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Why F-theory

Ultimate goal of modern physics:
Bring together cosmology and particle physics within fundamental theory

Prime question of modern string phenomenology:
Is this possible within the landscape of 4D string vacua

upon compactification My — R3 x Mg?

Example:
Cosmological evolution <« scalar fields (inflation, quintessence...)

Within string compactifications

* scalar fields arise as side product: moduli of compactification

 studying the scalar dynamics requires non-trivial moduli potential

moduli stabilisation

So far moduli stabilisation is best controlled within Type 1IB
compactifications (but progess also in Type IIA and in heterotic)
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Why F-theory

Culminated in various inflation models within Type |IB context

—> quest for Type IIB particle physics model building

General framework:
Brane Worlds < localisation of gauge

degrees of freedom on D-branes

Within Type IIB context:

e D7-branes: (74 1) dim. subspace of 10 dim. spacetime
—> considerable backreaction on geometry

e system most reliably studied directly within F-theory
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Why F-theory

Appreciated recently: starting with [Beasley,Heckman,Vafa; Donagi,Wijnholt ’08]

F-theory shares favourable structure for GUT model building known from
heterotic strings

> strong coupling effects that give rise to exceptional gauge symmetry
= many F-applications to GUT model building proposed recently
local analysis:

Mechanisms to overcome challenges of conventional GUT models

But: realisation requires better understanding of F-theory technology
 at practical level: Develop methods to study compactification spaces

* at conceptual level: connection to perturbative Type IIB limit,

description of gauge flux, brane motion, "loop” corrections ...
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Why F-theory

Aim: Advance F-theory technology as goal by itself and for applications

< combining theme (with different emphasis) in research of string groups
in Bonn, Heidelberg and Munich

— formal and phenomenological aspects go hand in hand

This talk:
e SU(5) GUT model building in compact settings

* physics of abelian gauge symmetries
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Outline

|. Motivation
Il. F-theory basics
[1l. ADE singularities

IV. SU(5) GUTs from F-theory

V. The geometry and physics of U(1) symmetries
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Intersecting Brane Models

Most of the structure of F-theory models is present already perturbatively

stacks of N coincident Dp-branes //\\ / N\
— U(N) gauge symmetry ‘)

2 D7-branes intersecting at an angle:
— matter fields in bifundamental
representation (N4, Np)

Yukawa couplings from triple overlap of wavefunction at intersection of

matter loci
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From branes to F-theory

F-theory geometrises Type |IB orientifolds with 7-branes: Vafa 1996

* 7-brane = source for varying axio-dilaton field 7 = Cjy + -

locally near position of D-brane 7 ~ %mln(z — zp) =
monodromy 7 — 7+ 1

Interpret 7 as complex structure of 12 @ _Tg

auxiliary torus T2
T varies < shape of T varies ”
— fibration of 7% — M,

pic adapted from: Denef, 0803.1194
@ singular fibers
generic
smooth fiber \ \
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%

at position of D-brane
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i « T? fiber degenerates as 1-cycle — 0
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Elliptic fibrations

Case of phenomenological interest: Compactification Mg — R3 x Mg

e physics encoded in geometry of Y : 15, — By
o N =1 SUSY requires Y to be Calabi-Yau

e jargon: F-theory on elliptic fourfold Y = effective 4D theory obtained by
compactification of Type IIB strings with D7-branes on "Bg"

T2
1B language: @ ©

7-branes wrap 4-cycle I', C 7" Bg”

F-theory language: Bg
I', = locus of fiber degeneration

pic adapted from: Denef, 0803.1194
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ADE groups in F-theory

Non-abelian ADE gauge groups <« singularity structure of elliptic fibration

[Bershadsky et al.][Morrison,Vafa I+II] ’96, ...
~s Ya: singular 4-fold T? — Bg with ADE group G along divisor S C Bg

~+ singularities best studied by resolution Y5 — Y ¢ within M-theory

* paste in tree of P!s fibered over S ¢ i=1,...,tk(G)

(2
singular Y < zero size limit of I'¢

OF%

L] L] L] f \‘\
e resolution divisors D¢ <= - ‘“-..\O
5.

fibration I'¢ — § 00O

7\
o,
«
s

"
e Group theory of G F F

V4
Fd
rd

& extended Dynkin diagram

resolved Y ¢ <= Coulomb branch G — U(1)™() in M-theory
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ADE groups in F-theory

