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I—MSSM: good features and open questions

MSSM: good features and open questions

0 Many studies focus on the minimal supersymmetric
extension of the standard model (MSSM)

0 Why?

2 stabilization of hierarchies

MSSM gauge coupling unification
radiative electroweak symmetry breaking
dark matter candidate

©000O0

0 However:
@ u/Bu problem
& dimension four and five proton decay operators
© CP and flavor problems

O Supersymmetry alone seems not to be enough
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[] Introduction & Motivation V4

[] A simple ZZ symmetry can explain
e suppressed u term
e proton stability

[] String theory realization

(] Summary
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I—Proh'.\n hexality and local grand unification

Proton decay operators

00 Gauge invariant superpotential terms up to order 4 include

e
+ A Lil;Ey ™, LiQDy + ), U:D;Dy
O H o+ ONQIQ@iL + <2, U;U;D,E,

forbidden by moTTem

Farrar & Fayet (1978); Dimopoulos, Raby & Wilczek (1981)
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I—Proh'.\n hexality and local grand unification

Proton decay operators

00 Gauge invariant superpotential terms up to order 4 include

W = nHH + x; L;H
+YY L;HE; + Y QHD; + Y! QHU,
+ A LiL;Ey + Ay, LiQ;Dy, + A U,D;Dy,
+ &) HL; HL; + ), QiQ;QxL¢ + ), UU; D4 E,

Y

forbidden by baryon triality

lodhez & Ross (1992)
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00 Gauge invariant superpotential terms up to order 4 include
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< forbidden by proton hexality
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Ibdnez & Ross (1992)
Dreiner, Luhn & Thormeier (2006)
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unique anomaly-free symmetry with the above features
... with the common notion of anomaly freedom
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Proton hexality

Ibénez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

O Proton hexality Pg = matter parity ZQ" x baryon friality Bs

| _le|u[D|L[E|H|H]|V]

ZV 1] 1] 1[1[1]0]o0]1
By |[0]-1]|1|-1|2]1]-1]|0
P | O] 1 |-1|-2|1]-1]|1]/3

O Appealing features
2 forbids dimension four and five proton decay operators
allows Yukawa couplings & Weinberg operator « HL; HL;

unique anomaly-free symmetry with the above features

© © 0O

0 However:
@ not consistent with unification for Matter qe. inconsistent with universai

discrete charges for all matter fields)
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O Appealing features
2 forbids dimension four and five proton decay operators

allows Yukawa couplings & Weinberg operator « HL; HL;
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unique anomaly-free symmetry with the above features

0 However:
® not consistent with unification for matter

© embedding into string theory not yet fully convincing

Férste, Nilles, Ramos-Sénchez, Vaudrevange (2010)
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Local grond unification (using small extra dimensions)

Glt Grt Buchmiller, Hamaguchi, Lebedev, M.R. (2004-2006)
Lebedev, Nilles, Raby, Ramos-Sénchez,
M.R., Vaudrevange, Wingerter (2006)

standard
model

as an
intersection
of Grb, Grt, Glt
& SO(10)

inG

large(r)
group

‘low-energy’

effective theory

16
S0(10) Gy

SM generation(s):

Higgs doublets:
localized in region with PT——
SO(10) symmetry ive in the “bu
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I—Proh'.\n hexality and local grand unification

Proton hexality

O Disturbing aspects of proton hexality
© not consistent with (local grand) unification for matter

© embedding into string theory not yet fully convincing
© does not address i problem
W = pHH + x; L;H
+YY LHEN Y Q:HD; + Y! QHU;
+ Aijp LiL;Ey, +, L;Q;Dy, + A U,D;D;,
+ Kg.n HLYHL; + < NQQ,Qr LA + Kff,gl U;UD,E; +...

