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MSSM: good features and open questions

☞ Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

☞ Why?

© stabilization of hierarchies

© MSSM gauge coupling unification

© radiative electroweak symmetry breaking

© dark matter candidate

© . . .

☞ However:

§ µ/Bµ problem
§ dimension four and five proton decay operators

§ CP and flavor problems

➥ Supersymmetry alone seems not to be enough
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➊ Introduction & Motivation X

➋ A simple ZR
4 symmetry can explain

• suppressed µ term
• proton stability

➌ String theory realization

➍ Summary
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′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
ijkℓ QiQjQkLℓ + κ
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Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality =matter parity + baryon triality

Ibáñez & Ross (1992)

Dreiner, Luhn & Thormeier (2006)



A uniqueZR
4

symmetry for the MSSM Discrete symmetry for µ and proton

Proton hexality and local grand unification

Proton hexality
Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3

Q Ū D̄ L Ē H H ν̄ZM2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0

P6 0 1 −1 −2 1 −1 1 3



A uniqueZR
4

symmetry for the MSSM Discrete symmetry for µ and proton

Proton hexality and local grand unification

Proton hexality
Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3
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Proton hexality
Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P6 =matter parity ZM2 × baryon triality B3

Q Ū D̄ L Ē H H ν̄ZM2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0

P6 0 1 −1 −2 1 −1 1 3

☞ Appealing features

© forbids dimension four and five proton decay operators

© allows Yukawa couplings & Weinberg operator κ(0)
ij HLi HLj

© unique anomaly-free symmetry with the above features

☞ However:

§ not consistent with unification for matter

§ embedding into string theory not yet fully convincing

Förste, Nilles, Ramos-Sánchez, Vaudrevange (2010)
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Proton hexality and local grand unification

Local grand unification (using small extra dimensions)

Buchmüller, Hamaguchi, Lebedev, M.R. (2004-2006)

Lebedev, Nilles, Raby, Ramos-Sánchez,

M.R., Vaudrevange, Wingerter (2006)
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Proton hexality

☞ Disturbing aspects of proton hexality

§ not consistent with (local grand) unification for matter

§ embedding into string theory not yet fully convincing

§ does not address µ problem

W = µHH + κi LiH

+ Y ij
e LiHEj + Y

ij
d QiHDj + Y

ij
u QiHUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓUiUjDkEℓ + . . .

need to be strongly suppressed

needs to be suppressed as well. . .
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Origin of discrete symmetries

☞ Where can the discrete symmetries come from?

☞ Possible answer: higher dimensions and strings

☞ What does string theory give us?

• unification with gravity

• extra gauge symmetries

• discrete symmetries

• Green-Schwarz (GS) anomaly cancellation

• MSSM models with Local Grand Unification

• . . .

➥ Two prejudices from string model building:

1 Local Grand Unification

2 ‘anomalous’ discrete symmetries whose anomalies are
canceled the Green-Schwarz mechanism
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

☞ The ‘anomalies’ in the discrete symmetries do not arise from
a mixing with the ‘anomalous’ U(1)
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

➥ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for ZN

AG2−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav2−ZN
=

∑

m

q(m)

sum over all
representations of G

sum over all fermions
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

➥ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for ZN

AG2−ZN
=

∑

f

ℓ(f ) · q(f )

Agrav2−ZN
=

∑

m

q(m)

Dynkin index

discrete charges
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

➥ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for ZN

AG2−ZN
=

∑

f

ℓ(f ) · q(f ) !
= 0 mod η

Agrav2−ZN
=

∑

m

q(m) !
= 0 mod η

anomaly freedom:

all A coefficients vanish

η :=

{
N for N odd
N/2 for N even
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From anomaly freedom to anomaly universality
Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

