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The dark matter is constituted by particles which have:

* Interactions with nuclei not stronger than the weak interaction.
* No baryon number.

 Low velocity at the time of decoupling ("cold” or may be "warm").
« Lifetime longer than the age of the Universe.
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cr = 7.8045 m

at — ¢y~ form factors [
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Fap = 0.0119 + 0.0001
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_ +0.
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7T modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on
Searches for Axions and Other Very Light Bosons.
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An anomalous positron abundance in cosmic rays

with energies 1.5-100 GeV

0. Adriani"?, G. C. Barbarino™*, G. A. Bazilevskaya’, R. Bellotti®’, M. Boezio®, E. A. Bogomolov”, L. Bonechi®?,

M. Bongi®, V. Bonvicini®, S. Bottai’, A. Bruno®’, F. Cafagna’, D. Campana®, P. Carlson'’, M. Casolino'', G. Castellini'?,
M. P. De Pascale'!""'?, G. De Rosa®*, N. De Simone'"'?, V. Di Felice'"'?, A. M. Galper™, L. Grishantseva'?,

P. anverbergm, S. V. Koldashov'*, S. Y. Krutkov®, A. N. Kvashnin®, A. Leonov'*, V. Malvezzi'', L. Marcelli'’,

W. Menn®, V. V. Mikhailov'#, E. Mocchiutti®, S. Orsi'™!'!, G. Osteria®, P. Papini®, M. Pearce'®, P. Picozza' """,

M. Ricci'’, S. B. Ricciarini®, M. Simon'”, R. Sparvoli'"'?, P. Spillantini'?, Y. I. Stozhkov’, A. Vacchi®, E. Vannuccini’,
G. Vasilyev’, S. A. Voronov'?, Y. T. Yurkin'*, G. Zampa® N. Zampa® & V. G. Zverev'*

Antiparticles account for a small fraction of cosmic rays and are
known to be produced in interactions between cosmic-ray nuclei
and atoms in the interstellar medium', which is referred to as a
‘secondarysource’. Positrons might also originate in objectssuchas
pulsars® and microguasars® or through dark matter annihilation’,
which would be ‘primary sources’. Previous statistically limited
measurements’®  of the ratio of positron and electron fluxes have

calorimeter data. The proton-to-positron flux ratio increases from
approximately 10° at 1 GV to approximately 10" at 100 GV. Robust
positron identification is theretore required, and the residual proton
background must be estimated accurately. The imaging calorimeter
is 16.3 radiation lengths (0.6 nuclear interaction lengths) deep, so
electrons and positrons develop well contained electromagnetic
showers in the energy range of interest. In contrast, the majority of
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Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S.
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Present situation:
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Evidence for a primary component of positrons
(possibly accompanied by electrons)

astrophysical sources? Pulsars, SN remnants...
new Particle Physics? DM annihilation, DM decay.



Astrophysical interpretations |

Atoyan, Aharonian, Vélk;
Chi, Cheng, Young:
Grimani



Pulsar explanation I: Geminga + Mohogem

Geminga Monogem (BO656+14)

T=370 000 years T=110 000 years
D=157 pc D=290 pc



Grasso et al.

Pulsar explanation I: Geminga + Mohogem
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Nice agreement. However, it is not a predictionl
+ dN /dE_ « E 7 exp(-E /1100 GeV)
* Energy output in e+e- pairs: 40% of the spin-down rate (1)



Pulsar explanation IT: Multiple pulsars
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« dN /dE_ o E “ exp(-E,/E ), 1.5 < a < 19,800 GeV < EQ < 1400 GeV

* Energy output in e+e- pairs: between 10-30% of the
spin-down rate



Dark matter decayl

* No fundamental objection to this possibility,
provided t_ >10" s.

* Not as thoroughly studied as the case of the
dark matter annihilation.

Possible reason: the most popular dark matter
candidates are weakly interacting (can be detected
in direct searches and can be produced in colliders).
If the dark matter is a WIMP, absolute stability
has to be normally imposed.



Sketch of a WIMP dark matter model:

Beyond the SM
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Sketch of a WIMP dark matter model:
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Supersymmetry
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7 Requires a suppression of
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the coupling of at least
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Sketch of a WIMP dark matter model:

|
Supersymmetry
/ Simplest solution: forbid
X _/ the dangerous couplings
! altogether by imposing
T =00 exact R-parity conservation.
T\ ! The lightest neutralino is

/— absolutely stable
Y SM



WIMP dark matter is not the only possibility:
the dark matter particle could also be
superweakly interacting
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Sketch of a superWIMP dark matter model:

—7 Beyond the SM
v

super WIMP £

1/_ SM



y very long lived.
the age of the
rs of magnitude smaller.

