

A unique \mathbb{Z}_4^R symmetry for the MSSM

Michael Ratz

Bad Honnef, October 7, 2010

Based on:

- M. Blaszczyk, S. Groot Nibbelink, F. Ruehle, M.R., M. Trapletti & P. Vaudrevange, Phys. Lett. B 683, 340-348 (2010)
- F. Brümmer, R. Kappl, M.R. & K. Schmidt-Hoberg, JHEP 1004:006 (2010)
- H.M. Lee, S. Raby, G. Ross, M.R., R. Schieren & P. Vaudrevange, <http://arxiv.org/abs/1009.0905> & to appear
- R. Kappl, B. Petersen, M.R., R. Schieren & P. Vaudrevange, to appear

MSSM: good features and open questions

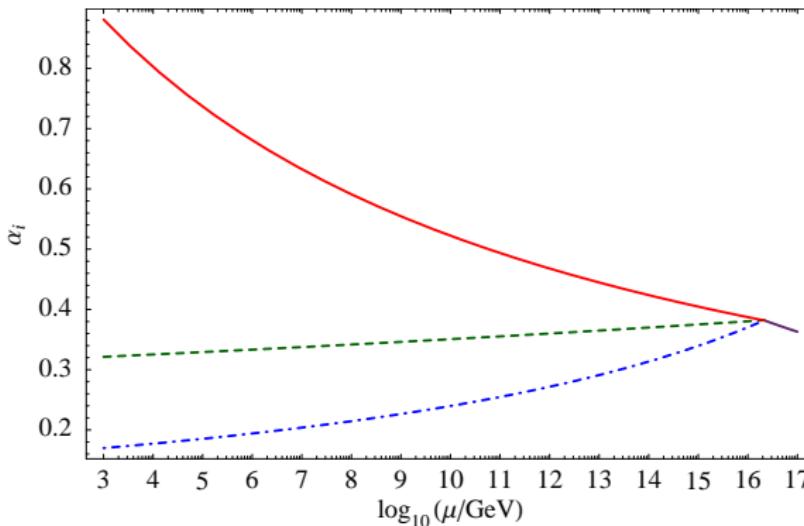
- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification



MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - 😊 ...

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - 😊 ...
- ☞ However:
 - 😊 $\mu/B\mu$ problem

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators
 - 😢 CP and flavor problems

MSSM: good features and open questions

- ☞ Many studies focus on the minimal supersymmetric extension of the standard model (MSSM)
- ☞ Why?
 - 😊 stabilization of hierarchies
 - 😊 MSSM gauge coupling unification
 - 😊 radiative electroweak symmetry breaking
 - 😊 dark matter candidate
 - 😊 ...
- ☞ However:
 - 😢 $\mu/B\mu$ problem
 - 😢 dimension four and five proton decay operators
 - 😢 CP and flavor problems
- ➡ Supersymmetry alone seems not to be enough

Outline

- ① Introduction & Motivation ✓
- ② A simple \mathbb{Z}_4^R symmetry can explain
 - suppressed μ term
 - proton stability
- ③ String theory realization
- ④ Summary

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}\mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\ & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i H \overline{U}_j \\ & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell\end{aligned}$$

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H} H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} E_j + Y_d^{ij} Q_i \overline{H} D_j + Y_u^{ij} Q_i H \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijk}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell
 \end{aligned}$$

need to be strongly suppressed

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \cancel{\kappa_i} L_i H \\
 & + Y_e^{ij} L_i \overline{H} \cancel{E}_j + Y_d^{ij} Q_i \overline{H} \cancel{D}_j + Y_u^{ij} Q_i \overline{H} \cancel{U}_j \\
 & + \cancel{\lambda_{ijk}} L_i L_j \overline{E}_k + \cancel{\lambda'_{ijk}} L_i Q_j \overline{D}_k + \cancel{\lambda''_{ijk}} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} \cancel{H} L_i \cancel{H} L_j + \kappa_{ijkl}^{(1)} \cancel{Q}_i \cancel{Q}_j \cancel{Q}_k \cancel{L}_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell
 \end{aligned}$$

forbidden by matter parity

Farrar & Fayet (1978); Dimopoulos, Raby & Wilczek (1981)

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i H \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell
 \end{aligned}$$

Proton decay operators

- ☞ Gauge invariant superpotential terms up to order 4 include

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H} H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} E_j + Y_d^{ij} Q_i \overline{H} D_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijk}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell
 \end{aligned}$$

forbidden by proton hexality

Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

- ☞ Proton hexality = matter parity + baryon triality

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thormeier (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

😊 forbids dimension four and five proton decay operators

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H L_i H L_j$

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H L_i H L_j$
- 😊 unique anomaly-free symmetry with the above features
... with the common notion of **anomaly freedom**

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

- ☞ Appealing features
 - 😊 forbids dimension four and five proton decay operators
 - 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H L_i H L_j$
 - 😊 unique anomaly-free symmetry with the above features
- ☞ However:
 - 😊 not consistent with unification for matter (i.e. inconsistent with universal discrete charges for all matter fields)

Proton hexality

Ibáñez & Ross (1992); Babu, Gogoladze & Wang (2002); Dreiner, Luhn & Thorleif (2006)

☞ Proton hexality P_6 = matter parity $\mathbb{Z}_2^M \times$ baryon triality B_3

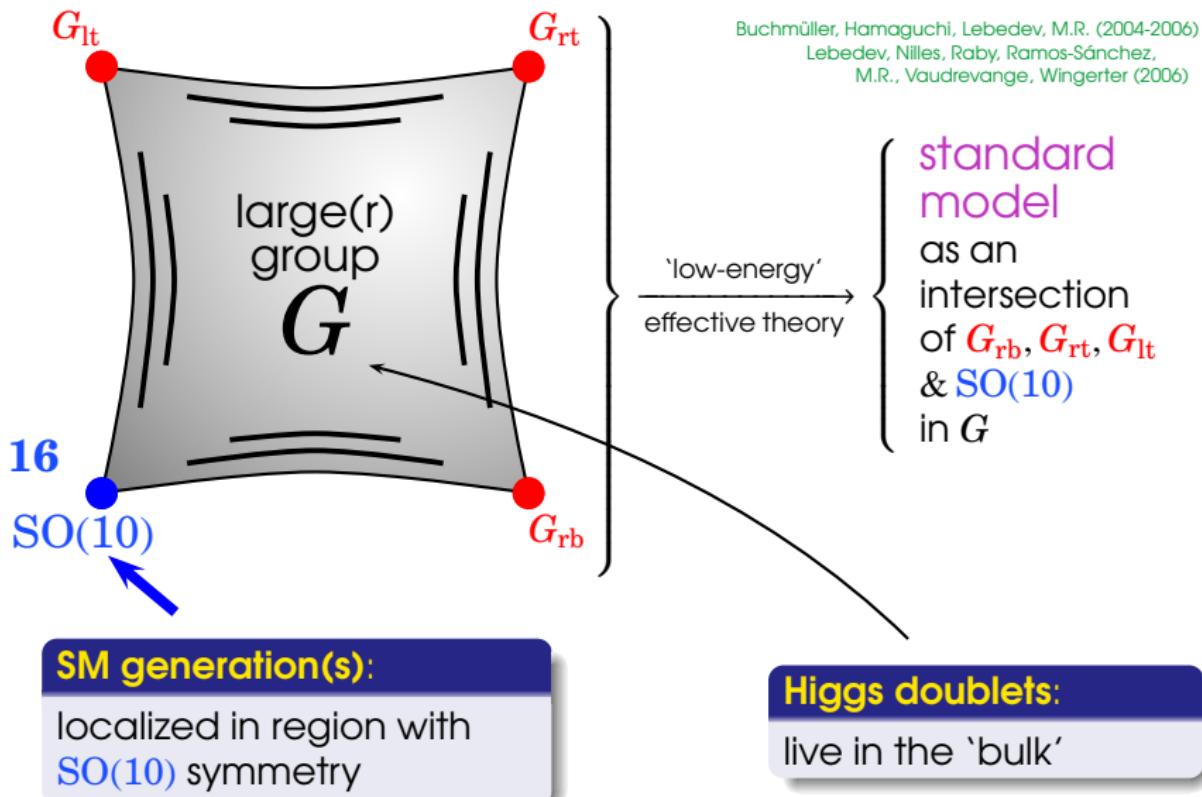
	Q	\bar{U}	\bar{D}	L	\bar{E}	H	\bar{H}	$\bar{\nu}$
\mathbb{Z}_2^M	1	1	1	1	1	0	0	1
B_3	0	-1	1	-1	2	1	-1	0
P_6	0	1	-1	-2	1	-1	1	3

☞ Appealing features

- 😊 forbids dimension four and five proton decay operators
- 😊 allows Yukawa couplings & Weinberg operator $\kappa_{ij}^{(0)} H L_i H L_j$
- 😊 unique anomaly-free symmetry with the above features

☞ However:

- 😊 not consistent with unification for matter
- 😊 embedding into string theory not yet fully convincing

Local grand unification (using **small** extra dimensions)

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - (:(not consistent with (local grand) unification for matter

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - (⌚) not consistent with (local grand) unification for matter
 - (⌚) embedding into string theory not yet fully convincing

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - (😢) not consistent with (local grand) unification for matter
 - (😢) embedding into string theory not yet fully convincing
 - (😢) does not address μ problem

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - :(not consistent with (local grand) unification for matter
 - :(embedding into string theory not yet fully convincing
 - :(does not address μ problem

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

need to be strongly suppressed

Proton hexality

- ☞ Disturbing aspects of proton hexality
 - :(not consistent with (local grand) unification for matter
 - :(embedding into string theory not yet fully convincing
 - :(does not address μ problem

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} E_j + Y_d^{ij} Q_i \overline{H} D_j + Y_u^{ij} Q_i \overline{H} U_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

need to be strongly suppressed

needs to be suppressed as well...

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - **discrete symmetries**
 - Green-Schwarz (GS) anomaly cancellation

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - **discrete symmetries**
 - **Green-Schwarz (GS) anomaly cancellation**
 - **MSSM models with Local Grand Unification**

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz (GS) anomaly cancellation
 - MSSM models with Local Grand Unification
 - ...

