Freeze-Out of Particles

Abtin Narimani

University of Bonn

s6abnari@uni-bonn.de

June 17, 2016

- 2 Equilibrium Thermodynamics
- 3 Boltzmann Equation and Beyond Equilibrium

• The early Universe was in local thermal equilibrium.

$$\Gamma \gtrsim H$$
 or $t_{int} \lesssim t_H$ (coupled)

• During expansion, the rate of expansion of the Universe (*H*) became larger than rate of interaction (Γ) \Rightarrow particles fell out of the thermal equilibrium.

$$\Gamma \lesssim H$$
 or $t_{int} \gtrsim t_H$ (decoupled)

Freeze-Out

• Is $\Gamma \gg H$ satisfied for SM processes for $T \gtrsim 100 \text{ GeV}$?

$$\begin{split} \Gamma &\equiv n\sigma v, \quad v \sim 1, \quad n \sim T^3, \quad \sigma \sim \frac{\alpha^2}{T^2} \quad \rightarrow \Gamma \sim \alpha^2 T \\ & H \sim \frac{\rho^{1/2}}{M_{Pl}}, \qquad \rho \sim T^4 \quad \rightarrow H \sim \frac{T^2}{M_{Pl}} \\ & \frac{\Gamma}{H} \sim \frac{\alpha^2 M_{Pl}}{T} \sim \frac{10^{16} \, GeV}{T} \qquad \text{with} \quad \alpha \sim 0.01 \end{split}$$
$$\begin{split} \Gamma &\gg H \text{ is satisfied for} \qquad 100 \, GeV \lesssim T \lesssim 10^{16} \, GeV \end{split}$$

Local Thermal Equilibrium

• Distribution function (the number of particles per unit volume in phase space):

$$f(E) = rac{1}{e^{(E-\mu)/T}\pm 1}$$
 (+ for fermions, – for bosons)

• Relativistic particles dominate density and pressure of the primordial plasma.

When $T \ll m$, particles become non-relativistic, then $f(E) \rightarrow e^{-m/T}$

• Total energy density (ρ_r) is approximated by:

$$\rho_r \propto \sum_i \int E_i(p) f_i(p) d^3p \quad \Rightarrow \rho_r = \frac{\pi^2}{30} g_{\star}(T) T^4$$

At early times, all particles are relativistic $ightarrow g_{\star} = 106.75$

Figure: Evolution of the number of relativistic degrees of freedom as a function of temperature in the Standard Model.

Image Source: Daniel D. Baumann, Lecture notes on Cosmology

Freeze-Out of Particles

Freeze-Out

• Deviation from equilibrium led to the *freeze-out* of massive particles.

Figure: A schematic illustration of particle freeze-out.

Image Source: Daniel D. Baumann, Lecture notes on Cosmology

Abtin Narimani (Uni Bonn)

Freeze-Out of Particles

- Below 100 GeV, W^{\pm} and Z receive masses, $M_W \sim M_Z$.
- Cross section associated with processes mediated by weak interaction:

$$\sigma \sim \frac{\alpha^2}{M_W^4} T^2$$

$$\frac{\Gamma}{H} \sim \frac{\alpha^2 M_{Pl} T^3}{M_W^4} \sim \left(\frac{T}{1 MeV}\right)^3$$

Particles that interact with the primordial plasma only through the weak interaction decouple at $T_{dec} \sim 1 MeV$

Key events are:

- Baryogenesis
- Electroweak transition
- Dark matter freeze-out
- QCD transition
- Neutrino decoupling
- $e^+ e^-$ annihilation
- Big Bang nucleosynthesis
- Recombination

Key events

Event	Time	Temperature
Inflation	$10^{-34} s(?)$	_
Baryogenesis	?	?
EW phase transition	20 <i>ps</i>	100 GeV
Dark matter freeze-out	?	?
QCD phase transition	20 µ <i>s</i>	150 <i>MeV</i>
Neutrino decoupling	1 <i>s</i>	1 MeV
$e^+ - e^-$ annihilation	6 <i>s</i>	500 keV
Big Bang nucleosynthesis	3 min	100 keV
Matter-radiation equality	60 <i>kyr</i>	0.75 eV
Recombination	260 – 380 <i>kyr</i>	0.26 - 0.33 eV
Photon decoupling	380 <i>kyr</i>	0.23 - 0.38 eV
Reionization	100 – 400 <i>Myr</i>	2.6 − 7.0 <i>meV</i>
Dark energy-matter equality	9 Gyr	0.33 <i>meV</i>
Present	13.8 <i>Gyr</i>	0.24 <i>meV</i>

- *Phase space* is useful for description of the system.
- Density of states in momentum space: $L^3/h^3 = V/h^3$.
- Density of states in phase space with g internal degrees of freedom is $g/h^3 = g/(2\pi)^3$.
- Information about the distribution of particles amongst momentum eigenstates is in *phase space distribution function* $f(x, \vec{p})$ (because of homogeneity and isotropy $f(x, \vec{p}) = f(p)$).
- Particle density in phase space is $\frac{g}{(2\pi)^3} f(p)$.

Number density, Energy density, Pressure

For a weakly interacting gas of particles

• Number density:

$$n=\frac{g}{(2\pi)^3}\int f(p)\,d^3p$$

Energy density:

$$\rho = \frac{g}{(2\pi)^3} \int E(p) f(p) d^3p$$

Pressure:

$$p = \frac{g}{(2\pi)^3} \int \frac{p^2}{3E} f(p) d^3p$$

with
$$E^2(p) = p^2 + m^2$$

Local Thermal Equilibrium

• If particles exchange energy and momentum efficiently, system is in kinetic equilibrium.