☞ Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

➥ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for ZN

AG2−ZN
=

∑

f

ℓ(f ) · q(f ) !
= ρ mod η

Agrav2−ZN
=

∑

m

q(m) !
= ρ mod η

anomaly freedom:

all A coefficients vanish

➨ ➨ ➨ ➨ ➨

anomaly universality:

all A coefficients equal
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DΨDΨ → J(α)DΨDΨ with non-trivial J(α)
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Green-Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fujikawa (1979)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FanomF̃anomAU(1)3anom

+

∑

G

α

32π2
FaF̃a AG−G−U(1)anom −

α

384π2
RR̃Agrav−grav−U(1)anom

sum over all gauge factors anomaly coefficients
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From anomaly freedom to anomaly universality

Green-Schwarz anomaly cancellation

☞ Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fujikawa (1979)

☞ One can absorb the change of the path integral measure
in a change of Lagrangean

∆Lanomaly =
α

32π2
FanomF̃anomAU(1)3anom

+

∑

G

α

32π2
FaF̃a AG−G−U(1)anom −

α

384π2
RR̃Agrav−grav−U(1)anom

☞ Provided the Lagrangean also includes axion couplings

L ⊃ −
a

8
FanomF̃anom −

a

8
FaF̃a

+
a

4
RR̃

∆Lanomaly can be compensated by a shift of the axion a
if the anomaly coefficients are universal

Green & Schwarz (1984)
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From anomaly freedom to anomaly universality

Discrete GS anomaly cancellation

☞ The analysis applies also for discrete symmetries

☞ Specifically for a ZN transformation

Φ
(f ) → e−i

2π
N

q(f )
Φ

(f )

the dilaton (containing the axion) has to transform as

S → S +
i

2
∆GS

where

πN ∆GS ≡
1

24
Agrav−grav−ZN

= AG−G−ZN
mod η ∀ G
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☞ Assumptions:

• anomaly universality ⇐⇒ GS anomaly cancellation

• universal charges for quarks and leptons

• µ term forbidden at perturbative level

• Yukawa couplings and Weinberg neutrino mass operator
allowed

Want to prove:

There is a unique ZR
4 symmetry in the

MSSM with these features
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☞ Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

ASU(3)2−ZN
=

9

2
q10 +

3

2
q
5

ASU(2)2−ZN
=

9

2
q10 +

3

2
q
5
+
1

2

(
qH + qH

)

☞ Anomaly universality

ASU(2)2−ZN
− ASU(3)2−ZN

= 0

y

1

2

(
qH + qH

)
= 0 mod

{
N for N odd
N/2 for N even

bottom-line:

non-R ZN symmetry cannot forbid µ term
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Claim 2: Higgs discrete charges have to vanish

☞ Assumption: quarks and leptons have universal charge q

☞ u- and d-type Yukawas allowed requires that

2q + qH = 2 mod N and 2q + q
H
= 2 mod N

y qH − qH = 0 mod N

☞ u-type Yukawa and Weinberg operator allowed requires
that

2q + qH = 2 mod N and 2q + 2qH = 2 mod N

y qH = 0 mod N

bottom-line:

qH = q
H
= 0 mod N
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Claim 3: The order has to be 4 (or 2)

☞ Anomaly coefficients for Abelian discrete R symmetry

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3

ASU(2)2−ZR
N
= 6q +

1

2

(
qH + qH

)
− 5

☞ Anomaly universality

ASU(2)2−ZR
N
− ASU(3)2−ZR

N
= 0

y qH + qH = 4 mod

{
2N for N odd
N for N even

☞ but we know already that qH = q
H
= 0 mod N

bottom-line:

N = 2 or N = 4

however: there is no meaningful ZR
2 symmetry

cf. e.g. Dine & Kehayias (2009)
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☞ Anomaly coefficients for Abelian discrete R symmetry

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3

ASU(2)2−ZR
N
= 6q +

1

2

(
qH + qH

)
− 5

☞ Anomaly universality

ASU(2)2−ZR
N
− ASU(3)2−ZR

N
= 0

y qH + qH = 4 mod

{
2N for N odd
N for N even

☞ but we know already that qH = q
H
= 0 mod N

bottom-line:

