

Strong CP problem reconciles Thermal Leptogenesis with Gravitino Dark Matter

Jasper Hasenkamp (Hamburg U.)

at 2nd Bethe Center Workshop (Bad Honnef, Germany)
Cosmology meets Particle Physics

Based on **arXiv:1008.1740** (with Jörn Kersten)

5th October 2010

Matter and Dark Matter

- 1) Thermal Leptogenesis as origin of matter → no additional ingredients beyond see-saw mechanism
- 2) Gravitino Dark Matter: $\Psi_{3/2}$ inevitable prediction of any local supersymmetric theory → $\Omega_{3/2} = \Omega_{\text{DM}}$ turns gravitino decay problem into a virtue

1+2) $\Omega_{3/2}^{\text{tp}}(T_R \sim M_{\nu_R^1}^{\text{min}} \sim 10^9 \text{ GeV}) = \Omega_{\text{DM}}$
with $M_{\tilde{g}}(m_Z) \approx 1 \text{ TeV}$ and $m_{3/2} = \mathcal{O}(100 \text{ GeV})$ such that
 $\tau_{\text{nlsp}}^\dagger \gg 1 \text{ s} \sim t_{\text{BBN}}$ called **NLSP decay problem**
⇒ Upper bound on energy released by particle decays after t_{BBN}

Way out: Entropy production after NLSP freeze-out?

[†] $\tau_{\text{nlsp}} \propto M_{\text{pl}}^2 m_{3/2}^2 / m_{\text{nlsp}}^5$

Entropy Production in Particle Decays after NLSP freeze-out

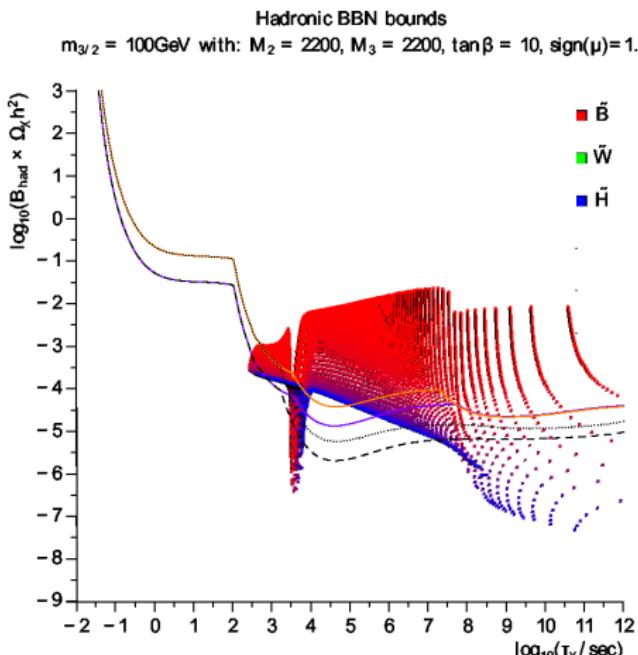
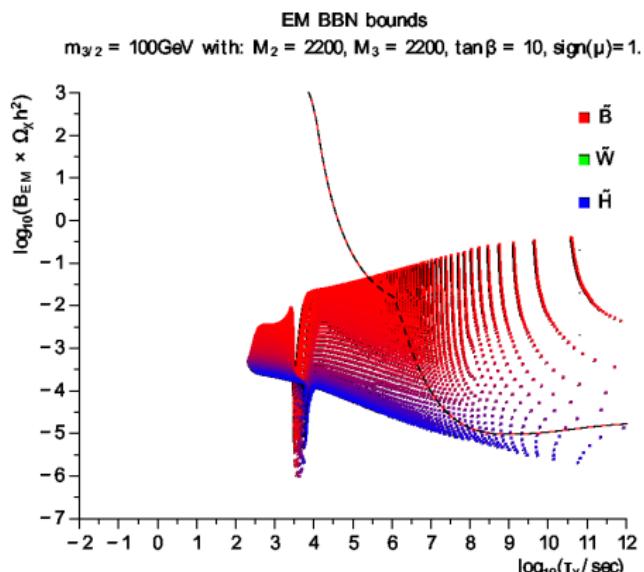
- overcome BBN bounds by small enough density prior its decay Ω_{nlsp}
- NLSP freeze-out density $\Omega_{\text{nlsp}}^{\text{fo}}$ reduced by dilution factor Δ

$$\Omega_{\text{nlsp}} = \Delta^{-1} \Omega_{\text{nlsp}}^{\text{fo}}$$

- many extensions of Standard Model predict late-decaying particles
- intrinsic upper bound on Δ from leptogenesis

$$\Delta < 10^3 \dots 10^4 \quad \left(M_{\nu_R^1}^{\text{min}'} = \Delta \cdot M_{\nu_R^1}^{\text{min}} \curvearrowright T_R' = \Delta \cdot T_R \right)$$

