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where | want to take you ...

why:
- large-field inflation (® moves more than Mp)?
- strings!

inflation & moduli stabilization - the Kallosh-
Linde problem

the demise of the problem - natural high-scale
inflation @ the TeV

- a natural setup for H >> m3; in KKLT
- dynamics of the volume modulus during inflation
- hierarchies & scales - horse trading



present status: WMAP 7yr + BAO + Hy
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expect dramatic improvement in next S yrs:
Planck & BICEP2 taking data, Keck Array ('10...)

SPIDER, Clover, QUIET-II, EBEX, PolarBEAR ...
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Inflation ...

* inflation: period quasi-exponential expansion of the
very early universe

* driven by the vacuum energy of a(slowly rolling)light
scalar field:

eom. &+3Hp—V' =0

N

scale factor grows exponentially : a ~ et if: ¢
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with the Hubble parameter H” == ~ const. ~ V
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Swoking Gun for luflation ...

inflation generates metric perturbations:
scalar (us) & tensor

2
~ Erv(é—p) and ~ H? ~

pns—1  window to GUT scale &
‘'smoking gun’: alternatives (e.g. ekpyrosis)
ng = 1 — 6e 4+ 2n have no tensors

e but: if field excursion sub-Planckian, no
measurable gravity waves: [Lyth *97]
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S

® Jarge field model of inflation, i.e.“chaotic inflation”

A¢>M__p = r > 0.01

® with control of ¢ & # over a super-Planckian field
distance - avoid generic dim > 6 operators:

(6 — d0)? | need UV-complete
Mg theory: e.g. strings

oV ~ V(o)

® idea:arrange for approximate shift symmetry of @,

broken only by the inflaton potential itself
[Linde ‘83]
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the Kallosh-Linde problew ...

.. all it needs are SUSY and extra dimensions
(NOT specifie to string theory) ...



e A well-motivated extension of the standard model is

TeV-scale broken supersymmetry - if this is local, we
deal with 4D N=1 supergravity.

* the vacuum energy in supergravity is given by the
scalar potential in terms of 2 functions - Kand W

Vig) = (YIRS 3w

e for (nearly) vanishing cosmological constant, this ties
the VEV of the superpotential W to the size of the
dominant F-term - and determines the order

parameter of SUSY breaking in supergravity, the
gravitino mass ms,?




we are in 40 - string compactification ...

* we wish for | low-energy supersymmetry in 4D -

need to compactify internal 6 dimension on a
Calabi-Yau manifold

e = moduli: massless scalar fields, determining

size(s) and shape(s) of the CY

* = one path to controlled compactification

(KKLT) in lIB string theory:

- fix the shapes with fluxes of p-form gauge fields
- fix the sizes with | instanton per size modulus



* single size modulus case - the whole volume:
| instanton balances against the non-T sector

Wo (e.g. from fluxes) _
V(D) = e (K" | DrW|* = 3|W[)

V(o)

6.x107 1 -

K=-—3W(T+T) o

2.x107 B -

‘160‘ | ‘180‘ | ‘200
o=ReT

fixes shape

moduli




inflationary sector generates a large positive
vacuum energy

by locality in the extra dimensions all energy
forms can at most grow as fast as the volume

Weyl rescaling into 4D Einstein frame - all
energy forms scale as 63 = volume -2
= all potentials vanish at infinite volume &

all positive energy states are metastable to
de-compactification




* FEinstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

4.x107 B

‘VAdS| — 3€K‘<W>O|2 2.x107"5

[Kallosh & Linde '04]



* FEinstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

T 1
V@) ~ KD~ o
g

V(o)

6.x1071 -

4.x107P |

2.x107 1+

[Kallosh & Linde ’04]



* FEinstein frame rescaling - SUSY breaking scales
as inverse power of the volume G =Re T

T 1
V@) ~ KD~ o
g

[Kallosh & Linde ’04]



* related to earlier studies noting, that reheating
after inflation will lead to decompactification
and/or run-away to weak coupling, if the reheat
temperature exceeds the energy scale of the

barriers ...
[Buchmuller, Hamaguchi, Lebedev & Ratz '04]

* = reheat temperature problem in higher-

dimensional models



overcowing the KL problew ...

[He, Kachru & AWV ’10]



What to do ?

* decouple the barrier height from the (post-)
inflationary uplifting: racetrack model of Kallosh &

Linde, heavily fine-tuned at O(mgut/mw) ~ 10713

* alternative: have the barrier height adjusting
with the rolling inflaton!

= in W we have to adjust Wy to adjust the

barrier height



Who says, we cannot have Wy being an
adiabatic function of the inflaton?

W = Woerr.(P) + Ae~ 2t




e Let's try find simple models doing that ...

However, in supergravity we cannot just rely on
the inflaton alone:

if . Wojeff.((l)) — W() + ad”

Fo| = nad®™! 1

N, ——

|W‘ -~ Oé(I)n—I—W() b

—

* for a polynomial superpotential suitable for
large-field inflation the potential slopes
downward and goes negative ... So we probably

have to use the F-term Fx = Fx(¢) of a spectator

field X | Kawasaki, Yamaguchi
& Yanagida *00]



* asimple setup which adjusts the barrier
dynamically

1 _ _ _ _
K = §(<I>+<I>)2+XX—7(XX)2—310g(T+T)

W Wog(X)+af(X)d" e ot

with: ¢(X)=1+0(X) and f(X)=b+X+0O(X?)

* this is t'Hooft natural, given that ¢ has R-charge 2/n
and a shift symmetry in the Kahler potential:

P=n+ip , ¢—e+C



why do we need the |st few terms in fand g,
which are otherwise arbitrary?

the O(l) constant in g ensures the known
KKLT-like post-inflation vacuum

the O(l) constant b in f has W scaling
adiabatically with ¢

the linear term in f in X enforces Fx ~ W ,so
that the potential slopes upwards ...



* in the regime ¢ >> Mp and X < Mp there is an
attractor behaviour satisfying

F F
FXNWNOZ(I)R , FCIDNKX 7 FTrv?X

* this gives the inflaton potential to be

Ving.(9) ~ |[Fx|* ~ o™
* because there’s a mass term for X (if Y > 0) via

KXX=(1-4yXX) "~ 1449XX =X <Mp



* Thus, we get a generalized KL-like constraint
for the adiabatically adjusting VEV of W

|FWX| ~ const. < O(10) for 57— > 1
= V ~ |Fx|? ~ a?p*"
VIFSI+HIFR] y
W o n 1/n
0 for =% Wo

e < o
if this constraint can be maintained at all times,
I never goes into run-away ...

now express a in terms of the density contrast
0 (2 x 10~) and @¢so, the inflaton at 60 e-folds ...



 then we horse trade: if
we wish to attain a 001,
given Wo (TeV...) at the
end of inflation, we can 5
exchange n for o 10°%

(10, 10%)
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* anumerical example: A=1,a=
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open questions ...

* how to get large-field inflation with large-ish

powers in string theory!?
... we know of (axion) monodromy inflation, which gives so far at
most linear potentials ... [McAllister, Silverstein & AW ’08/’09]

* the horse trading could be presumably loosened by
modifying the exit similar to hybrid inflation ...

* small field models using the same basic mechanism?