Origin of discrete symmetries

- ☞ Where can the discrete symmetries come from?
- ☞ Possible answer: higher dimensions and strings
- ☞ What does string theory give us?
 - unification with gravity
 - extra gauge symmetries
 - discrete symmetries
 - Green-Schwarz (GS) anomaly cancellation
 - MSSM models with Local Grand Unification
 - ...
- ➡ Two prejudices from string model building:
 - 1 Local Grand Unification
 - 2 'anomalous' discrete symmetries whose anomalies are canceled the Green-Schwarz mechanism

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ☞ The 'anomalies' in the discrete symmetries do **not** arise from a mixing with the 'anomalous' $U(1)$

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)}$$

$$A_{\text{grav}^2 - \mathbb{Z}_N} = \sum_m q^{(m)}$$

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)}$$

sum over all representations of G

$$A_{\text{grav}^2 - \mathbb{Z}_N} = \sum_m q^{(m)}$$

sum over all fermions

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_f \ell^{(f)} q^{(f)}$$

$$A_{\text{grav}^2 - \mathbb{Z}_N} = \sum_m q^{(m)}$$

Dynkin index

discrete charges

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

anomaly freedom:

all A coefficients vanish

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2-\mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} 0 \pmod{\eta}$$

$$\eta := \begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}$$

$$A_{\text{grav}^2-\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} 0 \pmod{\eta}$$

From anomaly freedom to anomaly universality

Dine & Graesser (2004); Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R. & Vaudrevange (2008)

- ☞ Important lesson from explicit string-derived (MSSM) models

'anomalous' discrete symmetries:

Anomalies of discrete symmetries canceled by Green-Schwarz mechanism

- ➡ Anomaly freedom gets relaxed to anomaly universality

Example: anomaly coefficients for \mathbb{Z}_N

$$A_{G^2 - \mathbb{Z}_N} = \sum_f \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \rho \pmod{\eta}$$

$$A_{\text{grav}^2 - \mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \pmod{\eta}$$

anomaly freedom:
all A coefficients vanish

anomaly universality:
all A coefficients equal

Green-Schwarz anomaly cancellation

- ☞ Under ‘anomalous’ U(1) symmetry the path integral measure exhibits non-trivial transformation

Fujikawa (1979)

$$\mathcal{D}\Psi \mathcal{D}\bar{\Psi} \rightarrow \mathcal{J}(\alpha) \mathcal{D}\Psi \mathcal{D}\bar{\Psi} \quad \text{with non-trivial } \mathcal{J}(\alpha)$$

Green-Schwarz anomaly cancellation

- Under 'anomalous' U(1) symmetry the path integral measure exhibits non-trivial transformation
- One can absorb the change of the path integral measure in a change of Lagrangean

Fujikawa (1979)

$$\Delta\mathcal{L}_{\text{anomaly}} = \frac{\alpha}{32\pi^2} F_{\text{anom}} \tilde{F}_{\text{anom}} A_{U(1)_{\text{anom}}^3} + \sum_G \frac{\alpha}{32\pi^2} F^a \tilde{F}^a A_{G-G-U(1)_{\text{anom}}} - \frac{\alpha}{384\pi^2} \mathcal{R} \tilde{\mathcal{R}} A_{\text{grav-grav-U(1)_{anom}}}$$

sum over all gauge factors

anomaly coefficients

Green-Schwarz anomaly cancellation

- Under 'anomalous' U(1) symmetry the path integral measure exhibits non-trivial transformation
- One can absorb the change of the path integral measure in a change of Lagrangean

Fujikawa (1979)

$$\begin{aligned}\Delta \mathcal{L}_{\text{anomaly}} = & \frac{\alpha}{32\pi^2} F_{\text{anom}} \tilde{F}_{\text{anom}} A_{\text{U(1)}_{\text{anom}}^3} \\ & + \sum_G \frac{\alpha}{32\pi^2} F^a \tilde{F}^a A_{G-G-\text{U(1)}_{\text{anom}}} - \frac{\alpha}{384\pi^2} \mathcal{R} \tilde{\mathcal{R}} A_{\text{grav-grav-U(1)}_{\text{anom}}}\end{aligned}$$

- Provided the Lagrangean also includes **axion** couplings

$$\mathcal{L} \supset -\frac{a}{8} F_{\text{anom}} \tilde{F}_{\text{anom}} - \frac{a}{8} F^a \tilde{F}^a + \frac{a}{4} \mathcal{R} \tilde{\mathcal{R}}$$

$\Delta \mathcal{L}_{\text{anomaly}}$ can be compensated by a shift of the **axion a** if the **anomaly coefficients** are **universal**

Green & Schwarz (1984)

Discrete GS anomaly cancellation

- ☞ The analysis applies also for discrete symmetries

Discrete GS anomaly cancellation

- ☞ The analysis applies also for discrete symmetries
- ☞ Specifically for a \mathbb{Z}_N transformation

$$\Phi^{(f)} \rightarrow e^{-i \frac{2\pi}{N} q^{(f)}} \Phi^{(f)}$$

the **dilaton** (containing the **axion**) has to transform as

$$S \rightarrow S + \frac{i}{2} \Delta_{\text{GS}}$$

where

$$\pi N \Delta_{\text{GS}} \equiv \frac{1}{24} A_{\text{grav-grav-}\mathbb{Z}_N} = A_{G-G-\mathbb{Z}_N} \bmod \eta \quad \forall G$$

A unique \mathbb{Z}_4^R symmetry

☞ Assumptions:

- anomaly universality \iff GS anomaly cancellation

A unique \mathbb{Z}_4^R symmetry

☞ Assumptions:

- anomaly universality \iff GS anomaly cancellation
- universal charges for quarks and leptons

A unique \mathbb{Z}_4^R symmetry

☞ Assumptions:

- anomaly universality \iff GS anomaly cancellation
- universal charges for quarks and leptons
- μ term forbidden at perturbative level

A unique \mathbb{Z}_4^R symmetry

☞ Assumptions:

- anomaly universality \iff GS anomaly cancellation
- universal charges for quarks and leptons
- μ term forbidden at perturbative level
- Yukawa couplings and Weinberg neutrino mass operator allowed

A unique \mathbb{Z}_4^R symmetry

☞ Assumptions:

- anomaly universality \iff GS anomaly cancellation
- universal charges for quarks and leptons
- μ term forbidden at perturbative level
- Yukawa couplings and Weinberg neutrino mass operator allowed

Want to prove:

There is a unique \mathbb{Z}_4^R symmetry in the MSSM with these features

Claim 1: it has to be an R symmetry

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \frac{9}{2} \mathbf{q_{10}} + \frac{3}{2} \mathbf{q_{\bar{5}}}$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \frac{9}{2} \mathbf{q_{10}} + \frac{3}{2} \mathbf{q_{\bar{5}}} + \frac{1}{2} (\mathbf{q_H} + \mathbf{q_{\bar{H}}})$$

Claim 1: it has to be an R symmetry

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \frac{9}{2} \mathbf{q_{10}} + \frac{3}{2} \mathbf{q_{\bar{5}}}$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \frac{9}{2} \mathbf{q_{10}} + \frac{3}{2} \mathbf{q_{\bar{5}}} + \frac{1}{2} (\mathbf{q_H} + \mathbf{q_{\bar{H}}})$$

- ☞ Anomaly universality

$$A_{SU(2)^2 - \mathbb{Z}_N} - A_{SU(3)^2 - \mathbb{Z}_N} = 0$$

$$\curvearrowright \frac{1}{2} (\mathbf{q_H} + \mathbf{q_{\bar{H}}}) = 0 \pmod{\begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}}$$

Claim 1: it has to be an R symmetry

- ☞ Anomaly coefficients for non- R symmetry with $SU(5)$ relations for matter charges

$$A_{SU(3)^2 - \mathbb{Z}_N} = \frac{9}{2} q_{\mathbf{10}} + \frac{3}{2} q_{\overline{\mathbf{5}}}$$

$$A_{SU(2)^2 - \mathbb{Z}_N} = \frac{9}{2} q_{\mathbf{10}} + \frac{3}{2} q_{\overline{\mathbf{5}}} + \frac{1}{2} (q_H + q_{\overline{H}})$$

- ☞ Anomaly universality

$$A_{SU(2)^2 - \mathbb{Z}_N} - A_{SU(3)^2 - \mathbb{Z}_N} = 0$$

$$\curvearrowright \frac{1}{2} (q_H + q_{\overline{H}}) = 0 \pmod{\begin{cases} N & \text{for } N \text{ odd} \\ N/2 & \text{for } N \text{ even} \end{cases}}$$

bottom-line:

non- R \mathbb{Z}_N symmetry cannot forbid μ term

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + q_{\bar{H}} = 2 \pmod{N}$$

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + q_{\overline{H}} = 2 \pmod{N}$$

$$\leadsto q_H - q_{\overline{H}} = 0 \pmod{N}$$

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + q_{\overline{H}} = 2 \pmod{N}$$
$$\leadsto q_H - q_{\overline{H}} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_H = 2 \pmod{N}$$

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + q_{\overline{H}} = 2 \pmod{N}$$
$$\leadsto q_H - q_{\overline{H}} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_H = 2 \pmod{N}$$
$$\leadsto q_H = 0 \pmod{N}$$

Claim 2: Higgs discrete charges have to vanish

- ☞ Assumption: quarks and leptons have universal charge q
- ☞ u - and d -type Yukawas allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + q_{\bar{H}} = 2 \pmod{N}$$

$$\leadsto q_H - q_{\bar{H}} = 0 \pmod{N}$$

- ☞ u -type Yukawa and Weinberg operator allowed requires that

$$2q + q_H = 2 \pmod{N} \quad \text{and} \quad 2q + 2q_H = 2 \pmod{N}$$

$$\leadsto q_H = 0 \pmod{N}$$

bottom-line:

$$q_H = q_{\bar{H}} = 0 \pmod{N}$$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2} (\textcolor{violet}{q}_H + \textcolor{violet}{q}_{\overline{H}}) - 5$$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2}(\textcolor{violet}{q}_H + \textcolor{violet}{q}_{\overline{H}}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\leadsto \textcolor{violet}{q}_H + \textcolor{violet}{q}_{\overline{H}} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_H + q_{\bar{H}}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\leadsto q_H + q_{\bar{H}} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $q_H = q_{\bar{H}} = 0 \pmod{N}$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(\textcolor{blue}{q} - 1) + 3 = 6\textcolor{blue}{q} - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6\textcolor{blue}{q} + \frac{1}{2}(\textcolor{violet}{q}_H + \textcolor{violet}{q}_{\overline{H}}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\curvearrowright \textcolor{violet}{q}_H + \textcolor{violet}{q}_{\overline{H}} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $\textcolor{violet}{q}_H = \textcolor{violet}{q}_{\overline{H}} = 0 \pmod{N}$

bottom-line:

$N = 2$ or $N = 4$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_H + q_{\bar{H}}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = \boxed{\text{however: there is no meaningful } \mathbb{Z}_2^R \text{ symmetry}}$$

cf. e.g. Dine & Kehayias (2009)

$$q_H \equiv q_{\bar{H}} \pmod{N} \quad \text{for } N \text{ even}$$

- ☞ but we know already that $q_H = q_{\bar{H}} = 0 \pmod{N}$

bottom-line:

$$N = 2 \text{ or } N = 4$$

Claim 3: The order has to be 4 (or 2)

- ☞ Anomaly coefficients for Abelian discrete R symmetry

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_H + q_{\bar{H}}) - 5$$

- ☞ Anomaly universality

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} - A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 0$$

$$\leadsto q_H + q_{\bar{H}} = 4 \pmod{\begin{cases} 2N & \text{for } N \text{ odd} \\ N & \text{for } N \text{ even} \end{cases}}$$

- ☞ but we know already that $q_H = q_{\bar{H}} = 0 \pmod{N}$

bottom-line:

$N = 4$ unique

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (q_H + q_{\bar{H}}) - 5 = 1 \pmod{4/2}$$

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{3}{5} \cdot \frac{1}{2} \cdot (q_H + q_{\bar{H}} - 2)$$

e.g. $q_H = q_{\bar{H}} = 16$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (a_H + a_{\bar{H}}) - 5 = 1 \pmod{4/2}$$

gravitino contribution gaugino contributions

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{5} \cdot \frac{1}{2} (q_H + q_{\bar{H}} - 2) = 1 \pmod{4/2}$$

$$\frac{1}{24} A_{\text{grav}^2 - \mathbb{Z}_N^R} = \frac{1}{24} [-21 + 8 + 3 + 1 + 48(q - 1) + 2(q_H + q_{\bar{H}} - 2) - 1]$$

only defined $\pmod{4}$

axino contribution

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2} (q_H + q_{\bar{H}}) - 5 = 1 \pmod{4/2}$$

$$A_{\text{U}(1)_Y^2 - \mathbb{Z}_N^R} = 6q + \frac{3}{5} \cdot \frac{1}{2} \cdot (q_H + q_{\bar{H}} - 2) = 1 \pmod{4/2}$$

$$\frac{1}{24} A_{\text{grav}^2 - \mathbb{Z}_N^R} = \frac{1}{24} [\dots] = 1 \pmod{4/2}$$

Unique \mathbb{Z}_4^R symmetry

☞ We know:

- it is a \mathbb{Z}_4^R symmetry
- Higgs fields have charge $q_H = q_{\bar{H}} = 0 \pmod{4}$

➡ Yukawa couplings and Weinberg operator allowed \sim matter has charge $q = 1$

☞ Consistent with anomaly universality

$$A_{\text{SU}(3)^2 - \mathbb{Z}_N^R} = 6(q - 1) + 3 = 6q - 3 = 1 \pmod{4/2}$$

$$A_{\text{SU}(2)^2 - \mathbb{Z}_N^R} = 6q + \frac{1}{2}(q_H + q_{\bar{H}}) - 5 = 1 \pmod{4/2}$$

bottom-line:

- \mathbb{Z}_4^R is anomaly free via GS mechanism
- GS axino contribution important for gravitational anomaly

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurosawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurosawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)
- ☞ However:
 - no uniqueness discussion

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously
Kurokawa, Maru & Yanagida (2001)
- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before
Babu, Gogoladze & Wang (2002)
- ☞ However:
 - no uniqueness discussion
 - no discussion about suppression of dimension five operators

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R
- starting point: 'anomalous' $U(1)_R$ (????)