2 sources of gauge bosons along S from M-theory reduction

* off-diagonal elements in ad(G):
M2-branes along chains of P! T'¢ U ... U Ff, i < j
—> massless only in singular limit

e Cartan U(1)™(%) generators:
3-form C3 expanded in w& = [D¥] € H*(Y g, Z)

rk(G)
C3 = Z A ANWE + ... A" « gauge field along S
i=1

Gauge flux of Cartan U(1): G4 = >, F; Aw?, F; € H?*(S)
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The quest for U(1)

v Non-abelian ADE gauge symmetry built in geometrically
v/ Cartan U(1)s easy to study in Coulomb phase in M-theory
What about extra U(1) gauge symmetries not tied to non-ab.
groups?
General fact from expansion C5 = S "5(C) 4i A (/@
total rank of gauge group [Morrison,Vafa I+II ’96]
n, =h"'(Yqg) - b (B) -1
ny )y = M — 1k(G)
< can be computed in global models with resolution of singularity

eIIiptic 3-folds: [Candelas,Font ’96] [Candelas,Perevalov,Rajesh ’97]

elliptic 4-folds: [Blumenhagen,Grimm,Jurke,TW 0908.1784] [Grimm,Krause,TW 0912.3524]
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Tate model for SU(5)

Application: Compactifications with MSSM gauge group and matter
Most efficient: SU(S) F—theory GUTS [Donagi,Wijnholt; Beasley,Heckman,Vafa]’08

 Constrain compl. structure of Y, «<» SU(5) singularity on GUT brane S

e Technically: choice of sections in Tate model

T?: coordinates (x,7, z) ~ (A\2z, A3y, A\2) Bg coordinates: wu;

3 2 2

—yQ—I—xyzal +x°z ag—l—yz3a3—|—xz

fote B &=
b
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Py == as + 2%a =0

an = an(u;) < varying complex structure

* Branes = discriminant A(u;)

¢ [A] = 5[8] + [Dl] Dli Il locus
generic gauge group SU(5) x ()

* no extra U(1) factors due to maximal
Higgsing of underlying Fg — SU(5)

[Grimm, TW 1006.0226]



Tate model for SU(5)

Further singularity enhancement at intersection of S and D,

« collision of vanishing P's in fiber

a) matter: enhancement of singularity type on intersection S N D

[Katz,Vafa ’96]

« SU(5) x U(1) — SU(6)

35 -24+1+5+5 — 5,, = (d%,L) or 5y+5y
« SU(5) x U(1) — SO(10)
45 —24+1+10+10 — 10 = (Qr, u%, %)

Ng: any SU(5) singlet with suitable couplings

b) Yukawas: Intersection of curves at points  [Buv; DWl 08

* (1055) C ((66)°) of SO(12) as in perturbative Type |IB
* (10105) C {(78)°) of Eg (only) truly F-theoretic input
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SU(5) GUT model building

Main model building ideas:

e SU(5) GUT breaking via U(1)y flux savl, [ow] >os
~+ no need for GUT Higgs/ brane moduli
~ requires global information of embedding GUT cycle
~~ preservation of unification 77?7 [Donagi, Wijnholt], [Blumenhagen]’08;

[Conlon, Palti], [Saulina et al.]’09

* no dimension 4 proton decay by split of 5-matter curves
otherwise: 105, 5y implies 10 5., 5m
Note: This is not sufficient - see later

* no dimension 5 proton decay by missing partner mechanism
< split H,, and H, curve

* studies of flavour structure include [BuV], [Ibanez,Font] ’08, [Palti,Dudas],

[Conlon,Palti], [Cecotti,Cheng,Heckman,Vafa], [Marchesano,Martucci] ’09
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SU(5) GUTs

Necessary conditions on local geometry of GUT brane:

M

SU(5) 5.5, 110

5,10,,10

M ™M ‘\\

Beasely,Heckman,Vafa, 0806.0102
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Why go global....

. if all these nice mechanisms involve local physics?

1) Existence proof:
Can we really get all the proposed geometric features (singularity
enhancements...) in a well-defined compact geometry?

2) Coupling to cosmology
«— SUSY breaking, moduli stabilisation
only possible within globally defined framework

3) All issues involving U(1) symmetries are global:

e U(1)y breaking requires flux along cycles on S that are boundaries of

chains in Y = full information required

e U(1) selection rules turn out crucial e.g. for dimension-4 proton decay
Will see: This requires global information!
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F-theory model building

2 ingredients for construction of global models:
e singular Calabi-Yau 4-fold = gauge group, matter curves, Yukawas

* gauge flux = 3 generations of chiral matter

Status: Geometries v’ Gauge flux: still not fully understood
Approaches to geometry:
a) Explicit control of singularities possible within toric framework

= Classes of compact singular fourfolds Ys and their resolutions Y g4
® [Blumenhagen,Grimm,Jurke,TW 0908.1784], [Grimm,Krause,TW 0912.3524] for SU(5)

