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ABSTRACT
o The explanation for the origin of galactic and extra-galactic magnetic
fields continues being an unsolved problem in the modern cosmology.
@ A possible explanation comes from the fact that these fields emerged

from a small field, "a seed”, produced in the early universe (phase
transitions or after of inflation) and these evolved with time.

o In this talk I will present the perturbed Einstein Equations, with sources
that contain a background of perfect fluid and an electromagnetic field.

@ Through the evolution equations, the propagation of these fields in the
cosmological history it’s shown.
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INTRODUCTION
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ORIGIN OF MAGNETIC FIELD

o PRIMORDIAL Magnetic Field

» Phase Transitions

» Amplification of Perturbations
in electromagnetic Field during
Inflation

> Perturbation to 2° order in
coupled y—p—e™.



ORIGIN OF MAGNETIC FIELD

o PRIMORDIAL Magnetic Field o ASTROPHYSIC MAGNETIC

> Phase Transitions FIELD

» Amplification of Perturbations » Biermann Battery
in electromagnetic Field during » Harrison’s Mechanism.
Inflation » Biermann mechanism in the

> Perturbation to 2° order in supernova explosions of first
coupled y—p—e™. stars.



COSMOLOGICAL PERTURBATIONS

General covariance states that there is no
preferred coordinate system in nature and it
introduce a gauge in perturbation theory. This
gauge is an unphysical degree of freedom and
we have to fix the gauge or to extract some
invariant quantities to have physical results.

T(p) ="To(p) +67(p) )

Eq.(2) implies that we are using a gauge Given a tensor field 7, the relations between the 1°
q. p g and 2° perturbations of 7 in two different gauges are:

choice.

A tensor field 7 is gauge-invariant to order n > 1, iff: 8—[% — S—IQJ = Lé 10 2)

Lg 8k =0, for any vector field & on .# and :

vk < n%.

: 8279 - 527 =21, (57)
9Bruni M., Matarrense S., Mollerach S. & d

Sonego S., gr-qc: 9609040v2, (1997).
+ (L3, +L5) To 3)
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COSMOLOGICAL PERTURBATIONS TO FIRST ORDER
MATTER PERTURBATIONS
We do the perturbative expansion of these quantities:

> 1
U= )+ Z (o)
=i r!

=
P=Po+ X 1Pu
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COSMOLOGICAL PERTURBATIONS TO FIRST ORDER
METRIC PERTURBATIONS

We consider first and second order perturbations about a FRW background, so
that the metric tensor is:

_ 2 v L0
goo = —a(7) <1+2rzlr!w

=1
Goi = a(r)2 Z le(f)
r=1""

S R
gij = a(1)? l<1—2r=21r—!¢( )) 8ij +r221 r—!lé‘ )]
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The perturbations are splitting into scalar, transverse vector part, and
transverse trace-free tensor:

o) = 00 + o @

With 9/ = 0.

xi(jr) — D,-J-x(')” +aixjgr)i+ajxlgr)i+xlgjr)r 5)

With afxfij =0 and D;; = 9;9; — %BUV?

g(ir) = aiﬁ(r) +d(i (6)
With 9;d(")7 = 0.



GAUGE INVARIANTS QUANTITIES

SCALAR MODES

1 /
o=y (o)
1
(D(l) = (p(l) AL 6sz(l) _ Hcsﬂ(u) (8)
A =y + (o) Sy ©)
1 !/
p® = @ 4 (575”“)) (10)

1)y ,
With .7, = (wl(l) - £%_21> and H =2,
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GAUGE INVARIANTS QUANTITIES

VECTOR MODES

i i i Y
V) = v+ (XL(1)> (11)
!/
o =0 - (%) (12)
7y = 0l + v ()
ng;)t _ I_I'g;)ﬂ N I—Il(jl)EM (14)

Tensor and null quantities are G.1 to first order by definition
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FIELD EQUATION TO FIRST ORDER

2
863 == (3H (HV@) +0y)) —ad*e® —3H (K= H) A}))  (15)

; 2 ; 1
8Gh= > (a' <H\l!(1) +0(y) + (H2— H') 2;5(”1’))

1 , ,
= (H2 —H - 4akak> oy — (H> = H') x("l)> (16)