\mathbb{Z}_4^R literature

- ☞ Anomaly-free version of this \mathbb{Z}_4^R with extra matter has been discussed previously

Kurokawa, Maru & Yanagida (2001)

- ☞ \mathbb{Z}_4^R with GS anomaly cancellation has also been discussed before

Babu, Gogoladze & Wang (2002)

- ☞ However:

- no uniqueness discussion
- no discussion about suppression of dimension five operators
- no discussion of non-perturbative violation of \mathbb{Z}_4^R
- starting point: 'anomalous' $U(1)_R$ (????)
- no discussion of mixed hypercharge nor gravitational anomalies

Comment on schemes with SU(5) relations

- ☞ Using a similar strategy and demanding only $SU(5)$ rather than $SO(10)$ relations one can show that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24

Comment on schemes with SU(5) relations

- ☞ Using a similar strategy and demanding only $SU(5)$ rather than $SO(10)$ relations one can show that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24
- ☞ There are only five viable charge assignments

N	$q_{\mathbf{10}}$	$q_{\bar{\mathbf{5}}}$	q_H	$q_{\bar{H}}$	ρ	$A_0^R(\text{MSSM})$
4	1	1	0	0	1	1
6	5	3	4	0	0	1
8	1	5	0	4	1	3
12	5	9	4	0	3	1
24	5	9	16	12	9	7

Recall

$$A_{G^2-\mathbb{Z}_N} = \sum_f \ell^{(f)} q^{(f)} \stackrel{!}{=} \rho \bmod \eta$$

$$A_{\text{grav}^2-\mathbb{Z}_N} = \sum_m q^{(m)} \stackrel{!}{=} \rho \bmod \eta$$

Comment on schemes with SU(5) relations

- ☞ Using a similar strategy and demanding only $SU(5)$ rather than $SO(10)$ relations one can show that the order N of possible \mathbb{Z}_N^R symmetries has to divide 24
- ☞ There are only five viable charge assignments

N	$q_{\mathbf{10}}$	$q_{\mathbf{\bar{5}}}$	q_H	$q_{\bar{H}}$	ρ	$A_0^R(\text{MSSM})$
4	1	1	0	0	1	1
6	5	3	4	0	0	1
8	1	5	0	4	1	3
12	5	9	4	0	3	1
24	5	9	16	12	9	7

- ☞ N divides 24: hint at realization of \mathbb{Z}_N^R as discrete rotational symmetry in orbifolds

(The geometry of orbifolds with $N = 1$ SUSY is constrained that the order of discrete R symmetries also divides 24)

Implications of \mathbb{Z}_4^R

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}\mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\ & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i H \overline{U}_j \\ & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots\end{aligned}$$

Implications of \mathbb{Z}_4^R

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

forbidden at the perturbative level

Implications of \mathbb{Z}_4^R

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

appear at non-perturbative level

Implications of \mathbb{Z}_4^R

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} \overline{H} L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

also forbidden at
non-perturbative level by
non-anomalous \mathbb{Z}_2 subgroup
which is equivalent
to matter parity

Implications of \mathbb{Z}_4^R

- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i \overline{H} \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

non-perturbative generation of μ solves the μ problem

Implications of \mathbb{Z}_4^R

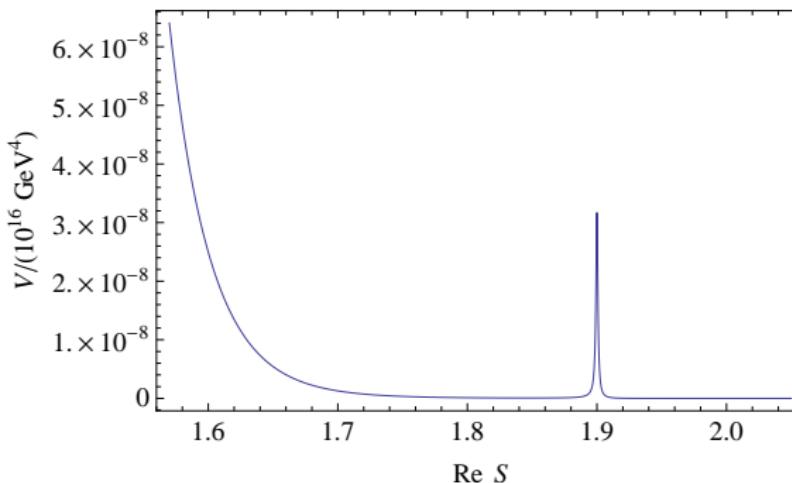
- ☞ Gauge invariant superpotential terms up to order 4

$$\begin{aligned}
 \mathcal{W} = & \mu \overline{H}H + \kappa_i L_i H \\
 & + Y_e^{ij} L_i \overline{H} \overline{E}_j + Y_d^{ij} Q_i \overline{H} \overline{D}_j + Y_u^{ij} Q_i H \overline{U}_j \\
 & + \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\
 & + \kappa_{ij}^{(0)} H L_i H L_j + \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijkl}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots
 \end{aligned}$$

non-perturbatively generated terms harmless

Minimal realization of \mathbb{Z}_4^R

☞ MSSM + Kähler stabilized dilaton



- non-perturbative corrections to the Kähler potential lead to a bump in the potential of $\text{Re } S$
- $\text{Im } S$ has a flat potential \sim GS axion remains light

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{\text{GS}}$

- ☞ Comments:
 - Of course \mathcal{W}_{np} is just the effective description of some hidden sector strong dynamics
 - \mathbb{Z}_4^R anomaly universality leads to non-trivial constraints on the (β -function) coefficient b

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{\text{GS}}$

- ☞ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{np}} \supset A M_P e^{-b S} \bar{H}H + M_P^{-1} e^{-b S} \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \dots$$

are also \mathbb{Z}_4^R covariant

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-bS}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2}\Delta_{GS}$

- ☞ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{np}} \supset A M_P e^{-bS} \bar{H}H + M_P^{-1} e^{-bS} \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \dots$$

are also \mathbb{Z}_4^R covariant

- ☞ Non-trivial vacuum expectation value of \mathcal{W}_{np} is a measure for \mathbb{Z}_4^R breaking and the gravitino mass

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{GS}$

- ☞ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{np}} \supset A M_P e^{-b S} \bar{H}H + M_P^{-1} e^{-b S} \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \dots$$

are also \mathbb{Z}_4^R covariant

- ☞ Non-trivial vacuum expectation value of \mathcal{W}_{np} is a measure for \mathbb{Z}_4^R breaking and the gravitino mass
- ☞ $\langle \mathcal{W} \rangle$ breaks \mathbb{Z}_4^R down to matter parity

Minimal realization of \mathbb{Z}_4^R

- ☞ MSSM + Kähler stabilized dilaton
- ☞ Non-perturbative superpotential

$$\mathcal{W}_{\text{np}} \supset M_P^3 e^{-b S}$$

is \mathbb{Z}_4^R covariant (i.e. has R charge 2) as $S \rightarrow S + \frac{i}{2} \Delta_{GS}$

- ☞ Effective μ term and $QQQL$ coefficients

$$\mathcal{W}_{\text{np}} \supset A M_P e^{-b S} \bar{H}H + M_P^{-1} e^{-b S} \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_\ell + \dots$$

are also \mathbb{Z}_4^R covariant

- ☞ Non-trivial vacuum expectation value of \mathcal{W}_{np} is a measure for \mathbb{Z}_4^R breaking and the gravitino mass
- ☞ $\langle \mathcal{W} \rangle$ breaks \mathbb{Z}_4^R down to matter parity
- ☞ Why is $\mu \sim \langle \mathcal{W} \rangle$?

Explicit

string theory

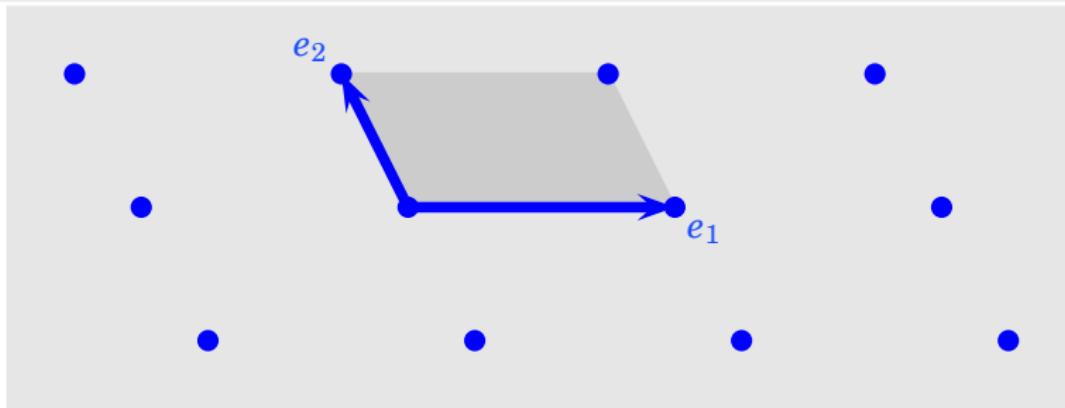
realization

- origin of \mathbb{Z}_4^R
- higher-dimensional operators (effective μ term etc.)