Kiike

< need to be strongly suppressed 3

/
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I—Proh'.\n hexality and local grand unification

Proton hexality

O Disturbing aspects of proton hexality
© not consistent with (local grand) unification for matter
© embedding into string theory not yet fully convincing

© does not address i problem

W = pHH + x; L;H

need to be strongly suppressed

@eds fo be suppressed as D
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= Origin of discrete symmetries

Origin of discrete symmetries

O Where can the discrete symmetries come from?
O Possible answer: higher dimensions and strings

O What does string theory give us?
¢ unification with gravity
extra gauge symmetries
discrete symmetries
e Green-Schwarz (GS) anomaly cancellation
MSSM models with Local Grand Unification

0 Two prejudices from string model building:
@ Local Grand Unification

® anomalous’ discrete symmetries whose anomalies are
canceled the Green-Schwarz mechanism
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

O The ‘anomalies’ in the discrete symmetries do not arise from
a mixing with the ‘anomalous’ U(1)
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy

sum over all
Age_zy = > D .qh representations of G
\_/
f

Agave-zy = Zq(m)\_/[sum over all fermions )
m
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy

Dynkin index I
AGZ—ZN = Z[(f) 4
f

discrete chorges]

AgTaVZ—ZN = Zq(m)
m
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

anomaly freedom:
- all A coefficients vanish
Example: anomaly coefficients for Zy

Age = 20 .g" £ 0 mod _ [ N forN odd
M zf: 7 o= { N/2 for N even

Agravi-zy = Zq(m) =0 mod n

m
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From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sanchez, M.R. & Vaudrevange (2008)

O Important lesson from explicit string-derived (MSSM) models

‘anomalous’ discrete symmetries:

Anomalies of discrete symmetries canceled by
Green-Schwarz mechanism

0 Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for Zy dnomadliyifieecom:.
. all A coefficients vanish
Age_y, = Zf‘f) -q¥) =p mod
f O O o o g

_ m) L
Agav-zy = ) 4™ =p modj anomaly universality:
m
all A coefficients equal
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Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fulkawa (1979)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a
A.,(fgnommy = 397 QFanom al‘lOIl’lAU(l)anam

* 232 \%%RRA@OV V-V
A\

[sum over all gauge focTors] anomaly coefficients )
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I—From anomaly freedom to anomaly universality

Green-Schwarz anomaly cancellation

O Under ‘anomalous’ U(1) symmetry the path integral
measure exhibits non-trivial transformation Fulkawa (1979)

[0 One can absorb the change of the path integral measure
in a change of Lagrangean

a ~
A«ffonomoly = mFanomFanomAU(l)gmm

a jaed a ~
+> 352 F AG-G-Uuon ~ g3 RRAgrav-grav-Ult)umon
G

0 Provided the Lagrangean also includes axion couplings

_e Fo_%paga . Cps
£ > 8FanomFamm 8F F* + 4RR
AZanomaly CAN e compensated by a shift of the axion a
if the anomaly coefficients are universal

Green & Schwarz (1984)
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I—From anomaly freedom to anomaly universality

Discrete GS anomaly cancellation

O The analysis applies also for discrete symnmetries
O Specifically for a Zy fransformation
o 5 o1 Fd g0

the dilaton (containing the axion) has to transform as
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I—Unique Zf symmetry

A unique Z£ symmetry

O Assumptions:
e anomaly universality <= GS anomaly cancellation
e universal charges for quarks and leptons
e u term forbidden at perturbative level

e Yukawa couplings and Weinberg neutrino mass operator
allowed

Want to prove:

There is a unique Z¥ symmetry in the
MSSM with these features
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O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

9 3
ASU(S)Z—ZN = 5Q10+§CI5

9 1
Agu@p-zy = EQm + 5615 + ) (QH + Qﬁ)
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9 3
ASU(S)Z—ZN = EQm + 5615

9 1
Agu@p-zy = EQm + 5615 + ) (QH + Qﬁ)

00 Anomaly universality
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I—Unique Zf symmetry

Claim T1: it has to be an R symmetry

O Anomaly coefficients for non-R symmetry with SU(5)
relations for matter charges

9 3
ASU(S)Z—ZN = 5Q10+§CI5

9 1
Agu@p-zy = EQm + 5615 + ) (QH + Qﬁ)
00 Anomaly universality

Aguep-zy —Asuep-zy = 0
~ 1( +¢y) = 0 mod N  for N odd
g \qHTAdy) = N/2 for N even

bottom-line:
non-R Zy symmetry cannot forbid p term
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I—Unique Zf symmetry