—7— Beyond the SM

+ It is enough a moderate

suppression of the coupling
superWIMP V to make the superWIMP a

viable dark matter candidate.
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orders of magnitude smaller.

— Beyond the SM

+ It is enough a moderate

suppression of the coupling
superWIMP y to make the superWIMP a

viable dark matter candidate.

Eventually the

dark matter decays!




* Gravitinos in general SUSY models Takayama, Yamaguchi;

(without imposing R-parity conservation). B”Chm“"?"f etal. |
Decay rate dOUbly Suppr'essed by the SUSY AI, Tran; Ishiwata et al.;

Choi et al., Lola et al.
breaking scale and by the small R-parity violation.

* Hidden sector gauge bosons/gauginos. cnen Takahashi, Yanagida
Decay rate suppressed by the small kinetic AL, Ringwald, Weniger:
mixing between U(1), and U(1)

hid
¢ nghf-handed heutrinos/sneutrinos. Babu, Eichler, Mohapatra

Decay rate suppressed by a tiny coupling ~ Fospelov, Trott
between left and right sectors.
° Hidden Sec-rorl par-‘-icles Eichler; Arvanitaki et al.;

Hamaguchi, Shirai, Yanagida;
Decay rate suppressed by the GUT scale.  arina, Hambye, AT, Weniger

* Bound states of strongly interacting particles. ramaguchi et al.
Decay rate suppressed by the GUT scale. Nardi et al



AI, Tran'08

Possible decay channels o
AI, Tran, Weniger 09

Wz

fermionic DM P wee
Wortey
PzZ°

scalar DM Pwrw-
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DM

For "low" DM mass: conflict with PAMELA (spectrum too flat)
For "high” DM mass: agreement with PAMELA, but conflict

with H.E.S.S.
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Some decay channels can explain
simultaneously the PAMELA,
Fermi LAT and H.E.S.S. observations

Decay Channel| Mpy [GeV]|mpum [10%°s]

oM — uTpr| 3500 1.1
vpyv — (0| 2500 1.5
bpm — WELT 3000 2.1
dDM — pT T 2500 1.8

ODM — T~ 5000 0.9




107 seconds??

The lifetime of a TeV dark matter particle which decays
via a dimension six operator suppressed by M? is

e 107 TeV \° M 4
MpM 1015G6V

M is remarkably close to the Grand Unification Scale

Indirect dark matter searches can probe
models at very high energies.



the electiron/positiron excesses can be natiurally
explained by the decay off dark matter pariicles.
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EXd, [(cm’str ) 1GeV? |

0.005F

1 5 10 50 100 500 1000
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Is this the first non-gravitational evidence of dark matter?

"Extraordinary claims require extraordinary evidence”
Carl Sagan



Decay Channel|Mpy [GeV]|mpy [10%5s]
YpM — pt T 3500 1.1
UpMm — (T v 2500 1.5
YoM — WERF| 3000 2.1
¢pM — p 2500 1.8
dpMm — THTT 5000 0.9

T 7 Nofree parameters from

Particle Physics

Prediction for the fluxes of:
* Antiprotons
* Gamma rays
* Neutrinos
* Antideuterons



Antiproton flux
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Good agreement of the theory with the experiments:
no need for a sizable contribution to the primary
antiproton flux. Purely leptonic decays (e.g. Y- W'pVv)
are favoured over decays into weak gauge bosons.



Antiproton flux from dark matter decay

Propagation mechanism more complicated than for the positrons.

The predicted flux suffers from huge uncertainties due to
degeneracies in the determination of the propagation parameters
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Antiproton flux from dark matter decay

Propagation mechanism more complicated than for the positrons.

The predicted flux suffers from huge uncertainties due to
degeneracies in the determination of the propagation parameters
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Diffuse gamma ray flux from DM decay

The gamma ray flux from dark matter decay has two components:

 Inverse Compton Scattering * Prompt radiation of gamma rays
radiation of electrons/positrons produced in the decay (final
produced in the decay. state radiation, pion decay...)

« Always smooth spectrum. * May contain spectral features.

e.g. gravitino in SUSY models
without R-parity conservation

E® dJrdE [(cm? strs)” Gev]

Buchmiiller et al. L i '1 T



Diffuse gamma ray flux from DM decay

The gamma ray flux from dark matter decay has two components:

 Inverse Compton Scattering * Prompt radiation of gamma rays
radiation of electrons/positrons produced in the decay (final
produced in the decay. state radiation, pion decay...)
« Always smooth spectrum. * May contain spectral features.
e e,
@10 S *++ ;1 Fermi [bl=10°
% Ty,
£ o
e.g. Hidden vector dark matter gm_s
T

. _9 L, ) ‘ o ‘ A
Arina et al. 107, 500 0

Energy [GeV]



Diffuse gamma ray flux from DM decay

The gamma ray flux from dark matter decay has two components:

« Prompt radiation of gamma rays
produced in the decay (final
state radiation, pion decay...)