FIELD EQUATION TO FIRST ORDER

2 1
5G] =— (8,- (—H‘V(l) =y + (H* = H') *7(‘1‘)) = 4‘9k9k19;(1)) 17

i_ 2 1
5Gi =5 H(H2 +2H) Wa) + H (Wiyy +200) ) — 590" (0 — V)
Lo+ (H— HH — 1) 70 1501 13,07 (o)~ wiy) — 2 (970 + 3,0
(1) L]~ "o (1) (1) 2 J 17(1)

i% (3700 Mjﬁ(fl));g(x;g))#%(x;a))" aakx,(l] (18)



We use the spatial part of Ohm’s law, which is the current proyected in the slices:

(gui + UuUi)J'“ = Gg)tigauFlaUu
Without perturbations:

JO = 6O (19)

To first order, we find:

B 1 ) /
J’,(1>+J{O)X'gjl),2¢<1>J’go>+2<6sz<1>+Hy(ul)> JO _ 0 (v,.(l)— (%41)))

=0 [Ei(l) x* (“//(1) X B(O))

r@ (o Ly Yoo @ _Hol i L g L@
2; (q’ VY -5V - 270 +5 () )+ E 20)

The conductivity o is large during most of the thermodynamic history of the universe, since it
is proportional to the temperature when the temperature is much larger than the mass of the
corresponding species:

o= E0~ U0 p@ =0 (B") =0, (B"8f)#0



E.M ENERGY MOMENTUM TENSOR

T(Oéfv) = {FauFng v— *g (52)] 32 = FO°F g5 gue Q21
T8 =5 (B + By) =~ 5 5% 22)
0= Tgx \F(0T=(0)) T T gz "0
0 1 7 1 i
Ti - E (E(O) X B(o))l ~ TO = E (E(O) X B(0)> =0 (23)
i 1 2 2 TR () R SR
7= %4z (E(O) + B(O)) 1+ My em) = 327 B0 (24

Where I'I'.,(((gn) is the Maxwell stress tensor:

i _ 1 © i g0, 1 ;
o= ( Biy B — Efy) E! +§<E(20)+B(20))5,)
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COMPONENT 7.0 :

2 i
8t = 2 | EjoyEley (20008 + 2 +2v12)80)

1 m I
_58(%)3(50)8, ‘ JS( 4¢ 186 m1+5m17fhl)+5/' mJ)
+(2Ei E. L ik ijs BS. Bk k ps ik gl pk (1)
©oFia) -5 ( (O)B(l)+B(0)B(1)) 01 Omj +2€;" E(o) B(o)®; ]

Y

2 (1) (1) p2 2\ 4
(1) = 28 (mag) — 89 B(O)—2(3<0)> Sy + 372V By —8H.I By,

3 (1)



COMPONENT 7.0 :

T(%m)O -

1

~16m

§

2
1)

(25)

(26)

27

(28)



() Tg‘/uid)ﬁ

We expand the matter Energy Momentum Tensor around a homogeneous
density L) and pressure P(q) (Perturbation of a perfect fluid
T8 = (p + P) utuy + P8Y), one can find:

T8 =-a® + (uq) Y, (29)
i i i i\
To = (mo+ Fo) (7/(1) — 9 — (XL(l)) > (30)
70 = —(po+ Po) %V (31)
i 1 I ol i i(1
Tj= (ASD) — (P)) <7(1)> 5j+nj((f)) (32)

Where I'I'j((lf))is the anisotropic stress tensor.
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CONSERVATION EQUATIONS.

Ty =Te + THEM —¢ (33)
where:
Tha " = Fpaf® (34)

The continuity equation is given by .7, = 0:

(A®) 434 (2D +A®) ~3 (oD) (Py + o) + (Po + o) V20V

1 /
. (( ) '5ﬂ(|1‘)) —3H (P(o) + K(o) ) 5”('{) + (Po + o) (—§V2x(1)+3H5’('1,)

1 ) - j
—(Po+ o) V2 (57(”(1)) =-a' (Ei(l)J('o) T Ei(O)J(Il)) (33)
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The Navier-Stokes equation 7.5, % =0:

(4,/’,(1))’ CORS P(O))l”f/,-(l) _aHy O 4 g _ % (88 ~(Poy) 7y ) +orm
() + Po)) (o) + Po))

4
l _ =@ (1) (0) 1Y)