N = 4 unique
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Unique ZR
4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qH = q
H
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qH + qH

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qH + qH − 2

)

e.g. qH = qH = 16
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4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qH = q
H
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qH + qH

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qH + qH − 2

)
= 1 mod 4/2

1

24
Agrav2−ZR

N
=

1

24

[
−21 + 8 + 3 + 1 + 48(q − 1) + 2(qH + qH − 2)−1

]

only defined mod 4 axino contribution

gravitino contribution gaugino contributions



A uniqueZR
4

symmetry for the MSSM Discrete symmetry for µ and proton

UniqueZR
4

symmetry

Unique ZR
4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qH = q
H
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
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☞ Consistent with anomaly universality

ASU(3)2−ZR
N
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4 symmetry

☞ We know:

• it is a ZR
4 symmetry

• Higgs fields have charge qH = q
H
= 0 mod 4

➥ Yukawa couplings and Weinberg operator allowedy
matter has charge q = 1

☞ Consistent with anomaly universality

ASU(3)2−ZR
N
= 6(q − 1) + 3 = 6q − 3 = 1 mod 4/2

ASU(2)2−ZR
N
= 6q +

1

2

(
qH + qH

)
− 5 = 1 mod 4/2

AU(1)2
Y
−ZR

N
= 6q +

3

5
·
1

2
·
(
qH + qH − 2

)
= 1 mod 4/2

1

24
Agrav2−ZR

N
=

1

24
[. . . ] = 1 mod 4/2

bottom-line:

• ZR
4 is anomaly free via GS mechanism

• GS axino contribution important for
gravitational anomaly
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symmetryZR
4 literature

☞ Anomaly-free version of this ZR
4 with extra matter has been

discussed previously Kurosawa, Maru & Yanagida (2001)

☞ ZR
4 with GS anomaly cancellation has also been discussed

before Babu, Gogoladze & Wang (2002)

☞ However:

• no uniqueness discussion
• no discussion about suppression of dimension five operators
• no discussion of non-perturbative violation of ZR

4

• starting point: ‘anomalous’ U(1)R (???)
• no discussion of mixed hypercharge nor gravitational

anomalies
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Comment on schemes with SU(5) relations

☞ Using a similar strategy and demanding only SU(5) rather
than SO(10) relations one can show that the order N of
possible ZR

N symmetries has to divide 24

☞ There are only five viable charge assignments

N q10 q
5

qH qH ρ AR
0 (MSSM)

4 1 1 0 0 1 1
6 5 3 4 0 0 1
8 1 5 0 4 1 3
12 5 9 4 0 3 1
24 5 9 16 12 9 7

Recall

AG2−ZN
=

∑

f

ℓ(f )q(f ) !
= ρ mod η

Agrav2−ZN
=

∑

m

q(m) !
= ρ mod η
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Comment on schemes with SU(5) relations

☞ Using a similar strategy and demanding only SU(5) rather
than SO(10) relations one can show that the order N of
possible ZR

N symmetries has to divide 24

☞ There are only five viable charge assignments

N q10 q
5

qH qH ρ AR
0 (MSSM)

4 1 1 0 0 1 1
6 5 3 4 0 0 1
8 1 5 0 4 1 3
12 5 9 4 0 3 1
24 5 9 16 12 9 7

☞ N divides 24: hint at realization of ZR
N as discrete rotational

symmetry in orbifolds
(The geometry of orbifolds with N = 1 SUSY is constrained that the order of discrete R symmetries also divides 24)
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☞ Gauge invariant superpotential terms up to order 4

W = µHH + κi LiH

+ Y ij
e LiHEj + Y

ij
d QiHDj + Y

ij
u QiHUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓUiUjDkEℓ + . . .
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☞ Gauge invariant superpotential terms up to order 4

W = µHH + κi LiH

+ Y ij
e LiHEj + Y

ij
d QiHDj + Y

ij
u QiHUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓUiUjDkEℓ + . . .

also forbidden at
non-perturbative level by

non-anomalous Z2 subgroup
which is equivalent
to matter parity
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☞ Gauge invariant superpotential terms up to order 4

W = µHH + κi LiH

+ Y ij
e LiHEj + Y

ij
d QiHDj + Y

ij
u QiHUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
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ijkℓUiUjDkEℓ + . . .

non-perturbative generation of µ solves the µ problem
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Implications of ZR
4

☞ Gauge invariant superpotential terms up to order 4

W = µHH + κi LiH

+ Y ij
e LiHEj + Y

ij
d QiHDj + Y

ij
u QiHUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HLi HLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓUiUjDkEℓ + . . .

non-perturbatively generated terms harmless
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4

☞ MSSM + Kähler stabilized dilaton

1.6 1.7 1.8 1.9 2.0
0

1.´10-8

2.´10-8

3.´10-8

4.´10-8

5.´10-8

6.´10-8

Re  S

V
�H

10
16

G
eV

4
L

• non-perturbative corrections to the Kähler potential lead to
a bump in the potential of ReS

• ImS has a flat potentialy GS axion remains light



A uniqueZR
4

symmetry for the MSSM Discrete symmetry for µ and proton

Implications ofZR
4

Minimal realization of ZR
4

☞ MSSM + Kähler stabilized dilaton

☞ Non-perturbative superpotential

Wnp ⊃ M3
P e
−bS

is ZR
4 covariant (i.e. has R charge 2) as S→ S + i

2
∆GS

☞ Comments:

• Of course Wnp is just the effective description of some hidden
sector strong dynamics

• ZR
4 anomaly universality leads to non-trivial constraints on the

(β-function) coefficient b
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Minimal realization of ZR
4

☞ MSSM + Kähler stabilized dilaton

☞ Non-perturbative superpotential

Wnp ⊃ M3
P e
−bS

is ZR
4 covariant (i.e. has R charge 2) as S→ S + i

2
∆GS

☞ Effective µ term and QQQL coefficients

Wnp ⊃ AMP e
−bS HH +M−1P e−bS κ

(1)
ijkℓ QiQjQkLℓ + . . .

are also ZR
4 covariant

☞ Non-trivial vacuum expectation value of Wnp is a measure
for ZR

4 breaking and the gravitino mass

☞ 〈W 〉 breaks ZR
4 down to matter parity

☞ Why is µ ∼ 〈W 〉?



• origin of ZR
4

• higher-dimensional operators (effective µ term etc.)
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2D space with SO(2) rotational symmetry
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The Z2 orbifold plane

☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

Z2 bcb bcb

bcbbcb

localized
fields have oddZR

4 charge

bulk fields
have evenZR

4 charge
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The Z2 orbifold plane

☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between µ term and expectation value of
the superpotential 〈W 〉

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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The Z2 orbifold plane

☞ Orbifolds with Z2 plane have three important properties:

➊ ZR
4 symmetry arises as a remnant of the Lorentz group in

compact dimensions

➋ Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between µ term and expectation value of
the superpotential 〈W 〉

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

➥ Rest of this talk: discuss globally consistent string model with
these features
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SU(5)
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SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6)

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry
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Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)
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Blaszczyk et al. modelZ2 × Z2 orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

bcbc
SU(5)

bcbc
SU(5)

bcbc
SU(5)
bcbc

SU(5)

SU(6) →

bcbc
SU(5)

bcbc
SU(5)

non-local
breaking
SU(5)
↓

GSM

➊ step: 6 generation Z2 × Z2 model with SU(5) symmetry

➋ step: mod out a freely acting Z2 symmetry which:

• breaks SU(5)→ SU(3)C × SU(2)L ×U(1)Y
• reduces the number of generations to 3

Note: this is just a cartoon
the geometric picture will be ex-
plained in more detail elsewhere