* May contain spectral features.

» Inverse Compton Scattering
radiation of electrons/positrons

produced in the decay.
 Always smooth spectrum.
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e.g. Hidden vector dark matter
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Prompt radiation

ﬂ(ﬂ) _ d'Jh::LlU (S)) 4 dJeg
d L d L db.
Halo component Extragalactic component
« Depends on the dark matter » Assumed to be isotfropic
profile. Strong dependence in the » It is attenuated at high
direction of the galactic center energies due to scattering with the
and mild at high latitudes (|b|>10°) intfergalactic background light.
« Even if the profile is spherically 00 .
symmetric, the flux at Earth is
anisotropic (more later) Lo}

050

0.10

005
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Stecker et al.



Prompt radiation
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Inverse Compton Scattering radiation

The inverse Compton scattering of electrons/positrons from

dark matter decay with the interstellar and extragalactic radiation
fields produces gamma rays.

= -+ %
e+ —e +7
e* from da:k/ \

matter decay Upsca’r’rer'eg ph%‘ron
Efe < ]..1-€3\/ JE; 3 <:: 54; (: Ei:) JE:
7= m. Y

Interstellar radiation field (Galactic) ,
CMB (extragalactic) This produces
- 9 - . E,o= 100 GeV

Dust radiation
CMB blﬂrllﬁht

/\ ISRF

Encrgy Density

0% 0001 001 0.l 1 10
energy [eV] Porter et al.
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AI, Tran, Weniger

Diffuse gamma ray flux from DM decay _.x: 0509 3514
(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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Diffuse gamma ray flux from DM decay . ovon ncs

(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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Diffuse gamma ray flux from DM decay . ovon ncs

(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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dJ/dE., [GeVcem —2g—lgtr— 1]

AI, Tran, Weniger

Diffuse gamma ray flux from DM decay _.x: 0509 3514
(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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* Crucial test: the contribution from DM decay to the ftotal flux should not

exceed the measured one.
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(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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* Crucial test: the contribution from DM decay to the ftotal flux should not
exceed the measured one.

* In some channels, there starts to be a deviation from the power law
in the diffuse EG flux at higher energies.



Diffuse gamma ray flux from DM decay . ovon ncs

(Data taken from M. Ackermann, talk given at TeV Particle Astrophysics 2009)
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s

X o not diffuse and point directly to the source. '
 More indications for or against the decaying dark matter
scenario arise from the angular distribution of gamma-rays. §




A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

(but no North-South anisotropy)



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 1) For a certain energy, take the map of the
total diffuse gamma ray flux

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 2) Remove the galactic disk

90

-10°

-90

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 3) Take the total fluxes coming from the direction
of the galactic center (Jgc) and the galactic

anticenter (J 5¢).

~180 -90 0 90 180



A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 4) Calculate the anisotropy, defined as:

Jao — J
A(E) GO GA

- Jac + Jaa




A crucial test: since the Earth is not in the center of
the Milky Way halo, the contribution from dark matter
decay to the diffuse gamma ray flux is anisotropic.

Strategy: 4) Calculate the anisotropy, defined as:

Jao — J
A(E) = GO GA

04 — — . DM decay prediction:
b DM— ity 10° : 90° / 15-20% at high energies!
: Mdam = 2000 GeV
- 02 ram = 1.4 x 1026 s
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The same conclusion holds for all decaying DM scenarios that
explain the electron/positron excesses.
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Neutrino flux

* Difficult to see due to lar'ge a‘rmospher'uc backgrounds
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Neutrino fluxl

* Difficult to see due to large atmospheric backgrounds.
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Neutrino flux

Difficult to see due to large atmospheric backgrounds.
* But not impossible: it may be observed by IceCube (+ DeepCore)
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Conclusions

* Some well motivated candidates for dark matter are predicted
to decay with very long lifetimes. Their decay products could be
detected in indirect search experiments.
* Recent experiments have confirmed the existence
of an excess of positrons at energies larger than ~7GeV.
Evidence for a primary component:

astrophysics?

