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The minimal cosmological model

relies on

⋄ comological inflation:

isotropy, homogeity and spatial flatness

gaussian, scale-invariant and isentropic fluctuations A,n, (r)

⋄ the Einstein equation with a cosmological constant H0,Λ

⋄ the standard model of particle physics T0,Ωb, (Ων)

⋄ the existence of dark matter Ωcdm = 1 − Ωb − ΩΛ

and astrophysical parameters that encode complex physics τ, b,M, . . .



The cosmic energy budget (WMAP 7yr + H0 + BAO)

dark energy

dark matter

atoms
neutrinos

ΛCDM and massive νs fit to

CMB/BAO/SNIa:

72% dark energy

23% cold dark matter

5% atoms

< 1% neutrinos

all ±1% Komatsu et al. 2010

95% dark physics



Supernovae Ia

Union2: Amanullah et al. 2010

flatness and w ≈ −1 agrees also

with SN Ia, LSS, clusters



Conceptual limitations of the minimal model

⋄ 95% dark physics

⋄ cosmological constant problem: |Λ|κ < 10−120

⋄ coincidence problems:

Why is ΩΛ ∼ Ωm ∼ Ωb?

Why is znl(λeq) ∼ zacc?

⋄ origin of cosmological inflation

⋄ origin of isotropy and homogeneity

here: focus on aspects related to isotropy



Cosmological principle(s)

problem: initial conditions of the Universe

perfect cosmological principle: maximally symmetric space-time ×
steady state model, de Sitter model

cosmological principle: exact isotropy & homogeneity ×
Friedmann-Lemâıtre model; symmetry implies cosmic time; no LSS

statistical cosmological principle: statistical isotropy & homogeneity

perturbed FL; statistically isotropic and homogeneous perturbations



Does cosmological inflation predict a CP?

eternal inflation: CP not on global scale (multiverse)

observable universe:

inflation pushes pre-inflationary anisotropies and inhomogeneities far

beyond apparent horizon,

if number of e-foldings (N) large and start from smooth Hubble patch

Bianchi space-times, except Bianchi IX, isotropise; CP temporarily

e.g. Turner & Widrow 1986, Rothmann & Ellis 1986

general inhomogeneous models, perturbation theory:

ζ ≡ δǫ
3(ǫ+p)

− ψ constant for kph ≪ H; What if ζ(t < tinfl) ∼ 1?

What if N just ∼ 60? Pre-inflationary structure observable!



Initial conditions at µ ∼ MP

chaotic inflation:

inflaton field ϕ̇2 ∼ V (ϕ) ∼M4
P initially

geometry H2 ∼ k/a2 ∼ M2
P initially

while geometric and kinetic terms describe space-time and inertia,

the effective potential V encodes all information on interactions

without potential, the single fundamental scale would be MP

interactions introduce new scales, e.g. GF or ΛQCD

What if the inflaton potential is limited to V ∼M4 ≪M4
P?



Example: effective Higgs potential

V ≃ λ
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Ford et al. 1993

running of λ can lead to λ < 0

at µ > M

⇒ V complex at φ ∼ µ > M

complex inflaton potential

would imply inflaton decay

and no inflation
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Initial conditions with two fundamental scales

modification of chaotic initial condition: V ∼M4 ≪ ϕ̇2 ∼ M4
P

kinetic energy dominates initially, i.e.,

ǫ1 ≡ ḋH = 3
ϕ̇2/2

ϕ̇2/2 + V
≈ 3

nevertheless, as ϕ̇ ∝ a−3, inflation starts when ǫ1 < 1

slow-roll after a few e-foldings, iff ϕi > 3MP

for M ∼Mgut: ϕi ∼ 20MP and N ∼ 60



Komatsu et al. 2009

Observational constraints
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N ∼ 60 is motivated and could fit CMB



Motivations for testing isotropy

⋄ check the minimal model

⋄ pre-inflationary perturbations (if N ∼ 60 or less)

⋄ investigate the nearby LSS; do we live in a large void?

⋄ discover systematic errors

here: CMB at large angular scales and SN Ia Hubble diagram



Why are large angular scales interesting?
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Cosmological inflation — Generic CMB predictions I

temperature fluctuations:

δT(e) =
∑
ℓm aℓmYℓm(e); 2ℓ+ 1 degrees of freedom for each ℓ

statistical isotropy:

〈δT(Re1) . . . δT(Ren)〉 = 〈δT(e1) . . . δT(en)〉, ∀R ∈ SO(3), ∀n > 0

• 〈δT(e)〉 = 0 and 〈aℓm〉 = 0

• 〈δT(e1)δT(e2)〉 = f(e1 · e2) = 1
4π

∑
ℓ(2ℓ+ 1)CℓPℓ(cos θ), cos θ ≡ e1 · e2 with

• 〈aℓma∗ℓ′m′〉 = Cℓδℓℓ′δmm′, Cℓ angular power spectrum

gaussianity: no extra information in higher correlation functions

(best) estimator: Ĉℓ = 1/(2ℓ+ 1)
∑

m |aℓm|2 (assumes statistical isotropy)

cosmic variance: Var(Ĉℓ) = 2C2
ℓ /(2ℓ+ 1) (assumes gaussianity)



Cosmological Inflation — Generic CMB predictions II

scale invariance, n ≈ 1:

Cℓ ≈ 2πA/[ℓ(ℓ+ 1)], at the largest scales A ≈ 1000µK2 (obs.)
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What can we test?