M. Fischer, M.R., P. Vaudrevange (to appear)
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local
y no ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)

y precision gauge unification
with distinctive pattern of soft masses

Raby, M.R., Schmidt-Hoberg (2009)
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➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction
y complete blow-up without breaking SM gauge
symmetry in principle possible
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Blaszczyk et al. model

Main features

➊ GUT symmetry breaking non-local

➋ No localized flux in hypercharge direction

➌ 4D gauge group:
SU(3)C × SU(2)L × U(1)Y ×U(1)B−L × [SU(3) × SU(2)2 × U(1)7]

➍ massless spectrum

spectrum = 3 × generation + vector-like

➎ Various appealing features:

• vacua where exotics decouple at the linear level in SM
singlets

• non-trivial Yukawa couplings
• gauge-top unification
• SU(5) relation yτ ≃ yb (but also for light generations)

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)
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‘Anomalous’ ZR
4 from a Z2 × Z2 model

☞ We succeeded in finding vacua with the ‘anomalous’ ZR
4

§ In the Blaszczyk et al. model all vacua have an extra Znasty
2 ,

which leads to rank 2 Ye and Yd Yukawa couplings

© There are similar Z2 × Z2 models without this problem but all
the good features

X F- and D-flatness explicitly verified
X exotics decouple at the linear level in SM singlets, i.e. just

MSSM below GUT scale with masslessness of Higgs fields ensured by ZR
4

X non-trivial full-rank Yukawa couplings
X gauge-top unification
X SU(5) relation yτ ≃ yb (but also for light generations)
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§ In the Blaszczyk et al. model all vacua have an extra Znasty
2 ,

which leads to rank 2 Ye and Yd Yukawa couplings

© There are similar Z2 × Z2 models without this problem but all
the good features

X F- and D-flatness explicitly verified
X exotics decouple at the linear level in SM singlets, i.e. just
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4 possible!
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‘Anomalous’ ZR
4 from a Z2 × Z2 model

☞ We succeeded in finding vacua with the ‘anomalous’ ZR
4

§ In the Blaszczyk et al. model all vacua have an extra Znasty
2 ,

which leads to rank 2 Ye and Yd Yukawa couplings

© There are similar Z2 × Z2 models without this problem but all
the good features

X F- and D-flatness explicitly verified
X exotics decouple at the linear level in SM singlets, i.e. just

MSSM below GUT scale with masslessness of Higgs fields ensured by ZR
4

X non-trivial full-rank Yukawa couplings
X gauge-top unification
X SU(5) relation yτ ≃ yb (but also for light generations)

➥ Successful string embedding of ZR
4 possible!

☞ Note: the ‘anomalous’ ZR
4 does not come from the

‘anomalous’ U(1)!
. . . rather the discrete symmetries of the orbifold point can appear ‘anomalous’ by themselves
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‘Anomalous’ZR

4
from Z2 ×Z2 models

µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

K = − ln
[(

T3 + T3

) (
Z + Z

)
−

(
Hu +Hd

) (
Hd +Hu

)]

Kähler
modulus

complex
structure
modulus
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µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K = − ln
[(

T3 + T3

) (
Z + Z

)
−

(
Hu +Hd

) (
Hd +Hu

)]

Higgs fields
= extra components

of gauge fields
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µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K = − ln
[(

T3 + T3

) (
Z + Z

)
−

(
Hu +Hd

) (
Hd +Hu

)]

≃ − ln
[(

T3 + T3

) (
Z + Z

)]

+
1(

T3 + T3

) (
Z + Z

)
[
|Hu|

2
+ |Hd|

2
+ (HuHd + c.c.)

]
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µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K = − ln
[(

T3 + T3

) (
Z + Z

)
−

(
Hu +Hd

) (
Hd +Hu

)]

≃ − ln
[(

T3 + T3

) (
Z + Z

)]

+
1(

T3 + T3

) (
Z + Z

)
[
|Hu|

2
+ |Hd|

2
+ (HuHd + c.c.)

]

= − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
+ (ĤuĤd + c.c.)