—9; (y(l) ) ~ (o + Poy) (E P(o) +8ukJ B +E; P + EijkJ1) B )

(36)



MAXWELL EQUATIONS ZERO ORDER
8;E('0) = ap(o)
. . /! . g
e™aBly) — (Elo)) —2HElp = aff)
B;BI.(O) -+ aJBJ(O) + ak BI((O) =0
Bl +2HBY) +elg, £ = 0

4

o0~ 2
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MAXWELL EQUATIONS FIRST ORDER

We find the first non-homogeneous Maxwell equation, given by:

/

; ; 1 I 1 |
9;E(1) + E(0)i (w(l) T a (#a) -3 (¢(1) — VW HA ) ) =apay @D

The first homogeneous Maxwell equation is given by:

By +2HBM +eiaEM =0 42)
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MAXWELL EQUATIONS FIRST ORDER

We find the second non-homogeneous Maxwell equation, given by:

_ N 1 ! 1 /
e B, — (E('l)) — E}, (\y(l) - = (y(\l‘)a) -3 (cb(l) _ 6v2;¢(1) + Hyf(l)»

i ilk pk I 1 1 I i
—2HE};) + & Bly)d) <w< (y 2) - <¢<> c x<)+H5ﬁ(1))>_aJ(l)
(43)

The divergence free of magnetic field given by:

9B + ;B + 9B =0 (44)
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“COSMOLOGICAL DYNAMO” TO FIRST ORDER

(B,E”)' +2HBM 47 [V x <V x B _ (E(l))/ - zHE(l)ﬂ
k

+ (V X B(O) X %”)k a4 O(l) =0 (45)

Where:

Ij 0 ! m
O(l) = T'Skja, <7EJ( ) (\U(l) 73¢(1)) +£jlm‘9/B(0) (\U(l) 73¢(1))

im 5 pm (1) | (1) (gi ) i (1) A | pilmy pm i\ i
+e™may B + 15" (Eloy) —2HEGy2S" —2HAY, <£ aB{g)+ (Eloy) 72HE(0)>

(0) 1 Ij (0) L @) g
—E; <72¢(1)+§V2x(1)>>+£k’8, <2Ej (\u(1>77¢<1)>fx,.j E(0)>

With n ~ % the diffusion coefficient.
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SECOND ORDER
To second-order variable perturbation 527 is transformed as:
2= s2=X _ x 2
827 - 527% =21, (67%) + (L4 +L5,) To
Inspecting the gauge transformation, is introduced the variable 62 T defined bylz
S2T =T— 2L (6‘[35) +127
Then, the variable §2 T is transformed as:

82T9 —82T¥ =157y with: 0 =& +[&1,€] )

& is variant part of the linear-order perturbations. The gauge transformation rule (46), is
identical to that for a linear perturbation.
This property is not general but happens in the case of cosmological perturbation around FRW

metric, it’s the key to extend this theory to second order.

L[8°T] =S[8T.58T]

K. Nakamura, Prog. Theor. Phys. 110 (2003)
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GAUGE INVARIANTS QUANTITIES UP SECOND ORDER

SCALAR MODES

W@ = @ 4 % (#h)a) + 7 (v0ow) @7)
o2 = 9@ 4 6V2" — HA Y+ T (oM o) (48)
AP = ) + (1)) Sy + T (AP ) (49)
2@ = @ Gx'@) + 7@ W) (50)

_ B @Y
With ), = <w|(2) _ u) + 7(H,0m).
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GAUGE INVARIANTS QUANTITIES UP SECOND ORDER

VECTOR AND TENSOR MODES

U(iz) = V (7& ) +<7(v(i1)ﬁ(1))
8@ = w.<2> - () + 7 (M oW)

Yoy = 0y + vipy + T (¥ 0)

Py =By + B(l)af%("m - %9"3("1)%('1)L
&)= Eioy+ - + 5 By 9i(ay1 — —‘9'5(1)%(1>L
Af)z) =p@ 4 7(pMeW)

Aoy = oy + 7 Sy 0W)

@)+ _ ~(2)f (2)EM V) 51
N =02+ ™ + 7N o)
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(33)

(54)

(55)

(56)

(57)

(58)
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FIELD EQUATION TO SECOND ORDER

5269 = <3H(H\U()+¢’2)) 20 0 —3H (H? — H') 7} +5 (563))
(59)