- maximal Δ for matter domination after NLSP freeze-out



$$\Delta \simeq 0.75 \times 10^3 \left(\frac{m_{\text{nlsp}}}{100 \text{ GeV}} \right) \left(\frac{4 \text{ MeV}}{T_{\text{min}}^{\text{dec}}} \right)$$

- light wino and Higgsino pass BBN bounds allowing $m_{3/2} = 100 \text{ GeV}$, but not bino.[†]

Easiest case sufficient

[†] $\tilde{\tau}$ by [Buchmüller et al., 06] and [Pradler, Steffen, 07]

BBN exclusion plots in the plane $B_i \times \Omega_\chi h^2$ vs. τ_χ with $\Delta = 10^3$

same for bino-wino, wino-Higgsino

details & smaller $m_{3/2}$ in [Covi, JH, Roberts, Pokorski, 09], BBN bounds from [Jedamzik, 06]

Requirements on entropy-producing particle ϕ to dilute the NLSP

No.	Requirement	Comment
i	$\tau_\phi > t_{\text{nlsp}}^{\text{fo}}$	to have effect on Ω_{nlsp}
ii	$\tau_\phi < t_{\text{BBN}}$	not to spoil BBN
iii	$\frac{\rho_\phi}{\rho_{\text{rad}}}(\tau_\phi) > 1$	$\mathcal{O}(10) < \Delta < 10^4$
iv	$\frac{\rho_\phi}{\rho_{\text{rad}}} (t_{\text{nlsp}}^{\text{fo}}) < 1$	for standard NLSP freeze-out
v	$B_{\phi \rightarrow \text{nlsp} + \dots} \approx 0$	from NLSP decay problem
vi	$B_{\phi \rightarrow \Psi_{3/2} + \dots} \approx 0$	from overproduction ($\Omega_{3/2}^{\text{tp}} \simeq \Omega_{\text{DM}}$)
vii	e.g. $\tau_{3/2} \gg t_0$	compatibility with gravitino dark matter
viii	ii) and v)-vii)	for by-products. No new problems.

Severe constraints

indeed already without particular interest in entropy production

Example for an extension of the Standard Model

- Strong CP problem: fine-tuning problem of the Standard Model
→ standard solution (PQ mechanism) introduces axion $a \xrightarrow{\text{susy}} \{a, \phi_{\text{sax}}, \tilde{a}\}$
- ϕ_{sax} and \tilde{a} typical late-decaying particles with interactions suppressed by $f_a \gtrsim 6 \times 10^8$ GeV (observational bound)
- example scenario with maximal Δ :
 $f_a = 10^{10}$ GeV, $m_{\tilde{a}} \geq 1.2$ TeV, $\phi_{\text{sax}}^i \sim \sqrt{f_a M_{\text{pl}}}$, $m_{\text{sax}} = 8.4$ GeV
smaller f_a and larger m_{sax} giving smaller Δ allowed as well
- while standard scenario ($\Delta = 1$) requires:
 $f_a \lesssim 10^{10}$ GeV, $m_{\tilde{a}} \geq 1.2$ TeV, $\phi_{\text{sax}}^i \sim f_a$, $m_{\text{sax}} \geq 1.2$ TeV

Saxion ϕ_{sax} can make it

Conclusions

- i) $\Delta > 1$ can help to reconcile thermal leptogenesis with gravitino dark matter
- ii) $\Delta \sim 10^3$ reconciles both in the case of wino ($\Delta_{\tilde{W}^0}^{\min} = 25$) and Higgsino ($\Delta_{\tilde{H}^0}^{\min} = 90$), but not for bino NLSP.
- iii) Severe constraints on entropy-producing particle
→ generic for late-decaying particle
- iv) Saxion produced in coherent oscillations can make it
→ restrictions in any case

The potentially dangerous saxion decays can turn out as a fortune, solving the a priori unrelated gravitino problem.

Thank you for your attention!

Hopefully, there are comments/questions?