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1. R-parity violating SUSY

“The R-parity is, though very beautiful, not a must.”



MSSM and R-parity
MS SM (Minimal Supersymmetric Standard Model)

Hierarchy problem — solved!

Proton decay problem

WHY?
—> Since B and L are violated.



Proton Decay Problem

Interactions in MSSM superpotential
Rp. conserving: H,Hy, HqLE, HyQD, H,QU,

Rp. violating: [LHm LLE. LQD,][ UDD]

Both /3 and [,

)

—> Proton Decay

(example: p — e )
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Proton Decay Problem

With R-Parity Conservation

Rp. conserving: H,Hy, HqLE, HyQD, H,QU,

Rp. violating: (&3 &3 £3.| &3

—> Proton is Stable.
And LSP would be DM.




Proton Decay Problem

® Imposing R-parity is not the only way!

W > HyHy, H4LE, HyQD, H,QU
(Here DM problem is solved.)

=Bt —

—\\Proton is Stable. &
d LSP would be DM. @&
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For Stable Proton: 3 choices

® Imposing R-parity
W > H,H4, HqLE, HqQD, H,QU
(Here DM problem is solved.)

® L -MSSM  |[Assuming B is conserved.]
W > H.Hy, HqLE, HqsQD, H,QU,

|Lm,, LLE, 1QD]

® E-MSSM [Assuming L is conserved, and "MLsp > Mproton. |
W s HyHy, HuLE, H,QD, H,QU,|UDD]
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What we studied

our Study: Cosmological Constraints

on these RpV interactions (couplings).

® L -MSSM  |Assuming B is congerved.]
W3 Hqu:- dLEa HdQ

|Lm,, LLE, 1QD]

HIIQU!'

O, E-MSSM |[Assuming L is conserved, and " psp = Mprot

W s HyHy, HuLE, H,QD, H,QU,|UDD]
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2. Cosmological Constraints

“The violation of R-parity ( /8 or . ) may spoil
the current Baryon Asymmetry of the Universe.”



Baryon Asymmetry of the Universe

The Universe \
baryon >

|:> Some mechanism for
baryogenesis

\_

L/

<1l1>




Bouquet and Salati, 1987

Wash-out with B-viol.

However,

if MSSM has [3, (W >\'0DD)

AB = —1 processes (¢ — qq etc.)

— B — (

- Pedagogical Note ----=====----

||

<12>

: In this talk, we assume
| Baryon is generated in early universe.
! (Temperature 7' > 100GeV.)

”Bst



Bouquet and Salati, 1987

Wash-out with B-viol.

However,

if MSSM has [B, (W > \'00D)
AB = —1 processes (¢ — qq etc.)

Large B spoils Baryogenesis.
(“wash-out”)

[/
—> )\ must be small enough.




Manton, 1983; Klinkhamer and Manton, 1984; 't Hooft, 1976
Kuzmin, Rubakov, Shaposhnikov, 1985; Ringwald, 1988

Sphaleron

Go more precisely!
“Sphaleron process”

® Active in early universe 7' = 100 GeV
(by thermal effects)

®Converts baryon =z anti-lepton

4

Equilibrium in early universe

&
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Sphaleron’s Effect

On a See-Saw!

B aryon Antl-lepton
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Sphaleron’s Effect

sphaleron
B 021
(baryo
(anti-lepton)
<16>

(in 7" 2 100 GeV)

Iéz
O

¢
o




Sphaleron’s Effect

(in T' 2 100 GeV)

sphaleron
)1 Lo L3

% (anti-lepton)
<17>

(baryo



Sphaleron’s Effect

(in T' 2 100 GeV)

B Ly Lo Ls

(baryo
(anti-lepton)
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Sphaleron’s Effect

(in T' 2 100 GeV)

B Ly Lo Lo
Washed Out'

__uilibrium

| Ll

(baryon)

(anti-lepton)
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Bouquet and Salati, 1987

LESSON

® JB-MSSM : Large B = wash out
= B couplings (\") = small enough

@ How small must be?

— Discussed Later
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Kuzmin, Rubakov and Shaposhnikov, 1985
Campbell, Davidson, Ellis and Olive, 1992

Wash-out with L-viol.

This story &
does not end here!