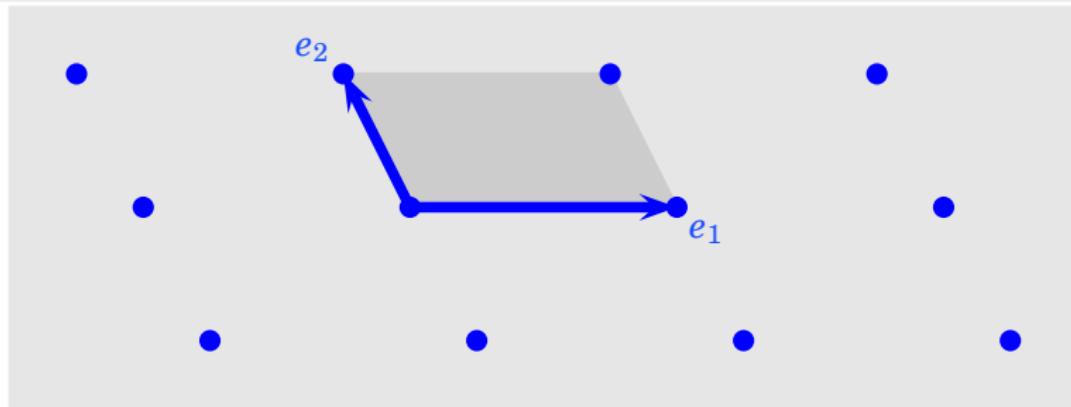
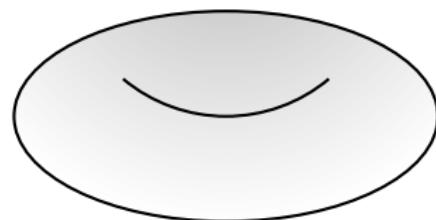
The \mathbb{Z}_2 orbifold plane

2D space with $SO(2)$ rotational symmetry

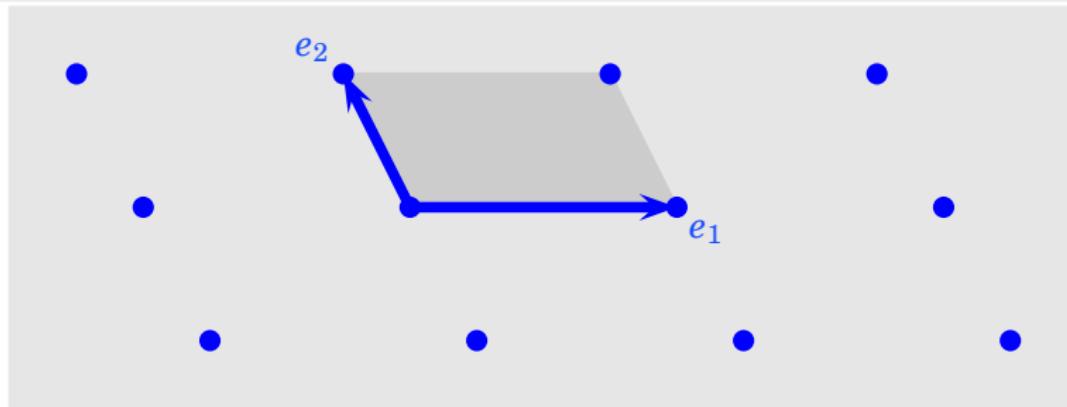
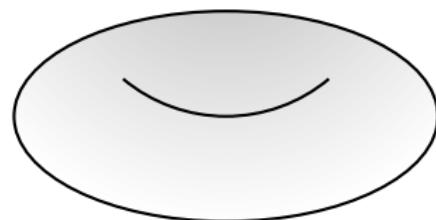
The \mathbb{Z}_2 orbifold plane



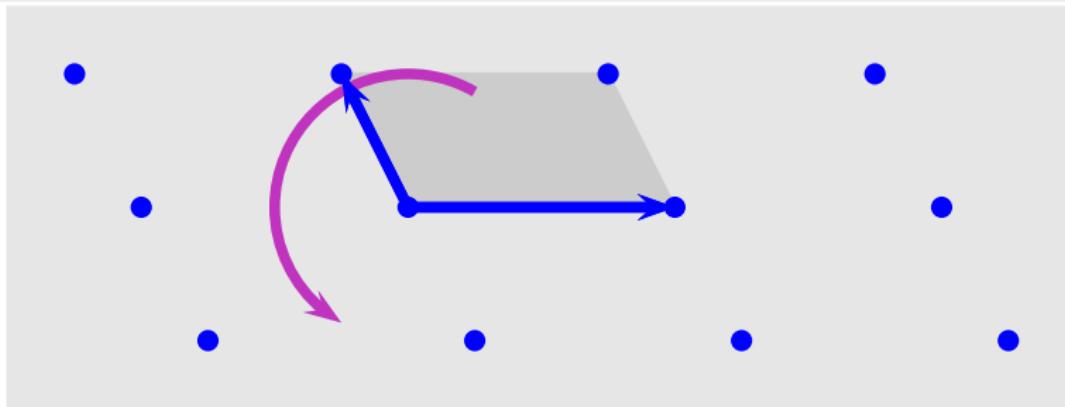
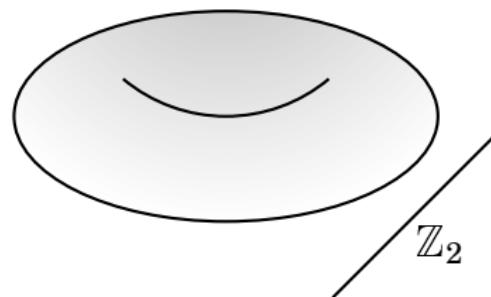
The \mathbb{Z}_2 orbifold plane



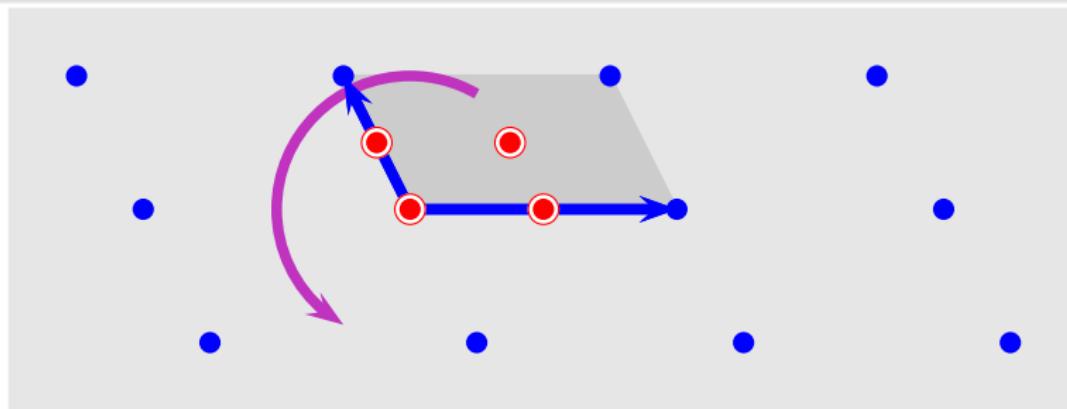
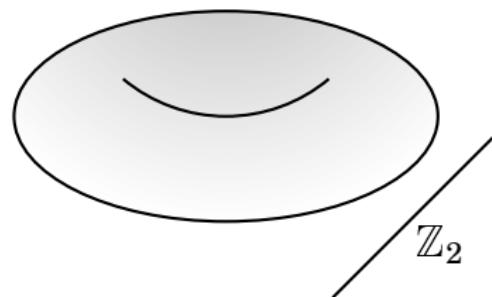
The \mathbb{Z}_2 orbifold plane



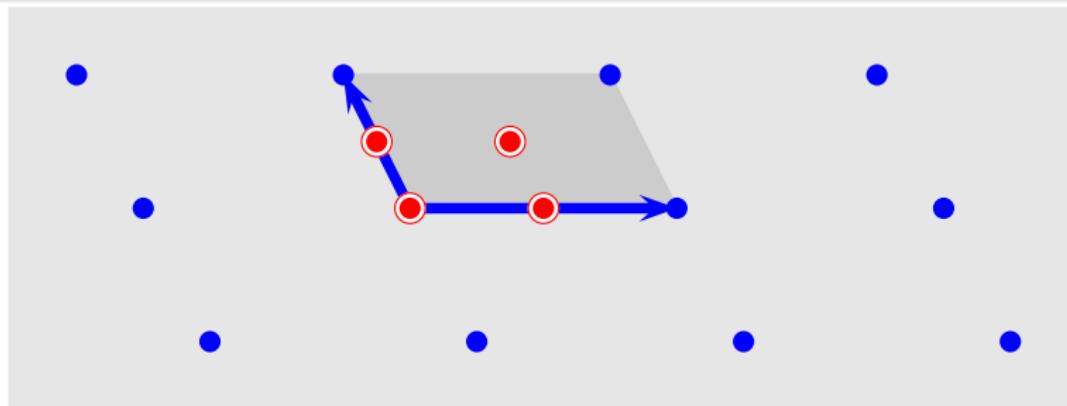
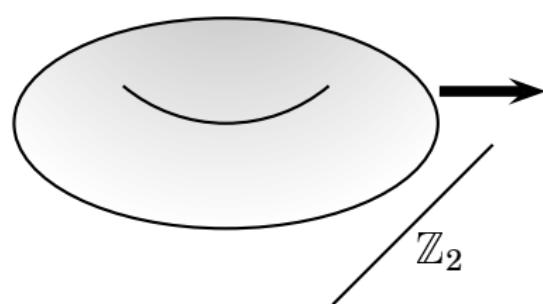
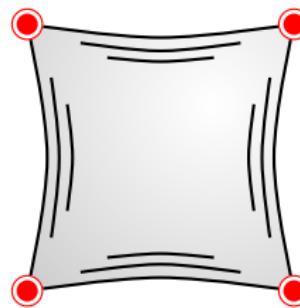
The \mathbb{Z}_2 orbifold plane