⋄ statistical isotropy

⋄ gaussianity

⋄ approximate scale invariance

violations may be due to secondary effects (e.g. ISW, Rees-Sciama),

foregrounds, instrument, . . .

no influence of secondaries between z1st h.c. and z ∼ 1 for θ > 60 deg



A test of statistical isotropy — Multipole vectors

alternative representation of multipoles

Maxwell 1891, Copi, Huterer & Starkman 2003

one (real) amplitude Aℓ and ℓ headless (unit) vectors:

2ℓ+ 1 degrees of freedom

Tℓ(e) =
ℓ∑

m=−ℓ
aℓmYℓm(e) = Aℓ[v

(ℓ,1) · · ·v(ℓ,ℓ)]i1...iℓ[e · · · e]
i1...iℓ

[. . .] . . . symmetric, traceless tensor product

e.g. quadrupole: T2(e) = A2[(v
(2,1) · e)(v(2,2) · e) − 1

3v(2,1) · v(2,2)]



Cosmic microwave background radiation



WMAP quadrupole and octopole
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3 great circles defined by multipole vectors are nearly normal to ecliptic

1 great circle nearly normal to supergalactic plane
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WMAP quadrupole plus octopole
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ecliptic is close to nodal line Schwarz et al. 2004, Copi et al. 2007

power asymmetry for [2,3] and [6,7] Schwarz et al. 2004, Freeman et al. 2006



Internal and external correlations of quadrupole and octopole

– quadrupole-octopole (qo) alignment at 99.6%C.L.

– dipole-qo alignement at 99.7%C.L.

– ecliptic-qo alignment at 95%C.L.

– ecliptic North-South asymmetry

– ecliptic is close to nodal line Copi et al. 2007

full-sky maps violate statistical isotropy at large angular scales



Angular two-point correlation

Ĉpixel(θ) ≡ ∑
e1e2=cos θ T(e1)T(e2) or

Ĉpower(θ) ≡ 1/(2π)
∑
ℓ(2ℓ+ 1)ĈℓPℓ(cos θ)

full sky: Ĉpixel(θ) = Ĉpower(θ)

cut sky: Ĉpixel(θ) 6= Ĉpower(θ) with

cut sky: 〈Ĉpixel(θ)〉 = 〈Ĉpower(θ)〉, iff statistically isotropic

similar for angular power spectrum estimators

e.g. pseudo-Cℓ vs. maximal likelihood estimator



WMAP angular correlation function

Sakar et al. 2010

Ĉ(θ) ≡
∑

Pixel(ij) TiTj, with ei · ej = cos θ = µ

estimator Ĉ does not assume statistical isotropy Sα =
∫ α
−1

dµC2(µ)

compare to 105 MC cut sky maps P (Scut sky
1/2

) < 0.1%



Status of CMB large angle anomalies Copi et al. 2010

observed microwave radiation at > 60 deg disagrees with prediction

vanishing 2-point correlation is inconsistent at 99.9%CL

quadrupole and octopole

aligned with each other at > 99%CL

correlated with equinox/dipole at > 99%CL

correlated with ecliptic at > 95%CL

alignments extend up to multipoles ℓ ∼ 10 Land & Magueijo 2005

systematics or unexpected physics?

Solar system dust, large scale structure, cosmology, . . .



How to find the origin of disagreement

some ideas:

⋄ cosmological explanation:

N ∼ 60 could explain lack of correlation

d-q-o alignment could be pre-inflationary

ecliptic alignment would be fluke

⋄ nearby LSS (z < 0.1):
Rees-Sciama effect of 100 Mpc structures gives alignment

lack of correlation hard to explain, e.g. systematic

. . .

look at other cosmological probes, e.g. SN Ia



(An)isotropy of the low z Hubble diagram

Hubble diagrams from opposite hemispheres Schwarz & Weinhorst 2007

Constitution set (SALT2) Hicken et al 2009 at z < 0.2
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(An)isotropy of the low z Hubble diagram
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Comparison to other directions on sky
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Conclusions

⋄ cosmological inflation does not predict global isotropy

⋄ if N ∼ 60 or less, observable anisotropy

⋄ CMB shows several anomalies on largest angular scales

⋄ Hubble diagram at z < 0.2 anisotropic, could be systematic effect

deviations correspond to 0.1 mag

effect of acceleration is 0.2 mag, compared to a q0 = 0 model



back up slides



Just enough inflation (λϕ4)
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Primordial fluctuations
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Physical interpretation of multipole vectors

monopole: no vector

dipole: trivial d = v(1,1)

quadrupole:

the two vectors define a plane, extrema at ±(v(2,1) ± v(2,2))/
√

2

natural to define “oriented area”: w(2;1,2) = ±(v(2,1) × v(2,2))

general multipole:

real and imaginary parts of spherical harmonic function Yℓm have

ℓ− |m| vectors equal ±z, |m| vectors in x-y plane



Attempts of cosmological explanations for lack of correlation
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How to resolve the issue?

– more data and better systematics from WMAP

– Planck has different systematics (e.g. scan strategy, one beam on sky)

– Planck adds information in Wien regime (e.g. solar system dust?!)

– exploit frequency, time and polarisation information

– correlation with non-CMB probes (e.g. radio galaxies, clusters)

make progress by exclusion of wrong possibilities

e.g. additive axial effect is excluded x Rakić & Schwarz 2007



Main problem: additive extra foreground conflicts with low power
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(An)isotropy of the low z Hubble diagram

Hubble diagrams from opposite hemispheres Schwarz & Weinhorst 2007

Constitution set Hicken et al 2009: ∆(χ2/dof) at z < 0.2
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