Claim 2: Higgs discrete charges have to vanish

O Assumption: quarks and leptons have universal charge g
0 u- and d-type Yukawas allowed requires that
29+q9y = 2 mod N and 2g+gq; = 2 mod N

~ qu-q; = 0 mod N

O u-type Yukawa and Weinberg operator allowed requires
that

29 +qy = 2 mod N and 2¢+2qy = 2 mod N
~ qg =0 mod N

bottom-line:
9y = q7 = 0 mod N




A unique Zf symmetry for the MSSM Discrete symmetry for 1 and proton

I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

ASU(3)2—Z§ 6(g-1)+3 = 6¢g-3

1
6q+§(qH+qﬁ)—5

ASU(2)2—Z§



A unique Zf symmetry for the MSSM Discrete symmetry for 1 and proton
I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

6(g-1)+3 = 60-3

ASU(3)2—Z§

1
6q+§(qH+qﬁ)—5

ASU(2)2—Z§

0 Anomaly universality

ASU(z)Z—Zg —ASU(3)2—Z§ =0
2N for N odd
~ qutgy =4 mod 4N (o N even



A unique Zf symmetry for the MSSM Discrete symmetry for 1 and proton
I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)
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O Anomaly coefficients for Abelian discrete R symnmetry

ASU(3)2—Z§ = 6(g-1)+3 =69-3
1
ASU(Q)Z—Zﬁ = 6q + § (qH + QE) -5

0 Anomaly universality
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~ qutgy =4 mod 4N (o N even

0 but we know already that g = g;; =0 mod N
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I—Unique Zf symmetry

Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

6(g-1)+3 = 60-3

ASU(3)2—Z§

1
6q+§(qH+qﬁ)—5

ASU(2)2—Z§

0 Anomaly universality

cf. e.g. Dine & Kehayias (2009)

A however: there is no meaningful Z§ symmetry
SU@2-Z8 ~

T T T TN Tor N even

0 but we know already that g = g;; =0 mod N

bottom-line:
N=2or N=4
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Claim 3: The order has to be 4 (or 2)

O Anomaly coefficients for Abelian discrete R symnmetry

ASU(3)2—Z§ = 6(g-1)+3 =69-3
1
ASU(Q)Z—Zﬁ = 6q + § (qH + QE) -5

0 Anomaly universality

ASU(z)Z—zg —ASU(3)2—Z§ =0
2N for N odd
~ qutgy =4 mod 4N (o N even

0 but we know already that g = g;; =0 mod N

bottom-line:
N =4 unique
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0 We know:
o itis a ZE symmetry
e Higgs fields have charge g = g3 =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1
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I—Unique Zf symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
e Higgs fields have charge g = g3 =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@g-1)+3 =69g-3 =1 mod 4/2
1

ASU(2)2—Z§ = 6g+ 3 (g +97) -5 = 1 mod 4/2
31

AU(1)§,-Zg = 6g+ 59’ (C]H +qg - 2)

[e.g. qn =qz = 16]
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I—Unique Zf symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
e Higgs fields have charge g = g3 =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@-1)+3 = 6g-3 =1 mod 4/2

ASU(z)z-ZR = 60+ 1 (0 +0=)=5 =1 mod 4/2
N [grovi’rino contribution gaugino contributions

AU(1)§,-zg = 6q -+ /2/ qH + 45 mod 4/2
1
ﬂAgravz_Zg = [-21+8%3 Wq 1) +2(gm + q/Z)

[only defined mod 4] axino con’rrlbuflon]
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I—Unique Zf symmetry

Unique ZE symmetry

0 We know:
o itis a ZE symmetry
e Higgs fields have charge g = g3 =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@g-1)+3 =69g-3 =1 mod 4/2
1
ASU(2)2—Z§ = 6g+ 3 (g +97) -5 = 1 mod 4/2

3 1
AU(1)§,-Z§, 6q + 59’ (g +q;7-2) = 1 mod 4/2

1 1
A 5]

oq deravi-uf 1 mod 4/2
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Unique ZE symmetry