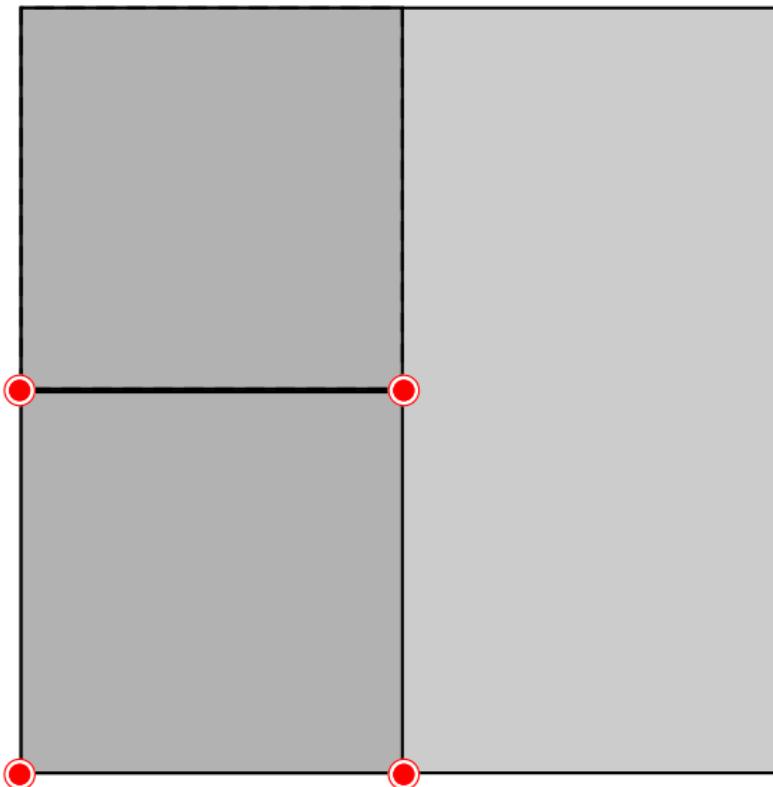
The \mathbb{Z}_2 orbifold plane



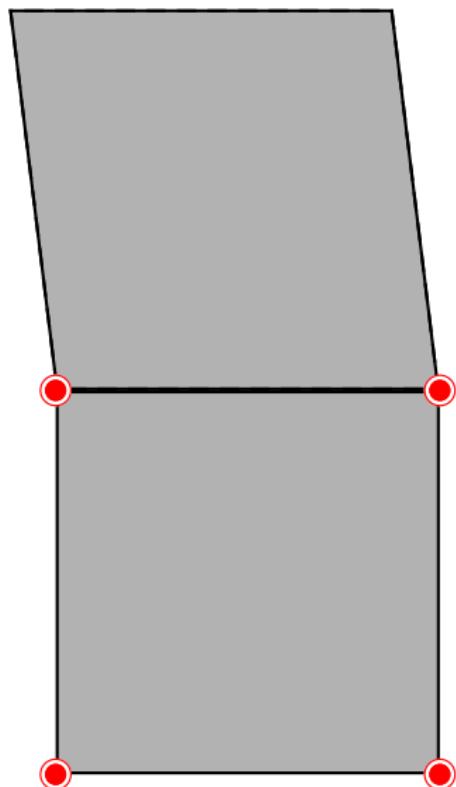
The \mathbb{Z}_2 orbifold plane



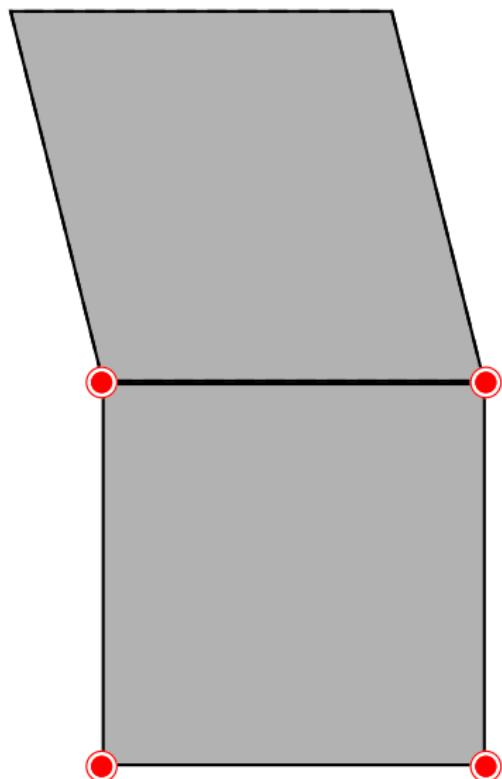
\mathbb{Z}_2 orbifold pillow



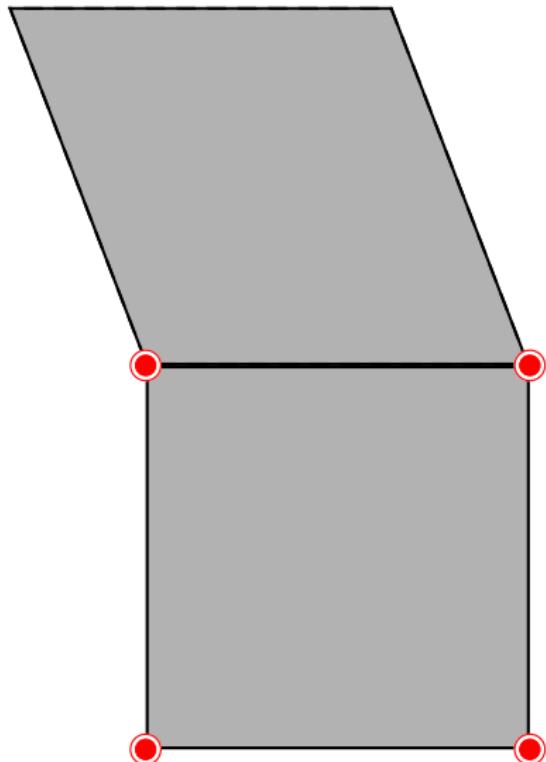
\mathbb{Z}_2 orbifold pillow



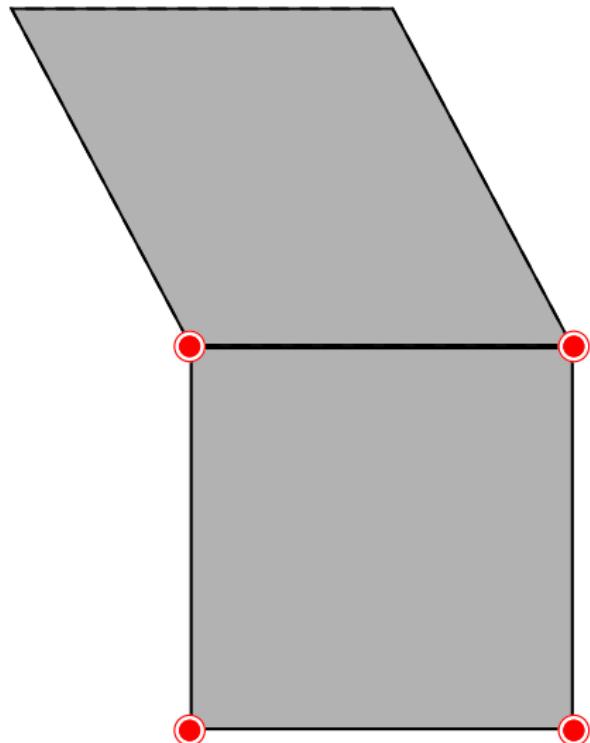
\mathbb{Z}_2 orbifold pillow



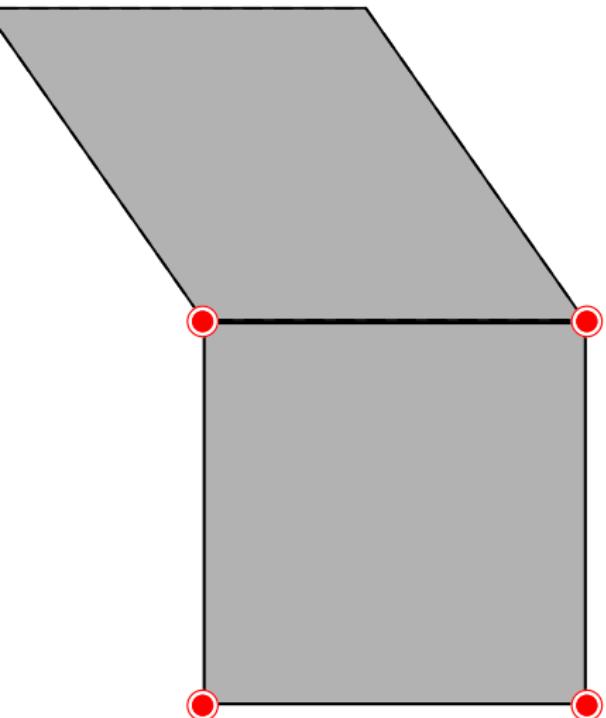
\mathbb{Z}_2 orbifold pillow



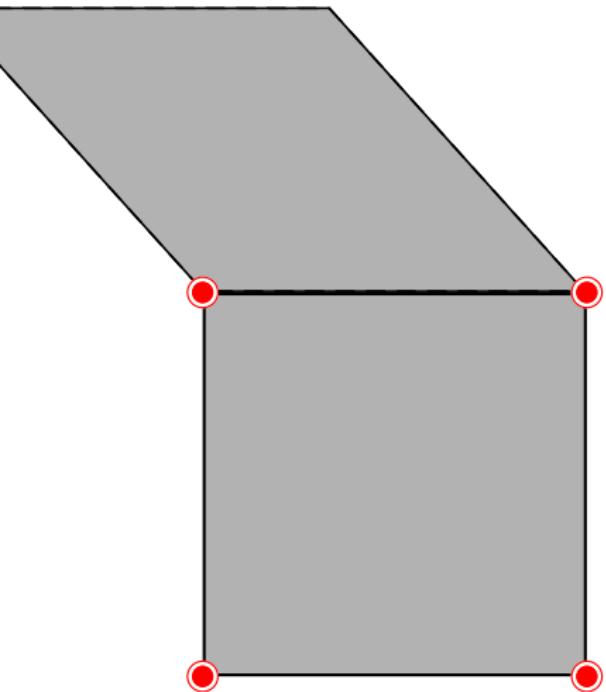
\mathbb{Z}_2 orbifold pillow



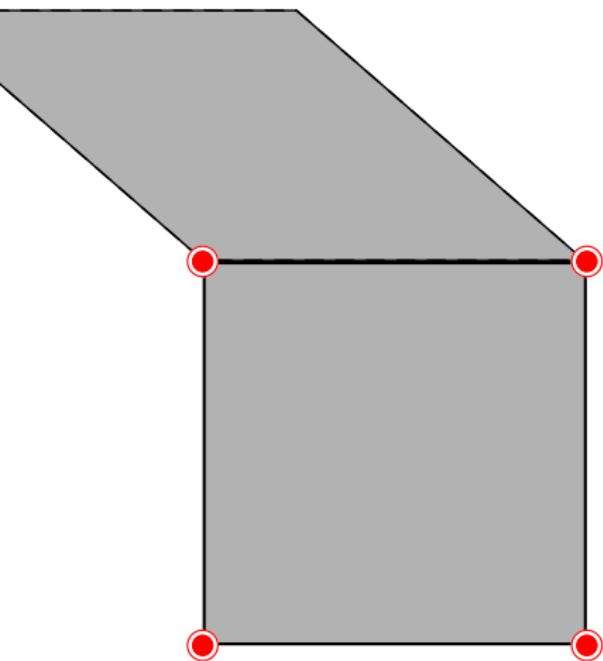
\mathbb{Z}_2 orbifold pillow



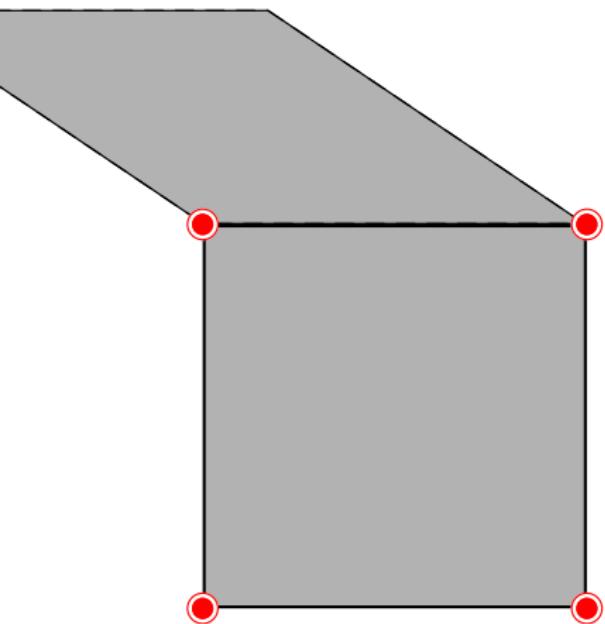
\mathbb{Z}_2 orbifold pillow



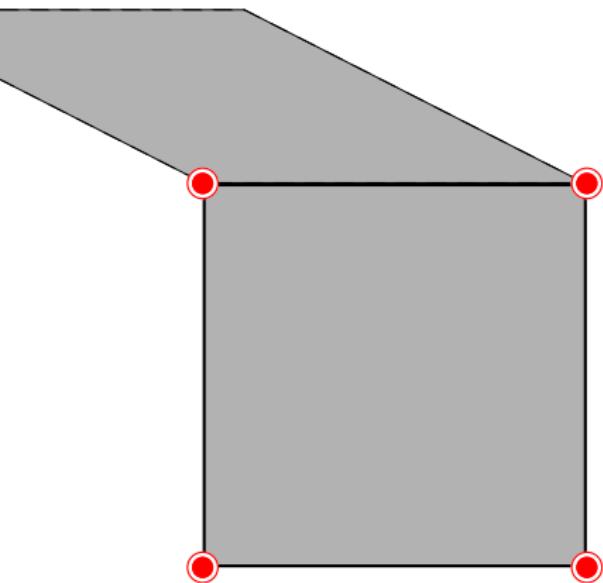
\mathbb{Z}_2 orbifold pillow



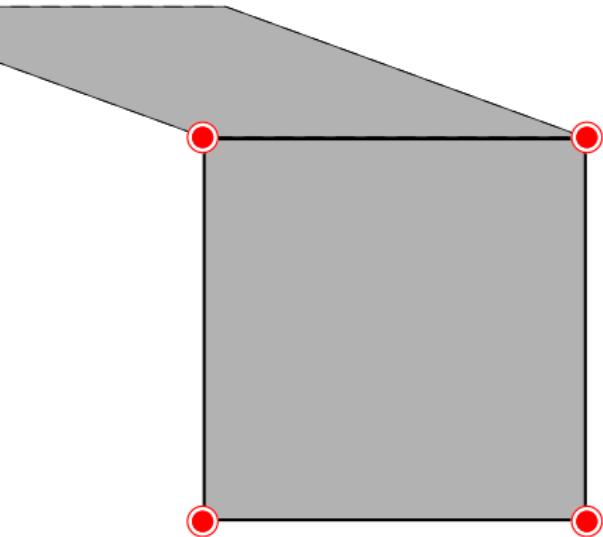
\mathbb{Z}_2 orbifold pillow



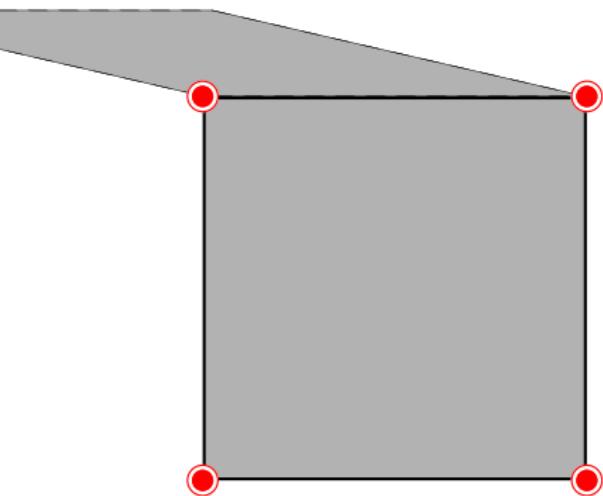
\mathbb{Z}_2 orbifold pillow



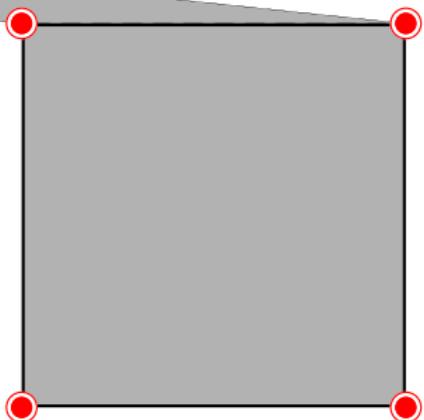
\mathbb{Z}_2 orbifold pillow



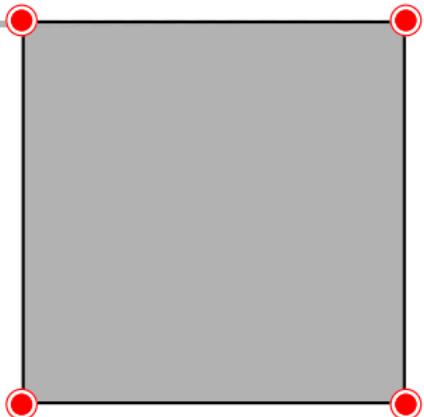
\mathbb{Z}_2 orbifold pillow



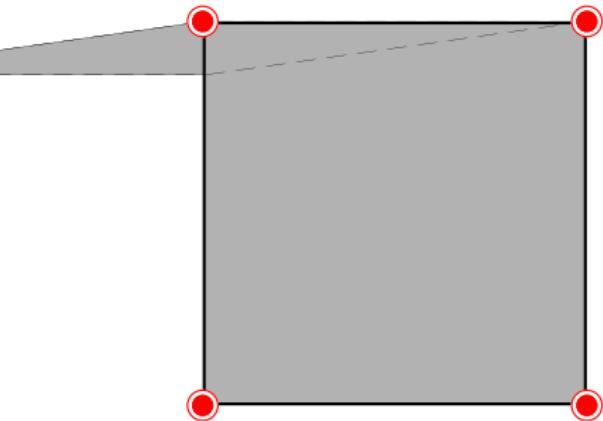
\mathbb{Z}_2 orbifold pillow



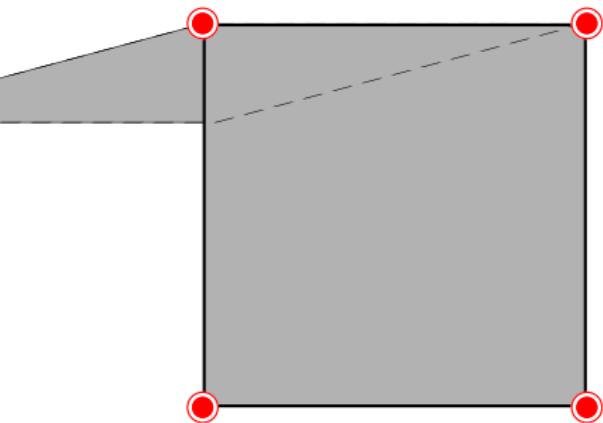
\mathbb{Z}_2 orbifold pillow



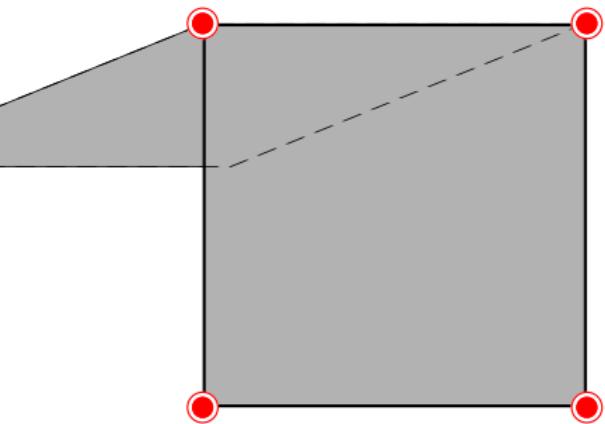
\mathbb{Z}_2 orbifold pillow



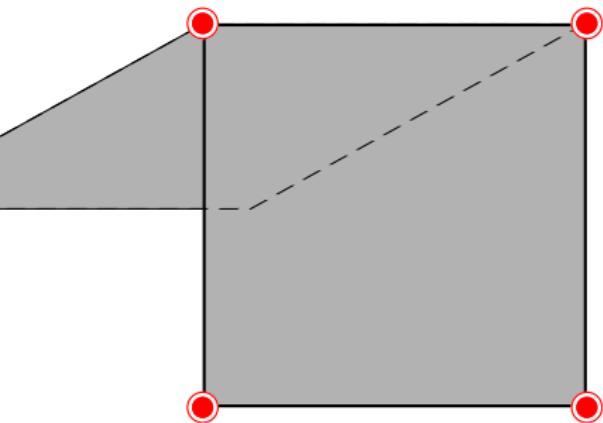
\mathbb{Z}_2 orbifold pillow



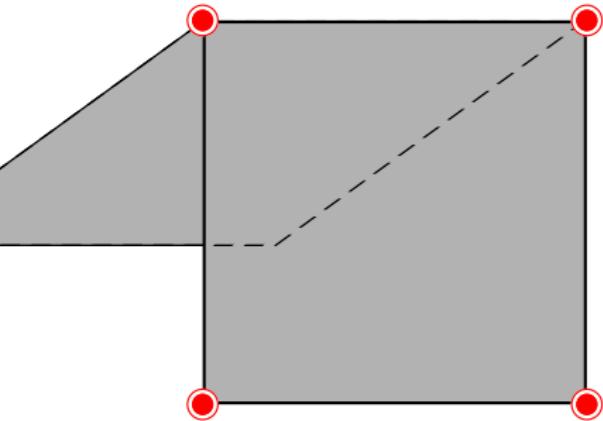
\mathbb{Z}_2 orbifold pillow



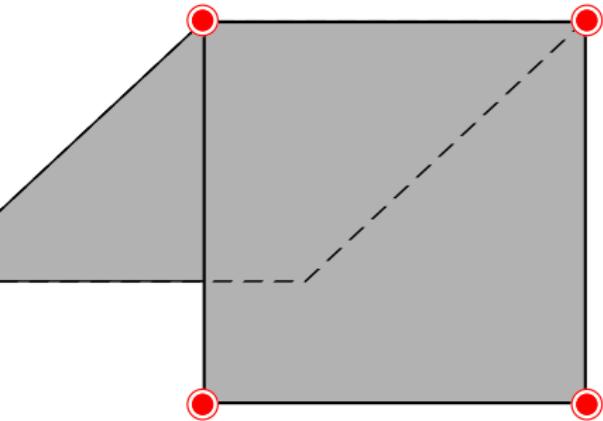
\mathbb{Z}_2 orbifold pillow



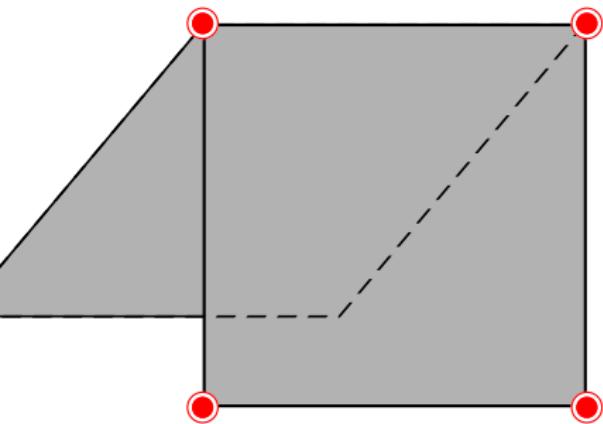
\mathbb{Z}_2 orbifold pillow



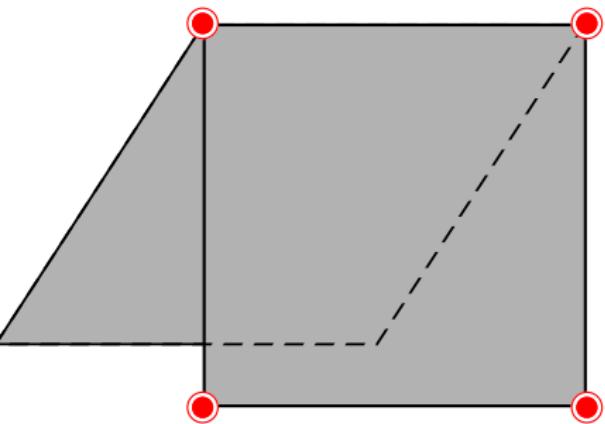
\mathbb{Z}_2 orbifold pillow



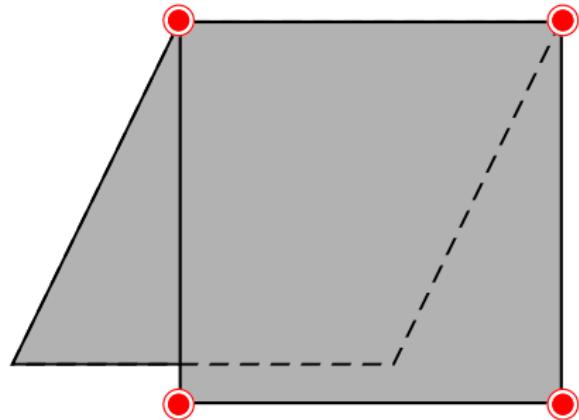
\mathbb{Z}_2 orbifold pillow



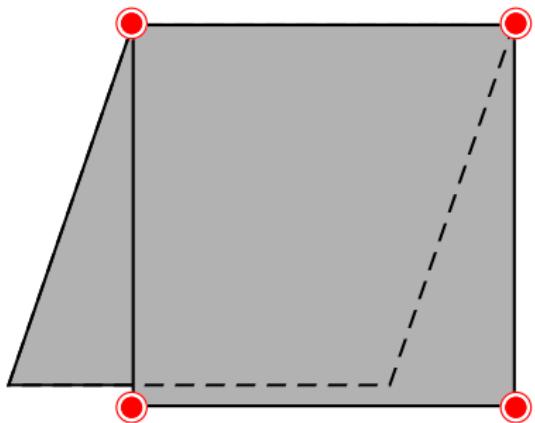
\mathbb{Z}_2 orbifold pillow



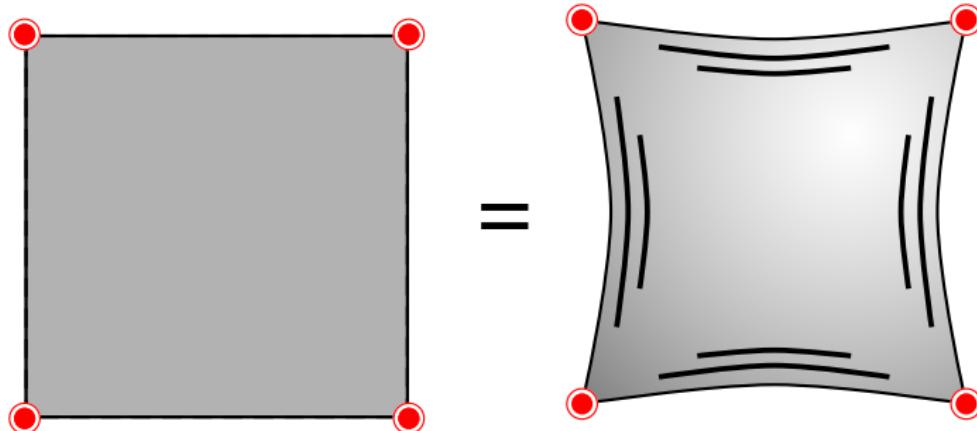
\mathbb{Z}_2 orbifold pillow



\mathbb{Z}_2 orbifold pillow



\mathbb{Z}_2 orbifold pillow

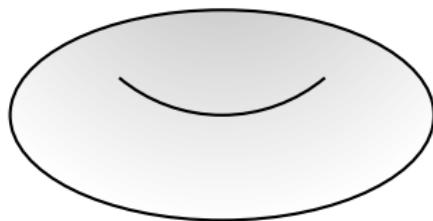


The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:

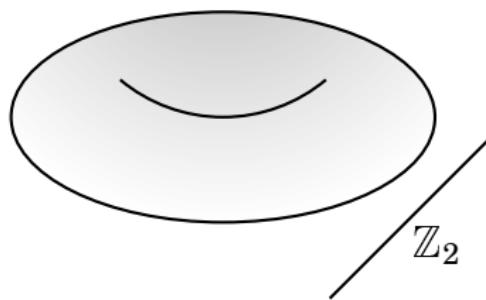
The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - ➊ \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions



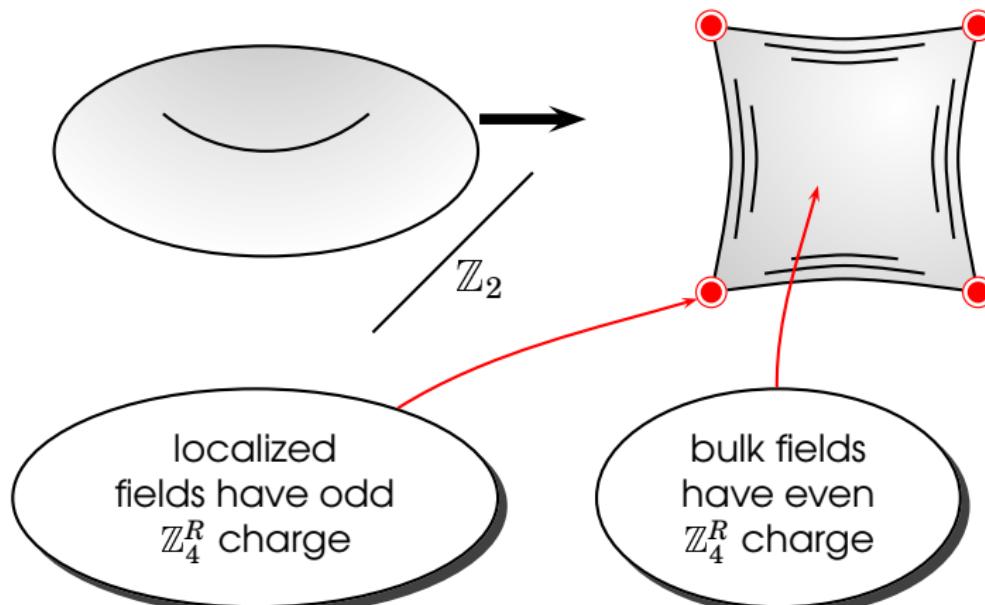
The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - ➊ \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions



The \mathbb{Z}_2 orbifold plane

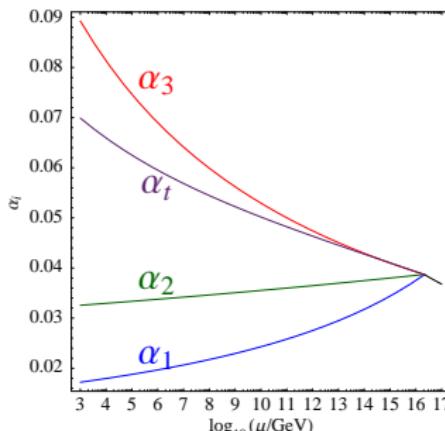
- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - 1 \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions



The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - ➊ \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
 - ➋ Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)



The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - ➊ \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
 - ➋ Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification
 - ➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the proportionality between μ term and expectation value of the superpotential $\langle \mathcal{W} \rangle$

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

The \mathbb{Z}_2 orbifold plane

- ☞ Orbifolds with \mathbb{Z}_2 plane have three important properties:
 - ➊ \mathbb{Z}_4^R symmetry arises as a remnant of the Lorentz group in compact dimensions
 - ➋ Orbifold GUT limit with SU(6) bulk symmetry gives us gauge-top unification
 - ➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the proportionality between μ term and expectation value of the superpotential $\langle \mathcal{W} \rangle$

P. Hosteins, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

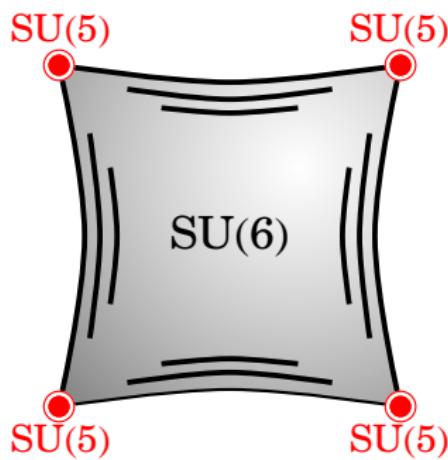
- ➌ Orbifold GUT limit with SU(6) bulk symmetry gives us the proportionality between μ term and expectation value of the superpotential $\langle \mathcal{W} \rangle$

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- ➡ Rest of this talk: discuss globally consistent string model with these features

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

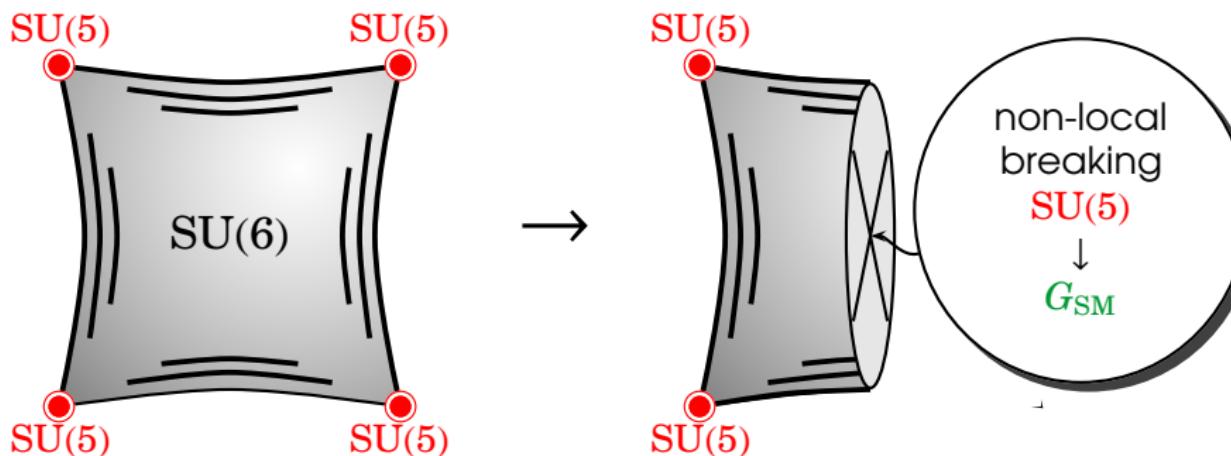
M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



- ① step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with $SU(5)$ symmetry

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



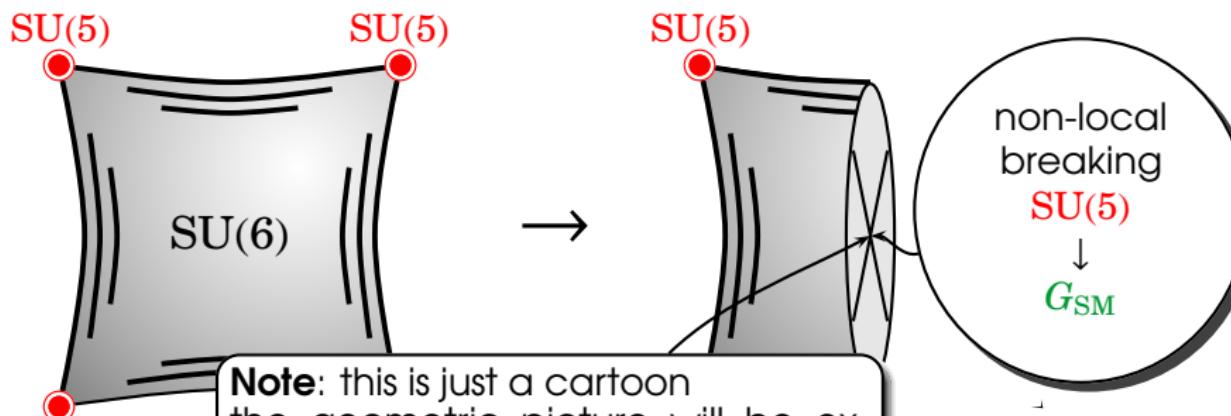
- 1 step: 6 generation $\mathbb{Z}_2 \times \mathbb{Z}_2$ model with $SU(5)$ symmetry
- 2 step: mod out a freely acting \mathbb{Z}_2 symmetry which:
 - breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
 - reduces the number of generations to 3

analogous mechanism in CY MSSMs Bouchard & Donagi (2005)

Braun, He, Ovrut, Pantev (2005)

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold example

M. Blaszczyk, S. Groot Nibbelink, M.R., F. Ruehle, M. Trapletti, P. Vaudrevange (2009)



Note: this is just a cartoon
the geometric picture will be explained in more detail elsewhere

① step: 6 ge

