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• why:  
 -	

 large-field inflation (Φ moves more than MP)?
 -	

 strings?

where I want to take you ...

• inflation & moduli stabilization - the Kallosh-
Linde problem

• the demise of the problem - natural high-scale 
inflation @ the TeV
 -	

 a natural setup for H >> m3/2 in KKLT
 -	

 dynamics of the volume modulus during inflation
 -	

 hierarchies & scales - horse trading



Chaotic Inflation
present status:

expect dramatic improvement  in next 5 yrs:
Planck & BICEP2 taking data, Keck Array (’10...)
SPIDER, Clover, QUIET-II, EBEX, PolarBEAR ...

size of error 
contours in ~ 5 yrs

WMAP 7yr + BAO + H0
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Planck & BICEP2 taking data, Keck Array (’10...)
SPIDER, Clover, QUIET-II, EBEX, PolarBEAR ...

size of error 
contours in ~ 5 yrs

WMAP 7yr + BAO + H0We live in the Golden Age of cosmology !
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• but: if field excursion sub-Planckian,  no 
measurable gravity waves: [Lyth ’97]
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• large field model of inflation, i.e. “chaotic inflation”

• with control of ε & η over a super-Planckian field 
distance - avoid generic dim ≥ 6 operators:

• idea: arrange for approximate shift symmetry of ɸ , 
broken only by the inflaton potential itself
[Linde  ‘83]

why strings?

δV ∼ V (φ)
(φ− φ0)2

M2
P

∆φ > MP ⇒ r > 0.01

need UV-complete
theory: e.g. strings
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the Kallosh-Linde problem ...

... all it needs are SUSY and extra dimensions 
(NOT specific to string theory) ...



• A well-motivated extension of the standard model is 
TeV-scale broken supersymmetry - if this is local, we 
deal with 4D N=1 supergravity.

• the vacuum energy in supergravity is given by the 
scalar potential in terms of 2 functions - K and W

• for (nearly) vanishing cosmological constant, this ties 
the VEV of the superpotential W to the size of the 
dominant F-term - and determines the order 
parameter of SUSY breaking in supergravity, the 
gravitino mass m3/2

V (φi) = eK
� �

i

|Fi|2 − 3|W |2
�

m2
3/2 � eK |W |2

M4
P



• we wish for 1 low-energy supersymmetry in 4D - 
need to compactify internal 6 dimension on a 
Calabi-Yau manifold

we are in 4D - string compactification ...

• ⇒  moduli: massless scalar fields, determining 

size(s) and shape(s) of the CY

• ⇒  one path to controlled compactification  

(KKLT) in IIB string theory:
- fix the shapes with fluxes of p-form gauge fields
- fix the sizes with 1 instanton per size modulus



K = −3 ln(T + T̄ )

W = W0 + Ae−aT

• single size modulus case - the whole volume: 
1 instanton balances against the non-T sector 
W0 (e.g. from fluxes)
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V (T ) = eK(KT T̄ |DT W |2 − 3|W |2)



• inflationary sector generates a large positive 
vacuum energy

• by locality in the extra dimensions all energy 
forms can at most grow as fast as the volume

• Weyl rescaling into 4D Einstein frame - all 
energy forms scale as  σ -3  = volume -2

• ⇒  all potentials vanish at infinite volume & 

all positive energy states are metastable to 
de-compactification



|VAdS | = 3eK |�W �0|2

• Einstein frame rescaling - SUSY breaking scales 
as inverse power of the volume σ  = Re T
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• related to earlier studies noting, that reheating 
after inflation will lead to decompactification 
and/or run-away to weak coupling, if the reheat 
temperature exceeds the energy scale of the 
barriers ...

• ⇒  reheat temperature problem in higher-

dimensional models

[Buchmüller, Hamaguchi, Lebedev & Ratz ’04]



overcoming the KL problem ...
[He, Kachru & AW ’10]



• decouple the barrier height from the (post-)
inflationary uplifting: racetrack model of Kallosh & 
Linde, heavily fine-tuned at O(mGUT/mW) ~ 1013

What to do ?

• alternative: have the barrier height adjusting 
with the rolling inflaton!

⇒  in W we have to adjust W0 to adjust the 

barrier height



W = W0 + Ae−aT|W0,eff.(Φ)| ≡ |W0 + α(b + X)Φn| � 1 ∀ |ϕ| = |Im Φ| < ϕ60W = W0 + Ae−aT

• Who says, we cannot have W0 being an 
adiabatic function of the inflaton?   
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• Let's try find simple models doing that ... 
However, in supergravity we cannot just rely on 
the inflaton alone:

• for a polynomial superpotential suitable for 
large-field inflation the potential slopes 
downward and goes negative ... So we probably 
have to use the F-term FX = FX(ɸ) of a spectator 
field X [Kawasaki,Yamaguchi 

& Yanagida ’00]

if : W0,eff.(Φ) = W0 + αΦn

⇒ |FΦ|
|W | ≈

nαΦn−1

αΦn + W0
∼ 1

Φ



• a simple setup which adjusts the barrier 
dynamically

• this is t'Hooft natural, given that ɸ has R-charge 2/n 
and a shift symmetry in the Kähler potential:

Φ = η + iϕ , ϕ→ ϕ + C

K =
1
2
(Φ + Φ̄)2 + XX̄ − γ(XX̄)2 − 3 log(T + T̄ )

W = W0 g(X) + α f(X) Φn + e−aT

with : g(X) = 1 +O(X) and f(X) = b + X +O(X2)



• why do we need the 1st few terms in f and g, 
which are otherwise arbitrary?

• the O(1) constant in g ensures the known 
KKLT-like post-inflation vacuum

• the O(1) constant b in f has W scaling 
adiabatically with ɸ

• the linear term in f in X enforces FX  ~  W  , so 
that the potential slopes upwards ...



• in the regime ɸ >> MP  and X < MP there is an 
attractor behaviour satisfying

• this gives the inflaton potential to be

Vinf.(ϕ) ∼ |FX |2 ∼ α2ϕ2n

• because there’s a mass term for X (if γ > 0) via

⇒ X � MPKXX̄ = (1− 4γXX̄)−1 � 1 + 4γXX̄

FX ∼W ∼ αΦn , FΦ ∼
FX

Φ
, FT ∼

FX

T



• Thus, we get a generalized KL-like constraint 
for the adiabatically adjusting VEV of W

if this constraint can be maintained at all times, 
T never goes into run-away ...

now express α in terms of the density contrast 
δ  (2 x 10-5) and ɸ60 , the inflaton at 60 e-folds ...

�
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• then we horse trade: if 
we wish to attain a 
given W0  (TeV...) at the 
end of inflation, we can 
exchange   n   for  δ
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• or: if we wish to attain a 
given δ  (2 x 10-5) at ɸ60 , 
we can trade   n   for  
W0  -  and thus for the 
SUSY breaking scale 
after inflation
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• a numerical example: A = 1, a = 2π
10 , W0 = −10−15,

α = 5× 10−19, b =
�

2/5, n = 10,

and γ = 2
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• how to get large-field inflation with large-ish 
powers in string theory?
... we know of (axion) monodromy inflation, which gives so far at 
most linear potentials ... [McAllister, Silverstein & AW ’08/’09]

open questions ...

• the horse trading could be presumably loosened by 
modifying the exit similar to hybrid inflation ...

• small field models using the same basic mechanism?