0 We know:
o itis a ZE symmetry
e Higgs fields have charge g = g3 =0 mod 4

0 Yukawa couplings and Weinberg operator allowed ~
matter has charge g = 1

[0 Consistent with anomaly universality

ASU(3)2-Z§ = 6(@-1)+3 = 6g-3 =1 mod 4/2

A

2_yR =

bottom-line:
4« 7R is anomaly free via GS mechanism

1 e GS axino contribution important for

24" gravitational anomaly
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72 literature

0 Anomaly-free version of this Z£ with extra matter has been

discussed preVlOUSly Kurosawa, Maru & Yanagida (2001)
0 ZZ with GS anomaly cancellation has also been discussed

before Babu, Gogoladze & Wang (2002)
0 However:

e NO uniqueness discussion

e no discussion about suppression of dimension five operators
« no discussion of non-perturbative violation of Z%

o starting point: ‘anomalous’ U(1)g (???)
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I—Unique Zf symmetry

72 literature

0 Anomaly-free version of this Z£ with extra matter has been

discussed preVlOUSly Kurosawa, Maru & Yanagida (2001)
0 ZZ with GS anomaly cancellation has also been discussed

before Babu, Gogoladze & Wang (2002)
0 However:

NO uniqueness discussion

no discussion about suppression of dimension five operators
no discussion of non-perturbative violation of Z#

starfing point: *‘anomalous’ U(1)g (???)

no discussion of mixed hypercharge nor gravitational
anomalies
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Comment on schemes with SU(5) relations

O Using a similar strategy and demanding only SU(5) rather
than SO(10) relations one can show that the order N of
possible ZZ{", symmetries has to divide 24

[0 There are only five viable charge assignments

N | g0 | g5 | qu | 95 | p | AF(MSSM)
4 1 171001 1
6|1 5134|000 1
8 1 5101 4 1 3
1215 (94|03 1
241 5 | 91161129 7
Recall
Agrg, = Zf‘f)q(f) < p mod n

f
!
Agravi-zy = Zq(m) = p mod 7

m
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I—Unique Zf symmetry

Comment on schemes with SU(5) relations

O Using a similar strategy and demanding only SU(5) rather
than SO(10) relations one can show that the order N of
possible ZZ{", symmetries has to divide 24

[0 There are only five viable charge assignments

N [ quw [ g5 [ qu [ ag [ p [ AF(MSSM)
Z 11T 1001 T
615 13|4]0]0 1
gl 15|04/ 3
121 5 9| 4 0|3 1
241 5 |9 116]|12]9 7

0 N divides 24: hint at realization of ZE as discrete rotational
symmetry in orbifolds

(The geometry of orbifolds with & = 1 SUSY is constrained that the order of discrete R symmetries also divides 24)
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= yHH + K LiH
+YY L;HE; + Y QHD; + Y! QHU;
+ /lijk LiLjEk + /ll/‘jk Linﬁk + /lé}k Eﬁjﬁk

+ Kgn HL; HLj + Kl(jlk){’ QinQkLg + Kl(fk){’ ﬁiﬁjﬁkl@ +...
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W = pHH + x; L;H

+ X§ LiH \ T Yg Qiﬁj + YLJ QiHUj
+ Ay LiX /lL"jk Linﬁk + /lz{]/'k Eﬁjﬁk
+ Kgn inQij v+ Kglgl ﬁiﬁjﬁkl@ + ...

< forbidden at the perturbative level
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

/= MHH+KiLiH

+ /lijk Li 'Ek + /ll/'jk Linﬁk + /ll/'J/'k Eﬁjﬁk

NG Kfjl]gl QinQkLg + Kglgl ﬁiﬁjﬁkl@ +...