]

normalized
Higgs
fields
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µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K ≃ − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
+ (ĤuĤd + c.c.)

]

☞ Consider now superpotential

W = Ω = independent of the monomial ĤuĤd



A uniqueZR
4

symmetry for the MSSM Explicit string theory example

‘Anomalous’ZR

4
from Z2 ×Z2 models

µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K ≃ − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
+ (ĤuĤd + c.c.)

]

☞ Consider now superpotential

W = Ω = independent of the monomial ĤuĤd

☞ K & W in leading order in ĤuĤd equivalent to

K ′ = − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
]

W
′
= exp(Ĥu Ĥd)Ω = Ω Ĥu Ĥd + . . .



A uniqueZR
4

symmetry for the MSSM Explicit string theory example

‘Anomalous’ZR

4
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µ from W in models with Z2 plane
F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariancey Kähler potential

K ≃ − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
+ (ĤuĤd + c.c.)

]

☞ Consider now superpotential

W = Ω = independent of the monomial ĤuĤd

☞ K & W in leading order in ĤuĤd equivalent to

K ′ = − ln
[(

T3 + T3

) (
Z + Z

)]
+

[
|Ĥu|

2
+ |Ĥd|

2
]

W
′
= exp(Ĥu Ĥd)Ω = Ω Ĥu Ĥd + . . .

bottom-line:

µ term proportional to 〈Ω〉
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Non-perturbative violation of ZR
4 (cont’d)

☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2
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Non-perturbative violation of ZR
4 (cont’d)

☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2

☞ Whatever gives us 〈W 〉 will be a measure for ZR
4 breaking

. . . for instance, one may replace/describe hidden sector
superpotential by gaugino condensate

Nilles (1982)

〈W 〉 ≃ 〈λλ〉 ≃ Λ3

• this is consistent with a non-perturbative breaking of ZR
4

• this assumes that the dilaton is fixed somehow (e.g. Kähler
stabilization)
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Non-perturbative violation of ZR
4 (cont’d)

☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2

☞ Whatever gives us 〈W 〉 will be a measure for ZR
4 breaking

☞ Dimension 5 proton decay operators will have highly
suppressed coefficients

W
np
QQQL ∼

〈W 〉

M4
P

QQQL ∼
m3/2

MP

1

MP

QQQL ∼ 10−15
1

MP

QQQL
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Non-perturbative violation of ZR
4 (cont’d)

☞ Since HuHd is proportional to 〈W 〉 we will get a
holomorphic contribution to the µ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

µ ∼
〈W 〉

M2
P

≃ m3/2

☞ Whatever gives us 〈W 〉 will be a measure for ZR
4 breaking

☞ Dimension 5 proton decay operators will have highly
suppressed coefficients

W
np
QQQL ∼

〈W 〉

M4
P

QQQL ∼
m3/2

MP

1

MP

QQQL ∼ 10−15
1

MP

QQQL

☞ No R parity violation because ZR
4 has a non-anomalous

subgroup which is equivalent to matter parity
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• suppress proton decay operators
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☞ A simple ‘anomalous’ ZR
4 symmetry can

• provide a solution to the µ problem
• suppress proton decay operators

universal anomaly coefficients
universal charges for matter

forbid µ @ tree-level
allow Yukawa couplings
allow Weinberg operator





y unique ZR
4ZR

4 y






dim. 4 proton decay operators completely forbidden
dim. 5 proton decay operators highly suppressed
µ appears non-perturbatively
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Summary – top-down

☞ Embedding into string theory allows us to understand
where the ZR

4 symmetry comes from: it may arise as a
discrete remnant of Lorentz symmetry in extra dimensions

☞ Such symmetries are on the same footing as the
fundamental symmetries C, P and T

☞ Guided by the (unique) ZR
4 symmetry we have constructed

a globally consistent string model with:

• exact MSSM spectrum

• non-trivial Yukawa couplings

• exact matter parity

• µ ∼ m3/2

• dimension five proton decay operators sufficiently suppressed
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