Kuzmin, Rubakov and Shaposhnikov, 1985
. Campbel_l, Davidson, Ellis and Olive, 19
Wash-out with L-viol. Z

@ If

largQ (in the sphaleron era),

(aryon ﬂ: N lepwm
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Kuzmin, Rubakov and Shaposhnikov, 1985
. Campbel_l, Davidson, Ellis and Olive, 19
Wash-out with L-viol. Z

@ If

large

(in the sphaleron era),

-
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Kuzmin, Rubakov and Shaposhnikov, 1985
. Campbel_l, Davidson, Ellis and Olive, 19
Wash-out with L-viol. Z

@ If
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Kuzmin, Rubakov and Shaposhnikov, 1985
. Campbel_l, Davidson, Ellis and Olive, 19
Wash-out with L-viol. Z

@ If

O OO
(in t’@ sp’@ler(@era),

-
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Kuzmin, Rubakov and Shaposhnikov, 1985
. Campbel_l, Davidson, Ellis and Olive, 19
Wash-out with L-viol. Z

@ If

(in the sphaleron era),

large

GEil
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Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983
Wash-out with L-viol. Z

Pomt

I l I I —> “Wash out”

Then
How about
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Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983

Wash-out with L-viol.
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Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983
Wash-out with L-viol. Z

338

-
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Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983
Wash-out with L-viol. Z

-
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Campbell, Davidson, et al., 1992; Dreiner and Ross, 1983
Wash-out with L-viol. Z

3838

-
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Campbell. Davidson. et al.. 1992: Dreiner and Ross. 1983
Wash-out with L-viol. Z

Baryon has survived!

Equilibrium I I |
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Wash-out with L-viol.

| III

o

Wash-out! . Baryon Survwes .

m All L 7) 's leak in sphaleron era
— “"Wash out”




Endo, Hamaguchi, and SI, 2009

Wash-out with L-viol.

Our Attention
In MSSM, generally,

We have LEFVs!!!

The Standard Model The MSSM




Wash-out with L-viol. z

Under LFV, only one would ...
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Wash-out with L-viol. z

Under LFV, only one r would ...

sphaleron o O O
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Wash-out with L-viol. z

gj ‘CA)foucl)d
0. 0.0

Under LFV, only one

sphaleron
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Wash-out with L-viol. z
Under LFV, only one Z, would ...

I
cause Wash ()ut'
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LESSON

@ L -MS SM . (in sphaleron era)
All L’Z, leak via Lal‘ge L (directly) OF LEFV

= wash out

—> Assuming large LFV,
couplings (x, A\, \) = small enough

<39>



LESSON

@ How large? @ How small must be?

_____________________________________________________

@ L -MSSM . (inWphaleron era)
All L’L leak via }.dI'8€ (directly) OI \Y%

= wash o t

—> Assuming large LFV,
couplings (s, A, \') = small enough

<40>



3. Method and Results



LESSON

@ How large?

—> Assuming large LFV,
couplings (x, A\, \) = small enough

<42>



M eth Od Lepton number density of i-th generation

1/
We calculated a7 (L; — Lj) by Boltzmann Eq. U}

Large LFV Tiny LFV

TR

Li—L; —0 Li—L; 40

<43>



M Eth Od Lepton number density of i-th generation

Y

We calculated a7 (L; — Lj) by Boltzmann Eq. }

Higgs Yukawa Gauge inter. Soft mass

> > 2\ T*T
m7 ); LI L
T < g Mixing angle E g‘ ))” . ’

<44>



Method

Example)
] ( 10bMeV = 1.78 GeV
123 =

- 0L ) ta

7aGev 2T TaGey 32) R
5 tan (

~ (0.006.953 +0.1- 95’2) ( afgﬁ)

Mixing process:

v _
(h%J)HdL E ey = h.0% + h.

<45>



(Li — L;)(T)

=5 ¢ Not mixed lJ
/m

10T
h =5 x10 @ Fully Mixed! w

I 1 | Ly v 0 3 1 I 1
5000 2000 1000 3500 200 100 50 20 10
Temperature T [GeV]

mz = 300GeV, my=mz =100GeV -




Remember:

)tan’i

COI’]Cl USIOn (LFV)[hgs ~ (0.006 0% + 0.1 6%

h >3 x10~"— MIXED

| | 23,613 2 3107, ] “well-Expected LFV
B0 > T x107°.