< appear at non-perturbative level >
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W = uHH +« L;H
+ YV LHE; + Y QHD; + Y QHU;

+ L LiILEENG /luk LiQ;Dy + 1}, U-E »Bk

also forbidden at
non-perturbative level by
non-anomalous Zg subgroup
which is equivalent
to matter parity
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W o= ,uﬁH +x; L;H

Y L,HE; + Y QHD; + Y! QHU;,

Er + A, LiQ;Dy + A3, U;D;Dy,

+ kY, QUL+ k2, TTDE + ...

mn-per’rurboﬁve generation of u solves the u problem
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= Implications of Zf

Implications of 7

0 Gauge invariant superpotential terms up to order 4

W = uHH +x L;H
+YY L;HE; + Y QHD; + Y! QHU;
+ Aijie LiLiEy + Ay, LiQ;Dy + A, U;D;Dy,
+ ) HL; HL; + 1), @iQ;QkLy + «3), U;UDyEy + ..

Y

\

< non-perturbatively generated terms harmless =
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= Implications of Zf

Minimal realization of ZE

O MSSM + Kdhler stabilized dilaton

6.x10°8F

5.x10°8F

1‘.6 l‘.7 l‘.8 1‘.9 2‘.0
Re S
e non-perturbative corrections to the Kahler potential lead to
a bump in the potential of Re S
e Im S has a flat potential ~ GS axion remains light
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= Implications of Zf

Minimal realization of ZE

[0 MSSM + Kd&hler stabilized dilaton
0 Non-perturbative superpotential
Wap D M% e’

is Z§ covariant (i.e. has R charge 2) as S — S + 1 Acs
0 Comments:
o Of course 74, is just the effective description of some hidden
sector strong dynamics
o ZE anomaly universality leads fo non-trivial constraints on the
(B-function) coefficient b
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O Effective u term and QQQL coefficients
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are also Z£ covariant
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0 Non-trivial vacuum expectation value of 74, is a measure
for Z£ breaking and the gravitino mass
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for Z£ breaking and the gravitino mass
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= Implications of Zf

Minimal realization of ZE

0 MSSM + Kdahler stabilized dilaton
0 Non-perturbative superpotential

Wap D M% e tS

is Z§ covariant (i.e. has R charge 2) as S — S + 1 Acs
O Effective u term and QQQL coefficients

Vp > AMpe " HH + Mp' e " 7)), QiQQkLs + ...

are also Z£ covariant

0 Non-trivial vacuum expectation value of 74, is a measure
for Z£ breaking and the gravitino mass

O (#') breaks ZE down to matter parity

0 Why s i ~ (#)?



Explicit
string theary

realizatiaon

o origin of Z
¢ higher-dimensional operators (effective u term etc.)
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The Zg orbifold plane

2D space with SO(2) rotational symmetry
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0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions
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Explicit string theory example

A unique Z{f symmetry for the MSSM
I—The Zg orbifold plane

The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[] ZE symmetry arises as a remnant of the Lorentz group in
compact dimensions

bulk fields
have even
ZE charge

localized
fields have odd
ZE charge
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I—The Zg orbifold plane

The Zy orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

0.09
0.08
%
0.07
0.06 Q
t
0.05
0.04
@2
0.03
0.02 @

34567 8 91011121314151617
10g,0(1/GeV)
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The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between i term and expectation value of
the superpotential (#)

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)



A unique Zf symmetry for the MSSM Explicit string theory example
I—The Zg orbifold plane

The Z, orbifold plane

0 Orbifolds with Zgy plane have three important properties:

[ 7Lt symmmetry arises as a remnant of the Lorentz group in
compact dimensions

[] Orbifold GUT limit with SU(6) bulk symmetry gives us
gauge-top unification

P Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Orbifold GUT limit with SU(6) bulk symmetry gives us the
proportionality between i term and expectation value of
the superpotential (#)

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

[] Rest of this talk: discuss globally consistent string model with
these features



A unique Z{f symmetry for the MSSM Explicit string theory example
I—Bluszt:zyk et al. model

Zo X 79 Orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5)
® ®

@ ®
SU(5) SU(5)

O step: 6 generation Zsy x Zy model with SU(5) symmetry
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I—Bluszt:zyk et al. model

Zo X 79 Orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)
@ @ @
non-local
breaking
—
@ Ol @ .
SU(5) SU(5) SU(5)

O step: 6 generation Zs x Zy model with SU(5) symmetry

O step: mod out a freely acting Zg sysnmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)
Braun, He, Ovrut, Pantev (2005)
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'
Zo X 79 Orbifold example
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P Vaudrevange (2009)