particle physics?
* Decaying dark matter can explain the electron/positron
excesses observed by PAMELA and Fermi. Furthermore, these
scenarios make predictions for future gamma-ray and neutrino
observations, providing tests for this interpretation of the e+/e-
excesses
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E* J(E) (GeV'm™s™'sr™)
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Positron fraction d(e’)/[¢p(e”)+d(e)]

July'08-DecemberDg (Beta pdf with systematic and statistical errors)

Q. Adriani et al, [2]
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PAMELA ELECTRON (e’)) SPECTRUM
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Diffuse gamma ray flux

- ---- power law fit galactic diffuse .
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For the dominant high-latitude components, bremsstrah-
lung and 7°-decay emission from Hi and Hi in the local
Galaxy (7.5 kpc << R << 9.5 kpc) and IC emission, the in-
tensities are fit to the LAT data via scale factors. We use the
GALPROP sky maps as templates with the component nor-
malizations per energy bin as fit parameters. The subdo-

TABLE L Fit results and uncertainties for the EGB and other components for |b| = 10°.
Intensity integrated over energy band (cm s 'sr 1)
Energy in GeV 02-04 0408 08=1.6 1.6-3.2 3264 G4-128 12.8-25.6 25.6-51.2 S1.2-1024
Intensity scale factor ®10-8 ®10°7 =107 ® 108 ® 108 =107 * 107 ®10-* *® 1010
EGB 24+ 06 03ix L8 i5x06 12,7+ 21 50X 10 143 4.0 Gix L5 26 0.7 1.1 £ 29
Galactic diffuse (fit) 49+ 04 259+ 18 126 = 1.3 SNTxT2 17.0 = 3.0 500 =10 17.1 £ 36 6l =x 1.4 19.1 £ 5.2
Galactic diffuse (model) 50 26.0 11.5 433 14.7 479 15.7 52 17.0
IC (fit) L5201 G805 isx04 16.1 £ 23 66 x 1.2 233+ 49 93x 21 ivx L0 10.6 = 3.7
IC (model) 1.2 53 23 o7 4.0 16.2 a3 24 &7
local HI (fit) 2702 154+ 1.1 74 08 B3+ 40 Bix s 206+ 4.2 50=* 12 L6+ 04 TO=x 22
local HI (model) 3l 17.0 1.6 276 a7 26.0 17 23 (%3
Sources 08 =01 302 L7 =01 72208 2704 90=x 13 34205 L5+ 02 63izx L0
CR background 1.4 =06 42+ 17 L0004 2812 08 =04 6330 L4+ 08 6= 04 09 =09
Solar 01 = Qo 04 =004 02 =002 1.0x0.2 04 =02 LT+ 04 07 x Lé 01 =004 0805
LAT 06 =08 440 % 30 188 =20 729+ 10 253+ 45 Bl3ix 16 28357 106+ 21 379+ 7.7
Foreground modeling related uncertainty n em 2 s !sr!

Hi column density +0.1/—-0.3 +0.1/-1.7 +0.1/—0.9 +0.1/-3.6 +0.1,/~-1.1 +0.1/-2.4 +0.1/-0.9 +0.1/-0.2 +0.1/-1.1
IC + halo size +0.1/-02 +0.1/—0.8 +0.1/—05 +0.1/-1.8 +0.1/-0.5 +0.1/—0.7 +0.3/ 0.3 +0.4/—0.1 +2.9/-0.5
CR propagation model +0.1/—-0.3 +0.1/ 1.1 +0.1/ = 0.6 +0.1,/-0.8 +0.1,/-03 +0.1/-1.2 +1.4/—0.1 +0.4/ 0.1 +3.0/-0.1
Subregions +0.2/—03 +0.8/—1.5 +0.4/-09 +1.9/-2.1 +0.7/-0.5 +25/-1.9 +1.0/—-1.5 +0.5/—0.3 +2.7/-0.9

of |b] =10° sky
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FIG. 1: The titanium-to-iron ratio in cosmic rays along with
model predictions — the ‘leaky box’ model with production
of secondaries during propagation only (dashed line), and in-
cluding production and acceleration of secondaries in a nearby
source (solid line - dotted bevond the validity of our calcula-
tion). The data points are from ATIC-2 (triangles) [ﬁ] and
HEAOQ-3-C3 (circles) [34].
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FIG. 2: The boron-to-carbon ratio in cosmic rays along with
model predictions the ‘leaky box" model with production
of secondaries during propagation only (dashed line), and in-
cluding production and acceleration of secondaries in a nearby
source (solid line). The data points are from HEAO-3-C2 (cir-
cles) [31], ATIC-2 (triangles) [35] and CREAM (squares) [36].

Mertsch, Sarkar
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