Cf.) Theoretical Expectation

1: vR 2: SU(5) GUT
L — M 5 (1
05 ~ 10 ’ (m) 55‘ ~ 100

2

m5
where 9;}5 ~ ( ) (}X > dx.
Am? %
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LESSON

@ How small must be?

— Assffing large LEV,
couplings (x, A\, \) = small enough

<48>



Method (RpV)

Method: BOltZInanIl eqllatiOIl (same as LFV!)

d
- (B—1)

79dB

d
(a(B —L)~ 28 dt in sphaleron erﬂ)



0.001}
1074 L

for

0.1

. N =1x10"7
",
H“m
N =3 %x1077
VN =6x107"

] | IR B ) 1 A IR ) 1 I
2000 1000 3500 200 100 30 20 10 5
Temperature T [GeV]

mass of (¢, H,1) = (600,300, 100) GeV
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le > /\L?_,LJ Ek

x““ AN A=3x10""
0.1} .
s II|IIE‘ l'l.l.
B(T) " A=1x10"°
Binie 9O1F X
0.001 L 1o
; A=3x10T" | ‘
10~% -. : C |

EDIDEJ l[l[lﬂi[l[l | EEIJD 100 I5;!]I | EID 10 5
Temperature T [GeV]
for mass of (¢, H,l) = (600, 300,100) GeV
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Conclusion (RpV)

d
Method: Boltzmann eq. of T (B—L)

A<1x107°
N <3x107°
k<1x107°%. 4
N <4 %1077

1, Under LFV

(H’r > ,ILHHH{])

for (7, H,1) = (600, 300, 100) GeV

] HL Wrpc + NijkLiL; Ex + N LiQ; Dy + ki LiHy |
[
| HB_ Wrpc + )\ukb D; Dy, :

11k



Conclusion (RpV)

Very Stringent Constraints!

than those from collider experiments. (They are ~ 1072).

A<1x107° 1
. Under LFV
N <3x10~
‘ > K i 1 X 10_6 Y ) (H/ > ,HHqu)

N <4 %1077

for (g, H,1) = (600,300, 100) GeV

! | W)= Waeo + NigeLil iEr+ N LiQ; Dy + ;L H,
i | W = Wire + A\ U;D; Dy

11k



Some Loopholes

some loopholes!

®LFV is extremely small? (»<3x107)

® Baryogenesis

in Low-temperature? ¢
le.g. Affleck-Dine / \
Electroweak Baryogenesis| %1}

0.01f

0.001 ¢

. 1 | I T ! bew v vy 1 ] )
2000 1000 500 200 100 50 20 10 5
Temperature T [GeV] <54>
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|[Work 1n progress]

4. Application in LHC

“Kink track” observed?
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[Work in progress]

Consequence of our Result

' Our Result |

Very small I::> Long-lived LSP
R-parity violation 08

LSP might decay {LW o

in Detector.

<56>



[Work in progress]

Consequence of our Result
. Our Result l/
Very small |::> AE
R-parity violation eng h?’Qd LoP

TRT

Example e
TR-LSP 200Gev) scrd R A 1

I LR tcodin: D

LLH{ETM’:::;Xl;leELEES; A = ]j)__g sor

s { R = 88,5 mm

—) Decay : T — ev, TV "7iml
leT ~ 30 cm)]
“Kink track” observed?

R=122.5mm
is

<57>



[Work in progress]

Consequence of our Result

According to our PRELIMINARY calculation,
if A~ 10789)

® 7TeV, 1fb! 1-10 kink events
® 14TeV, 10fb’! 1-1000 kink events

will be generated (& might be observed?)
in LHC/ATLAS.

“Kink track” observed?

<58>



Summary

MSSM | > LFV!!

R-parity 1s
not a must.
B & l are s long-lived .LSP
—>Kkink?

ALL small.
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D) The RpV Results
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F) Experimental LFV Bounds
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C. Collider Constraints

“The RpV interactions are constrained
by several experimental facts.”



Constraints

® Example:
T J—
(T — v, p VL)
Standard Model RpV-MSSM
A3k
T L = Vr T - 1031\ - y;t_.:' Ul:
|
W Py € Aor M, €
|
I/T I.er _’Ff.%k
_,U.-?‘ e I/T

Additional Contribution!