SU(5) SU(5) SU(5)

non-local
breaking
SU(5)
l
Gsm

Note: this is just a cartoon
the geometric picture will be ex-
SU(5) . . .
plained in more detail elsewhere
0 step: 6 g

M. Fischer, M.R., P Vaudrevange (to appear) T]meTry

0 step: mod out a freely acting Zg symmetry which:
e breaks SU(5) — SU(3)c x SU(2)L, x U(1)y
e reduces the number of generations to 3
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I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
~ No ‘logarithmic running above the GUT scale’

Hebecker, Trapletti (2004)
~ precision gauge unification

with distinctive pattern of soft masses
Raby. M.R., Schmidt-Hoberg (2009)
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I—Bluszt:zyk et al. model

Main features

[] GUT symmetry breaking non-locall

[1 No localized flux in hypercharge direction
~ complete blow-up without breaking SM gauge
symmetry in principle possible
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I—Blusu:zyk et al. model

Main features

[] GUT symmetry breaking non-locall
[1 No localized flux in hypercharge direction

[] 4D gauge group:
SU3)e x SU)L x U()y x U(1)5 1 x [SUE3) x SU2)2 x U(1)]

[] massless spectrum

spectrum = 3 x generation + vector-like

[] various appealing features:
e vacua where exotics decouple at the linear level in SM
singlets
e non-trivial Yukawa couplings

e gauge-top unification P Hosteins, R. Kappl, M.R.. K. Schmidt-Hoberg (2009)
e SU(D) relation Y+ = Yp (outalso for light generations)
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‘Anomalous’ fo from a Zsy X Zs model

[ We succeeded in finding vacua with the *anomalous’ Z%

© In the Blaszczyk et al. model all vacua have an extra Z5*Y,
which leads to rank 2 Y, and Yy Yukawa couplings

© There are similar Zs x Zs models without this problem but all
the good features
v F- and D-flatness explicitly verified
v exotics decouple at the linear level in SM singlets, i.e. just
MSSM below GUT scale with massiessness of Higgs fields ensured by Zf
v non-trivial full-rank Yukawa couplings
v gauge-top unification
v SU(5) relation Y+ = Yp (but dlso for light generations)
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0 Successful string embedding of Z% possible!
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I—‘Anamulous’ Zf from Zg x Zg models

‘Anomalous’ fo from a Zsy X Zs model

[ We succeeded in finding vacua with the *anomalous’ Z%

© In the Blaszczyk et al. model all vacua have an extra z5*Y,
which leads to rank 2 Y, and Yy Yukawa couplings

© There are similar Zs x Zs models without this problem but all
the good features
v F- and D-flatness explicitly verified
v exotics decouple at the linear level in SM singlets, i.e. just
MSSM below GUT scale with massiessness of Higgs fields ensured by Zf
v non-trivial full-rank Yukawa couplings
v gauge-top unification
v SU(5) relation Y+ = Yp (but dlso for light generations)

0 Successful string embedding of Z% possible!

0 Note: the ‘anomalous’ Z§ does not come from the
‘anomalous’ U(1)!

...rather the discrete symmetries of the orbifold point can appear ‘anomalous’ by themselves
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u from 7 in models with Zy plane

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

K = -In|[(Ts+7y) (247

)~ (H,+Hy) (Ha+ )|

complex
structure
modulus

modulus
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F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K = —1n[(T3+T_3) (Z+Z)—

Higgs fields
= extra components
of gauge fields
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u from 7 in models with Zy plane

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K —1n[(T3+T_3) (Z+Z)—(Hu+ITd) (Hd+ITu)}

i [(1,+T5) (2-72)]
! L2 + [y + (H,Hy +c.c.)]