M. Fischer, M.R., P. Vaudrevange (to appear)

② step: mod out a freely acting \mathbb{Z}_2 symmetry which:

- breaks $SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y$
- reduces the number of generations to 3

Main features

① GUT symmetry breaking **non-local**

~ no 'logarithmic running above the GUT scale'

Hebecker, Trapletti (2004)

~ **precision gauge unification**

with **distinctive pattern of soft masses**

Raby, M.R., Schmidt-Hoberg (2009)

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
~ complete blow-up without breaking SM gauge symmetry in principle possible

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$
- ④ massless spectrum

spectrum = **3 × generation** + **vector-like**

Main features

- ① GUT symmetry breaking **non-local**
- ② **No localized flux** in **hypercharge** direction
- ③ 4D gauge group:
 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times [SU(3) \times SU(2)^2 \times U(1)^7]$

- ④ massless spectrum

spectrum = **3 × generation** + **vector-like**

- ⑤ Various appealing features:

- vacua where **exotics** decouple at the linear level in SM singlets
- non-trivial Yukawa couplings
- gauge-top unification
- $SU(5)$ relation $y_\tau \simeq y_b$ (but also for light generations)

'Anomalous' \mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R

'Anomalous' \mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- :(In the Blaszczyk et al. model all vacua have an extra $\mathbb{Z}_2^{\text{nasty}}$, which leads to rank 2 Y_e and Y_d Yukawa couplings

'Anomalous' \mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- :(In the Blaszczyk et al. model all vacua have an **extra** $\mathbb{Z}_2^{\text{nasty}}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- :) There are similar $\mathbb{Z}_2 \times \mathbb{Z}_2$ models without this problem but all the good features
 - ✓ F - and D -flatness explicitly verified
 - ✓ exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)

'Anomalous' \mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- :(In the Blaszczyk et al. model all vacua have an extra $\mathbb{Z}_2^{\text{nasty}}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- :) There are similar $\mathbb{Z}_2 \times \mathbb{Z}_2$ models without this problem but all the good features
 - ✓ F - and D -flatness explicitly verified
 - ✓ exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)
- ➡ Successful string embedding of \mathbb{Z}_4^R possible!