-

Constraints

R; 2 [A13k|” — |A23k|
(R )SM b 4\/§GF Xk: (ngk)Q
Hr ' =
R )expm = 1.028(4)
(R;)sm = 1.028
- ) = Vr T = /l;l\ — V;: V;[

100 GeV \
~0.0512 <} [|/\13,1€|2 _ |/\23k|2] ( ° ) < 0.0512
k‘ T

ER k

T

Additional Contribution!



INDEX

APPENDICES

D. RpV Results



0.001}
1074 L

for

WE > /\Hl_]iDjDk

0.1

_'—-—--..__ ——— )
RN N =1x1077
"‘"x
! -
N =3x%x10"7
: VN =6x107"

EDIDEJ IDDIEIJI 5DD | E[IJEI .l[J!I]” I5;!]I | EID 10 5
Temperature T [GeV]
mass of (g, H,l) = (600, 300, 100) GeV
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le > /\L?_,LJ Ek

Ly ——
| SO A=3x107T
0.1} |
[ ',Illi .I'.
B(T) : A=1x10"°
Binie 20LF I
0.001} PR |
| o R
lﬂ—4 : | |

EDIDEJ IDDIEIJI 5DD | EEIJD l[JII]” I5;!]I | EID 10 5
Temperature T [GeV]
for mass of (¢, H,l) = (600, 300,100) GeV
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0.001 }
107% L

for

0.1

— ! N =1x10""
g TN =2x10"7
| :
3 | 1
- N =4 x1077
1 L 1 1 :. . M N I I
2000 1000 3500 200 100 50 20 10 5

Temperature T [GeV]

mass of (¢, H,1) = (600,300, 100) GeV
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1 — | _
| ~_ T k/p=5x10""
' , : h .
[:]_1:_ .‘"'1._\ i 5
B(T) k/p= 1.3 X 10\6\5 _____
Binie 20LF 3
0.001 L o
1[:'—'—1 -. : . :I‘ . ]

1 PR T L 1 L L 1 I
2000 1000 500 200 100 50 20 10 3
Temperature T

for mass of (¢, H,1) = (600, 300, 100) GeV
tanﬁ — ].0 <68>



D’. RpV Results [Detail}]



Very Detail. Wy > kL;H,

]- [ T |
| “‘H_Hﬂ__”‘*mﬁ:_ﬁ:/,u:EnXlU_T
0.1} : ) |
§ l i =
B(T) k/p=1.3x107% i %3
Binie 9O1F N
0.001}
; =3
| i # 3
1[]—4 . 1 I T : 1 I L . 1 ] I
2000 1000 300 200 100 50 20 10 5
Temperature T

for mass of (¢, H,1) = (600, 300, 100) GeV
tan 3 = 10 <70>



H*Hqu + Hf,L?IHu
— H)~ Hq+¢L; (€ :=Ki/1)
= Wrpc 2 yaHaQD — —€;yaL;QD

174 GeV
tan (3

Y ~ My ‘tan 3 = 10]

myg tan
174 GeV

<1.2x%x10°

[

0.25¢; <3 %107 "= ¢

<71>



E. Method [Detail]



Approximations we used
Set up (ye)insz—Ej

® MSSM; before EWPT (sphaleron era: 7' > 100 GeV )

Approximations
® We consider only the decay of Higgsino
H=ler, H2 el

j
and the antiparticles’ processes.

® Mass of Higgs bosons — Ignored
® Fermi/Bose distribution — Boltzmann distribution
® Sphaleron — Shut off at 7" = 100 GeV.



F. LFV : Theory & Experiments



Theoretical Expectation
Right-handed neutrino

_ ~ L . 10-5(_M
= 107 ()
/.

SU(5) GUT (Colored

Higgs) o
2= - - ---%| S 62~ 1070
2 tJ
(AmE)ij‘
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MEGA Result / MEG Prospect

o5 ~ \/1{}4 BI’ . — f?r‘*) tan 5 - ( Msoft )2
21 g 10 400 GeV

MEGA

MEG

- Br<1.2x10~H

6% <1073

: Br = O(10™ %)

0y = 107*

<76>