(1,7) (2:7)

1R

+




R symmetry for the MSSM Explicit string theory example

T4
I—‘Anomulous’ Zf from Zg x Zg models

u from 7 in models with Zy plane

rammer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K —1n[(T3+T_3) (Z+Z)—(Hu+ITd) (Hd+ITu)}

(134 T5) (2+2)]

(T + T)l (Z N Z) [|H, I + |Hyl* + (H,Hq + C.C.)]
3 3

—ln[(T3 +T_3) (Z+Z)} + ﬁu|2+ a2+ ﬁﬁd+c.c.)}

1R

+

normalized

Higgs
fields
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K=~ -In [(Tg +T3) (Z+Z)} + [lIAful2 + |Hy? + (H,H; +c.c.)

O Consider now superpotential L
W = Q = independent of the monomial H, H,
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u from 7 in models with Zy plane

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K=~ -In [(Tg +73) (Z+Z)} + [lIAful2 + |Hy? + (H,H; +c.c.)

O Consider now superpotential L
W = Q = independent of the monomial H, H,

0 K & 7 inleading order in ﬁuﬁd equivalent to

K = -ln [(T3 +T_3) (Z+Z)} + [lﬁu|2 +|IA{d|2}
W = exp(H,Hy)Q = QH, Hy+...
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u from 7 in models with Zy plane

F. Brummer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

O Higher-dimensional gauge invariance ~ Kdahler potential

K=~ -In [(Tg +T3) (Z+Z)} + [lIAful2 + |Hy? + (H,H; +c.c.)

O Consider now superpotential L
W = Q = independent of the monomial H, H,

0 K & 7 inleading order in ﬁuﬁd equivalent to

K = -ln [(T3 +T_3) (Z+Z)} + [lﬁu|2 +|IA{d|2}
W = exp(H,Hy)Q = QH, Hy+...

bottom-line:
u term proportional 1o (Q)
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Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order

Kim & Nilles (1983); Casas & Munoz (1992)

= msy/2
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Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order
Kim & Nilles (1983); Casas & Munoz (1992)
~ M—% ~ m3/2
O Whatever gives us (#') will be a measure for fo breaking

. forinstance, one may replace/describe hidden sector
superpotential by gaugino condensate

Nilles (1982)

Iy = A = A®

« this is consistent with a non-perturbative breaking of 7%

o this assumes that the dilaton is fixed somehow (e.g. K&hler
stabilization)
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Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order

Kim & Nilles (1983); Casas & Munoz (1992)

~ e = Mgpe
2
M;

O Whatever gives us (#') will be a measure for fo breaking

0 Dimension 5 proton decay operators will have highly
suppressed coefficients
")

wp ) L mep 1 - 105 L
Yabar ~ 3 @QQL - % 5-QQQL ~ 107 QR QL
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I—‘Anomulous’ Zf from Zg x Zg models

Non-perturbative violation of Z (cont'd)

0O Since H, Hy is proportional to (#') we will get a
holomorphic contribution to the u term of the right order

Kim & Nilles (1983); Casas & Munoz (1992)
~ oarg = M3
2
MP
O Whatever gives us (#') will be a measure for fo breaking

0 Dimension 5 proton decay operators will have highly
suppressed coefficients
")

wp ) L mep 1 - 105 L
Yabar ~ 3 @QQL - % 5-QQQL ~ 107 QR QL

0 No R parity violation because ZE has a non-anomalous
subgroup which is equivalent to matter parity



Summary

&

autloak
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Summary — bottom-up

[] A simple ‘anomalous’ ZE symmetry can

e provide a solutfion to the i problem
e suppress proton decay operators

universal anomaly coefficients

universal charges for matter
forbid u @ free-level 3 ~ unique ZF

allow Yukawa couplings

dllow Weinberg operator

dim. 4 proton decay operators completely forbidden
fo ~ dim. 5 proton decay operators highly suppressed
1 Appears non-perturbatively
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Summary — top-down

[] Embedding into string theory allows us to understand
where the Z{ symmetry comes from: it may arise as a
discrete remmnant of Lorentz symmetry in extra dimensions

[] Such symmetries are on the same footing as the
fundamental symmmetries C, P and T

[] Guided by the (unique) ZF symmetry we have constructed
a globally consistent string model with:

e exact MSSM spectrum

e non-trivial Yukawa couplings

exact matter parity
e U~mg

e dimension five proton decay operators sufficiently suppressed
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