'Anomalous' \mathbb{Z}_4^R from a $\mathbb{Z}_2 \times \mathbb{Z}_2$ model

- ☞ We succeeded in finding vacua with the 'anomalous' \mathbb{Z}_4^R
- :(In the Blaszczyk et al. model all vacua have an extra $\mathbb{Z}_2^{\text{nasty}}$, which leads to rank 2 Y_e and Y_d Yukawa couplings
- :) There are similar $\mathbb{Z}_2 \times \mathbb{Z}_2$ models without this problem but all the good features
 - ✓ F - and D -flatness explicitly verified
 - ✓ exotics decouple at the linear level in SM singlets, i.e. just MSSM below GUT scale with masslessness of Higgs fields ensured by \mathbb{Z}_4^R
 - ✓ non-trivial full-rank Yukawa couplings
 - ✓ gauge-top unification
 - ✓ SU(5) relation $y_\tau \simeq y_b$ (but also for light generations)
- ➡ Successful string embedding of \mathbb{Z}_4^R possible!
- ☞ Note: the 'anomalous' \mathbb{Z}_4^R does **not** come from the 'anomalous' U(1)!

...rather the discrete symmetries of the orbifold point can appear 'anomalous' by themselves

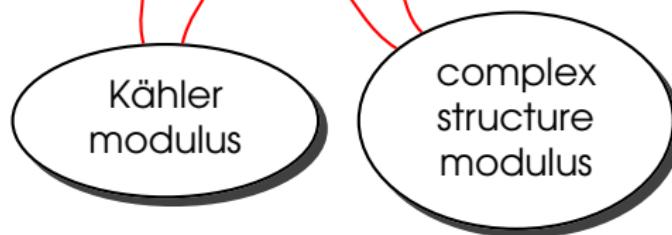
μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

☞ Higher-dimensional gauge invariance \curvearrowright Kähler potential

Antoniadis, Gava, Narain & Taylor (1994); Choi et al. (2003)

$$K = -\ln \left[\left(\mathbf{T}_3 + \overline{\mathbf{T}}_3 \right) \left(\mathbf{Z} + \overline{\mathbf{Z}} \right) - \left(H_u + \overline{H}_d \right) \left(H_d + \overline{H}_u \right) \right]$$



μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- Higher-dimensional gauge invariance \sim Kähler potential

$$K = -\ln \left[(T_3 + \overline{T}_3) (Z + \overline{Z}) - (H_u + \overline{H}_d) (H_d + \overline{H}_u) \right]$$

 Higgs fields
 = extra components
 of gauge fields

μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- ☞ Higher-dimensional gauge invariance \curvearrowright Kähler potential

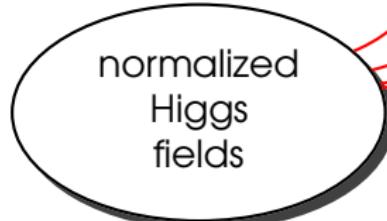
$$\begin{aligned} K &= -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) - \left(H_u + \overline{H_d} \right) \left(H_d + \overline{H_u} \right) \right] \\ &\simeq -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] \\ &\quad + \frac{1}{\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right)} \left[|H_u|^2 + |H_d|^2 + (H_u H_d + \text{c.c.}) \right] \end{aligned}$$

μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- Higher-dimensional gauge invariance \sim Kähler potential

$$\begin{aligned}
 K &= -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) - \left(H_u + \overline{H_d} \right) \left(H_d + \overline{H_u} \right) \right] \\
 &\simeq -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] \\
 &\quad + \frac{1}{\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right)} \left[|H_u|^2 + |H_d|^2 + (H_u H_d + \text{c.c.}) \right] \\
 &= -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 + (\hat{H}_u \hat{H}_d + \text{c.c.}) \right]
 \end{aligned}$$



μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- ☞ Higher-dimensional gauge invariance \curvearrowright Kähler potential

$$K \simeq -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 + (\hat{H}_u \hat{H}_d + \text{c.c.}) \right]$$

- ☞ Consider now superpotential

$\mathcal{W} = \Omega =$ independent of the monomial $\hat{H}_u \hat{H}_d$

μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- ☞ Higher-dimensional gauge invariance \curvearrowright Kähler potential

$$K \simeq -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 + (\hat{H}_u \hat{H}_d + \text{c.c.}) \right]$$

- ☞ Consider now superpotential
- ☞ $\mathcal{W} = \Omega =$ independent of the monomial $\hat{H}_u \hat{H}_d$
- ☞ K & \mathcal{W} in leading order in $\hat{H}_u \hat{H}_d$ equivalent to

$$\begin{aligned} K' &= -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 \right] \\ \mathcal{W}' &= \exp(\hat{H}_u \hat{H}_d) \Omega = \Omega \hat{H}_u \hat{H}_d + \dots \end{aligned}$$

μ from \mathcal{W} in models with \mathbb{Z}_2 plane

F. Brümmer, R. Kappl, M.R., K. Schmidt-Hoberg (2009)

- ☞ Higher-dimensional gauge invariance \sim Kähler potential

$$K \simeq -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 + (\hat{H}_u \hat{H}_d + \text{c.c.}) \right]$$

- ☞ Consider now superpotential
- ☞ $\mathcal{W} = \Omega =$ independent of the monomial $\hat{H}_u \hat{H}_d$
- ☞ K & \mathcal{W} in leading order in $\hat{H}_u \hat{H}_d$ equivalent to

$$K' = -\ln \left[\left(T_3 + \overline{T_3} \right) \left(Z + \overline{Z} \right) \right] + \left[|\hat{H}_u|^2 + |\hat{H}_d|^2 \right]$$

$$\mathcal{W}' = \exp(\hat{H}_u \hat{H}_d) \Omega = \Omega \hat{H}_u \hat{H}_d + \dots$$

bottom-line: μ term proportional to $\langle \Omega \rangle$

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

- Since $H_u H_d$ is proportional to $\langle \mathcal{W} \rangle$ we will get a holomorphic contribution to the μ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

$$\mu \sim \frac{\langle \mathcal{W} \rangle}{M_P^2} \simeq m_{3/2}$$

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

- Since $H_u H_d$ is proportional to $\langle \mathcal{W} \rangle$ we will get a holomorphic contribution to the μ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

$$\mu \sim \frac{\langle \mathcal{W} \rangle}{M_P^2} \simeq m_{3/2}$$

- Whatever gives us $\langle \mathcal{W} \rangle$ will be a measure for \mathbb{Z}_4^R breaking
- ... for instance, one may replace/describe hidden sector superpotential by gaugino condensate

$$\langle \mathcal{W} \rangle \simeq \langle \lambda \lambda \rangle \simeq \Lambda^3$$

Nilles (1982)

- this is consistent with a non-perturbative breaking of \mathbb{Z}_4^R
- this assumes that the dilaton is fixed somehow (e.g. Kähler stabilization)

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

- Since $H_u H_d$ is proportional to $\langle \mathcal{W} \rangle$ we will get a holomorphic contribution to the μ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

$$\mu \sim \frac{\langle \mathcal{W} \rangle}{M_P^2} \simeq m_{3/2}$$

- Whatever gives us $\langle \mathcal{W} \rangle$ will be a measure for \mathbb{Z}_4^R breaking
- Dimension 5 proton decay operators will have highly suppressed coefficients

$$\mathcal{W}_{QQQL}^{\text{np}} \sim \frac{\langle \mathcal{W} \rangle}{M_P^4} Q Q Q L \sim \frac{m_{3/2}}{M_P} \frac{1}{M_P} Q Q Q L \sim 10^{-15} \frac{1}{M_P} Q Q Q L$$

Non-perturbative violation of \mathbb{Z}_4^R (cont'd)

- Since $H_u H_d$ is proportional to $\langle \mathcal{W} \rangle$ we will get a holomorphic contribution to the μ term of the right order

Kim & Nilles (1983); Casas & Muñoz (1992)

$$\mu \sim \frac{\langle \mathcal{W} \rangle}{M_P^2} \simeq m_{3/2}$$

- Whatever gives us $\langle \mathcal{W} \rangle$ will be a measure for \mathbb{Z}_4^R breaking
- Dimension 5 proton decay operators will have highly suppressed coefficients

$$\mathcal{W}_{QQQL}^{\text{np}} \sim \frac{\langle \mathcal{W} \rangle}{M_P^4} Q Q Q L \sim \frac{m_{3/2}}{M_P} \frac{1}{M_P} Q Q Q L \sim 10^{-15} \frac{1}{M_P} Q Q Q L$$

- No R parity violation because \mathbb{Z}_4^R has a non-anomalous subgroup which is equivalent to matter parity

Summary

&

outlook

Summary – bottom-up

- ☞ A simple 'anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

Summary – bottom-up

- ☞ A simple 'anomalous' \mathbb{Z}_4^R symmetry can
 - provide a solution to the μ problem
 - suppress proton decay operators

universal anomaly coefficients
universal charges for matter
forbid μ @ tree-level
allow Yukawa couplings
allow Weinberg operator

} \curvearrowright unique \mathbb{Z}_4^R

Summary – bottom-up

→ A simple 'anomalous' \mathbb{Z}_4^R symmetry can

- provide a solution to the μ problem
- suppress proton decay operators

universal anomaly coefficients
 universal charges for matter
 forbid μ @ tree-level
 allow Yukawa couplings
 allow Weinberg operator

} \leadsto unique \mathbb{Z}_4^R

$\mathbb{Z}_4^R \leadsto \left\{ \begin{array}{l} \text{dim. 4 proton decay operators completely forbidden} \\ \text{dim. 5 proton decay operators highly suppressed} \\ \mu \text{ appears non-perturbatively} \end{array} \right.$

Summary – top-down

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of [Lorentz symmetry in extra dimensions](#)

Summary – top-down

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of **Lorentz symmetry in extra dimensions**
- ☞ Such symmetries are on the same footing as the **fundamental symmetries C , P and T**

Summary – top-down

- ☞ Embedding into string theory allows us to understand where the \mathbb{Z}_4^R symmetry comes from: it may arise as a discrete remnant of **Lorentz symmetry in extra dimensions**
- ☞ Such symmetries are on the same footing as the **fundamental symmetries C , P and T**
- ☞ Guided by the (unique) \mathbb{Z}_4^R symmetry we have constructed a globally consistent string model with:
 - exact MSSM spectrum
 - non-trivial Yukawa couplings
 - exact matter parity
 - $\mu \sim m_{3/2}$
 - dimension five proton decay operators sufficiently suppressed

**Vielen
Dank!**