: 2 : 1
2~ 2 II”

1 : . :
- (H2 - 4akak> 0y — (H? = H') 205, +$ (5G(’))> (60)



SOURCES S (8GY) AND S (8G))

The couples of first orden in &2 Gg are given by:
560 = L (600 giy® 1) (Wy2y@)
S(868) = = (62D W 46wy ) +16WIV2W

+12H? (W0))* ~6H (H? — H') T (7} 0M))
The couples of first orden in &2 Gé are given by:

S(8Gh) = % (w'(l)a"w(l) +4W ()0 Wy — (H2 —H'— iakak> 9(19,.(1’ﬁ(1>)>



FIELD EQUATION TO SECOND ORDER

)+ 2k 0 +5(569)
(61)

2 I
82GY = ? (a,- (—Hw(g) — &y + (H? = H') 7o)

326j= 2 || (H+21) Wi+ H (Vg +2003)) ~ 520" (000) ~Via)) + 0
+(H" = HH — H?) 7y +5(86-8]) | 81+ %aja" (v~ V@) - g (9792 +9;0())

(2)

2 (o a00) + 5 (1) + 5 (2il) - g7l +5(56)| @



) T(O;/uid)ﬁ

A2) . /
T8 ===~ (ko + Po) (v/Vvfyy + 9P ('))+5<y(\\1),(xi<1)) ﬂ(A(l),a,(”,u(’l)))

2
(63)

) i

. V=9 . . . /
Té=— (o + Po) (‘2’2(2’ +\I1(1)v(’1)) —(a®+a8)) vl +5 ((%l(l)) 79*(@(1)))

(64)
(2)
1=~ ) % 20200 fDth 1 20 ofOutt)
- (A(1)+Ag)) ‘//,-( ) 5((XJ_ ) y(w(l) 19/(1) 1)(1))) (65)
i 1 i i
Ti= 2 A28 4+ 2" 4 (o + Po) (ofY (,+6(1>v(1))+5((w1>) (19,(1’,1)(’1))>
(66)
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COMPONENT 7. :

1 m ikm
T(Oem)o s (3:%2) _ (B(O)Elsl)> ik ﬂi(l) +51(ﬁ(1))) (67)
i 112 o ikm o(2) pm _ oikm () pm | ci [ 5(1)
T(emyo = 27 {B(O)%) —e"ME By — "M E T B() +52(0 )] (68)
1
Temyi = v [gikmg;fz)B('g) + SikmEzgl)B("f) +53i(ﬁ(1))] (69)

—1 —1 1 i 1 i i i(2)*
Tyt = 3 | 75 ()~ (B ER) e¥mof® 4 sy (0M)) 8+ 2% + S50
(70)



CONSERVATION EQUATIONS TO SECOND ORDER.

The continuity equation is given by .7, = 0:

(A(Q))I +3H (ASS) + A<2>) -3 (¢(2)>/(P0 + Ho) + (Po + o) V20

M 0 y) — L@ L 1ey ) i
=5 (A V2D, 7 (80,8, 0))) = —a* (E. Jioy + SE iy + 260 Sy

2 !
(71)
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The Navier-Stokes equation 7%, % =0:

() + MW) Ly ) _ BARTan?"
7 lotRw) | (o) +P)

4
2 i
= ———— (26Wp(1) + 2e5a iy BV + EZ) pio) + ity B +E piay + iS5 BY)
(ﬂ(m + P(o>)

(72)



OHM’S LAW TO SECOND ORDER

; M) (@M M Q) (1) (1)
iy =449 W24 (m,. o) + v 120 o] f¢(2>5,-j)

o))
. ) o
+2Jf1)xi(j)—P( ), )+2X( ) yi ( | —2p©) ( . Vi( )(2¢(1)—W(1)> _"E’l)%i(j )>

P (% (v 5©). % (0@ 5) +

!