® [Chen,Knapp,Kreuzer,Mayrhofer 1005.5735] for SO(].O) models

= only examples with reliable computation of Euler characteristic x(Y ¢)

& prerequisite to study global consistency conditions

b) Non-torically realised singular fourfold constructed in

® [Marsano,Saulina,Schiafer-Nameki 0904.3932] for SU(5)
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U(1) selection rules

* Generic Tate model: single 5-matter curve

— 105,55 < 105, 5,,: dimension 4 proton decay

* Remedy: split Ps — P,, + Py + effective U(1) selection rule
[Beasley,Heckman,Vafa II ’08] [Hayashi,Kawano,Tatar,Watari 0901.4941]
Group theory: Es — G x H, G =SU(5)gur

« H=SU(5), — S[U4) xU(1)x]

¢ U(l)X charges: 104 (gm)_g (5H)—2 + (5]-[)2 1_5
 If U(1)x unbroken in fully fledged model, then 105, 5,,, forbidden v/

* Necessary condition for U(1)x: split Ps — P,, + Py
achieved by split spectral cover — realises S|U(4) x U(1)x] "locally”

[Marsano,Saulina,Schédfer-Nameki 0906.4672] [Tatar,Tsuchiya,Watari 0905.2289]
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Global caveats

Applied to construction of 3-generation models:
[Marsano,Saulina,Schédfer-Nameki 0906.4672] [Blumenhagen,Grimm, Jurke,TW 0908.1784]
[Marsano,Saulina,Schifer-Nameki 0912.0272] [Grimm,Krause,TW 0912.3524]

[Chen,Knapp,Kreuzer,Mayrhofer 1005.5735]

Caveat:

e U(1)x might be higgsed by GUT singlets &

[Tatar,Tsuchiya,Watari 0905.2289], [Grimm, TW 1006.0226]

* happens away from GUT brane <= beyond regime of spectral cover

* This is a global question of direct physical relevance:

If U(1)x higgsed, effective proton decay operators generated

1. (®) .
W > — 105,5,®% — - ’105,5,
M M

Independent analysis via monodromies: [Hayashi,Kawano,Tsuchiya,Watari

1004.3870]
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U(1) restricted Tate model

Constructive method to ensure presence of abelian gauge symmetries:

[Grimm, TW 1006.0226]

* In generic models U(1) absent due to maximal Higgsing compatible
with non-abelian gauge symmetries <+ VEV for gauge singlets (1_5)

e U(1) symmetries recovered by unhiggsing
— massless gauge singlets away from GUT brane

* requires singular matter curves away @ O___O @

from GUT brane

e self-intersection of I; locus
enhancement [} — Ay ~ SU(2)

* further specification of complex

structure:
U(1) restricted Tate model
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U(1) restricted Tate model

Safe way to check for U(1)x: [Grimm,TW 1006 .0226]
Resolve space Y — Y g and count ht1 (Y )

Result: ny() = b (Yg) — A (B) —1—1k(G)= 1

Reason: Resolution divisor D¢ for singular curve C' <= dual 2-form w¢

CgZAx/\wx—FZAi/\w?—l—... wWx < Wo

e presence of U(1) does not hinge on any factorisation of the

discriminant

e Compatible with appearance of U(1) symmetries in IIB limit
F-theory lift does not destroy U(1) - only affects split
O7-plane/D7-brane intersection

e U(1) are non-generic both in 1IB and in F-theory
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U(1) restricted Tate model

Practical consequence of U(1) restriction: x(Y') decreases drastically

GUT example of [Grimm,Kkrause,Tw 0912.3524]
Generic SU(5) Tate model: y = 5718 < U(1)-restricted model: x = 2556

What about U(1)x flux?
* bundle is now of type S[U(4) x U(1)x]
* global description in terms of G4 complicated
tempting: G = Fx Awx + ... 7 details still under investigation

For different approach S€€ [Marsano,Saulina,Schiafer-Nameki 1006.0483]

e U(1)x flux = Fayet-lliopoulos D-term
«— U(1)x acquires Stiickelberg mass in presence of suitable gauge flux

— global selection rule < instantons — work in progress
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Conclusions and outlook

F-theory yields a geometric description of 7-brane physics

interesting prospects for particle physics:
< combination of the sunny sides of heterotic and Type Il
* Recent progress in construction of compact F-theory GUT models

* Detailed phenomenology requires progress in F-theory technology
Example: understanding of U(1) symmetries < proton decay

* Many exciting conceptual and phenomenological questions remain
Ultimate goal: Contact also with cosmology

* use calculable moduli stabilisation for inflation

 Current topic in TR33 A3: brane inflation in Type IIB/ F-theory
work in progress with A. Hebecker, D. Liist, Stephan Steinfurt,

Sebastian Kraus
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