$\beta_s \equiv \frac{d^2 n}{d(\ln k)^2} \Big|_{k=k_0} \quad 0 < \beta_s < 0.042$$

$$\beta_s = -192\epsilon^3 + 192\epsilon^2\eta - 32\epsilon\eta^2 - 24\epsilon\xi^2 + 2\eta\xi^2 + 2\sigma^3$$

Results

$$n_s = 1.008, \quad \alpha_s = 6 \times 10^{-3}, \quad \beta_s = 4 \times 10^{-4}$$

$$n(k) = 1.24 \quad \text{for } M_{\text{PBH}} > 10^{15} \text{ g}$$

Conclusions

- The fluctuation which arise at inflation are the most likely source of PBHs.
- One needs the fluctuation amplitude to increase with decreasing scale in order to produce PBHs.
- The value of spectral index should be larger than 1.34 in the scale corresponding to PBHs with mass larger than 10^{15} g.
- The COBE normalization on Lyman- α range puts an upper bound on the running of running spectral index, $\beta_s < 0.042$.
- With WMAP 7-year data, the running-mass inflation model is **not** a good candidate for DM PBHs formation.

PBHs formed at the beginning of time may have had masses similar to that of Mount Everest.

Thanks for your attention