(V(l) o B(1>)_+

1

(co(l) " B(l))_

I

_2E® <¢( l,,(1))+ EP 4 Bl 7D — (200 4y ) (W) 4 o) x5O

1

1 3
e (EW(Q)_(p(Q)) - QE(O) =20y ED 1 £ 17w et B

7 1 1
8mlk Vl(l) B(kO)Xr(::) gl_lk v{l) B(ko)xl(jl) 5 (W(l ) E(O) E(O) (1) k E(O)‘J CO (1)
(73)
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OHM’S LAW TO SECOND ORDER

/’_(2) _ 4JI_(1)¢(1) —p(l)v,-(l) +5,1(J,(1)7X,51),P(1))

— 26 (1 ( (2) x B )) (7/(1) x B(l)); —2e® <¢(1) - %\Il(l)>

1. 1 g1 @
+5Ef _<2¢(1>+w<1)) (“//(1)xB(°)) +SP(ELy, 4 B a5 p M) (74)
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MAXWELL EQUATIONS TO SECOND ORDER

i Elpy+ E(o (8 y® —30;0?) — 4y Mgyt — 1291 9,91 +2w(’1)8,w,.(1)

Xt ) +El (43 y® — 120,90 )) = app) (5)
4
816y +4Eld; (W) = 300) 4 Tg, = aAf) (76)
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With:

Te1=-0; (15 e (a( (#hya) + (-%v2x<2)+3/4y’(£)>>
_4(1 (5,(\\1) )/)a < <y(||1) ) )_12 (_%V2X(1)+H5ﬂ(lll)) (—%V2%(1)+H5’(|:‘1)>
w2(xl) (6 0) +2 () 7 - 2ozl

_4Ei 9 | 1o a
E(l)a'( (72) + ( 3V )+3H5”(|1)))



MAXWELL EQUATION TO SECOND ORDER

et~ () a1ty (3 (#9) =3 () -2v0) ()
~69) (60)' + ofy (“’S))/JX(’?) (x,(k))/>+ 28%350)(%8"”(2)
_ga,¢<2) Oy ® — 693,60 + @ Imof —%x("l")a,-x,(,},))
_2El, (2 () =6 (¢(1))’) 20 Bl 0y (29 —600) =ty 77)
I
(VXU@’?). (&) ~2H60 ~2E} (2(“’(1))/‘6("’(1))/)

~2(Vx By (200 —66M)) =2 sy + S3(AY) Sy 7 By Bly)  T8)



MAXWELL EQUATION TO SECOND ORDER

We found the first homogeneous Maxwell equation given by:

2 2 2
289 19,89 10,89 —0
J

5 /!
#@”+%@g+&%$k>ﬁwﬁpﬂvén)

The second homogeneous Maxwell equation is given by:

B}z +2HBD +€Jd,E>) =0
\

(#2) +20 (#7) + (V<)) = =t (w02) £ B

(79)

(80)

(81



“COSMOLOGICAL DYNAMO” TO SECOND ORDER

Using the above Maxwell equations, we obtain the follow relation for the evolution of
magnetic fields to second order:

(%9)#2#{(%9) +1

Gtz (a) =a(e0))
~(6) —2Hé =2 (¥ Buy (260 601 ) ‘53(’2‘£)7Jf'1)’=y1“1)7E("l)vB("D))

_p@p@) 4 g (Jlgl),x'gjl)’p(l)))

n (w (4 (B0 4 73y x BO) o) (45 x 80))
k

2 (7/(1) x B(l)) + (2¢(1) +w(1)) (“V(l) x B(O)) +4EM <¢(1> . %w(l))

o o !
_252(’5(1)7-/;(1)73;1)7X51),P(1))]) = _5;(‘ ((%j_(2)) ,Ej(l),Bng)) (82)

k

We find that perturbations in the space-time plays an important role in the

avO an of nrimordial maonetic fielde
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SUMMARY
@ We find an expression similar to the dynamo equation up to second order,
and clearly perturbations in the metric affect the evolution of the
primordial magnetic fields.




SUMMARY
@ We find an expression similar to the dynamo equation up to second order,
and clearly perturbations in the metric affect the evolution of the
primordial magnetic fields.

@ Due to existence of geometrical perturbations in the dynamo equation,
we need to resolve simultaneously the Maxwell equation and Einstein
Field Equations because they are coupled.




SUMMARY
@ We find an expression similar to the dynamo equation up to second order,
and clearly perturbations in the metric affect the evolution of the
primordial magnetic fields.
@ Due to existence of geometrical perturbations in the dynamo equation,
we need to resolve simultaneously the Maxwell equation and Einstein
Field Equations because they are coupled.

o The Einstein and Maxwell Equations were found up to second order in
terms of Gauge Invariant Quantities.
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