Fermi-Dirac and Bose-Einstein distributions: $f(p) = \frac{1}{e^{(E(p)-\mu)/T+1}}$

• At low T, ($T < E - \mu$), these reduce to Maxwell-Boltzmann distribution:

$$f(p) \approx e^{-(E(p)-\mu)/T}$$

• If a species is in chemical equilibrium, for a process like $i + j \leftrightarrow k + l$, μ_i is related to μ_j which implies: $\mu_i + \mu_j = \mu_k + \mu_l$

For
$$X + \overline{X} \leftrightarrow \gamma + \gamma$$
: $\mu_X + \mu_{\overline{X}} = \mu_\gamma + \mu_\gamma \rightarrow \mu_X = -\mu_{\overline{X}}$

Thermal equilibrium is achieved for species which are both in kinetic and chemical equilibrium.

- At early times, μ of all particles were so small ($\mu = 0$).
- Number density:

$$n = \frac{g}{(2\pi)^3} \int f(p) \, d^3p = \frac{g}{2\pi^2} \int_0^\infty dp \frac{p^2}{exp(\sqrt{p^2 + m^2}/T) \pm 1}$$

• Energy density:

$$\rho = \frac{g}{(2\pi)^3} \int E(p) f(p) d^3p = \frac{g}{2\pi^2} \int_0^\infty dp \frac{p^2 \sqrt{p^2 + m^2}}{exp(\sqrt{p^2 + m^2}/T) \pm 1}$$

• Defining
$$x \equiv m/T$$
 and $\xi \equiv p/T$:

$$n = \frac{g}{2\pi^2} T^3 \int_0^\infty d\xi \frac{\xi^2}{\exp(\sqrt{\xi^2 + x^2}) \pm 1}$$

~

$$\rho = \frac{g}{2\pi^2} T^4 \int_0^\infty d\xi \frac{\xi^2 \sqrt{\xi^2 + x^2}}{\exp(\sqrt{\xi^2 + x^2}) \pm 1}$$

Relativistic Limit

• In the limit $x \to 0$ or $m/T \to 0$ $(m \ll T)$:

$$n = \frac{g}{2\pi^2} T^3 \int_0^\infty d\xi \frac{\xi^2}{e^{\xi} \pm 1} = \begin{cases} \frac{\zeta(3)}{\pi^2} g T^3 & \text{bosons} \\ \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T^3 & \text{fermions} \end{cases}$$
$$\rho = \frac{g}{2\pi^2} T^4 \int_0^\infty d\xi \frac{\xi^3}{e^{\xi} \pm 1} = \begin{cases} \frac{\pi^2}{30} g T^4 & \text{bosons} \\ \frac{7}{8} \frac{\pi^2}{30} g T^4 & \text{fermions} \end{cases}$$
$$P = \rho/3$$

• For relic photons using the temperature of CMB ($T_0 = 2.73K$)

$$n_{\gamma,0} = \frac{2\zeta(3)}{\pi^2} T_0{}^3 \approx 410 \text{ photons } cm^{-3}$$

$$\rho_{\gamma,0} = \frac{\pi^2}{15} T_0{}^4 \approx 4.6 \times 10^{-34} \text{g } cm^{-3} \qquad \Rightarrow \Omega_{\gamma} h^2 \approx 2.5 \times 10^{-5}$$

Non-relativistic Limit

• In the limit $x \gg 1$ or $m/T \gg 1$ $(m \gg T)$:

$$n = \frac{g}{2\pi^2} T^3 \int_0^\infty d\xi \frac{\xi^2}{e^{\sqrt{\xi^2 + x^2}}} = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

Massive particles are rare at low temperature.

At the lowest order $E(p) \approx m$ and energy density is equal to mass density:

 $\rho \approx mn$

A non-relativistic gas of particles acts like a pressureless dust:

$$P = nT \ll \rho = mn$$

Effective Number of Relativistic Species

- Total radiation density: $\rho_r = \sum_i \rho_i \frac{\pi^2}{30} g_{\star}(T) T^4$ where $g_{\star}(T)$ is effective number of relativistic d.o.f at temperature T
- Two types of contributions:
 - Relativistic species are in thermal equilibrium with the photons, $T_i = T \gg m_i$

$$g^{th}_{\star}(T) = \sum_{i=bosons} g_i + rac{7}{8} \sum_{i=fermions} g_i$$

Away from mass threshold, thermal contribution is independent of T.

• Relativistic species are not in thermal equilibrium with the photons, $T_i \neq T \gg m_i$

$$g_{\star}^{dec}(T) = \sum_{i=bosons} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i=fermions} g_i \left(\frac{T_i}{T}\right)^4$$

- At $T \gtrsim 100 \ GeV$, all particles of SM are relativistic. Internal d.o.f:
 - $g_b = 28$ photons (2), W^{\pm} and Z^0 (3 · 3), gluons (8 · 2), Higgs (1) $g_f = 90$ quarks (6 · 12), charged leptons (3 · 4), neutrinos (3 · 2)

Therefore:
$$g_{\star} = g_b + \frac{7}{8}g_f = 106.75$$

- Image: Second system $g_{\star} = 106.75 \frac{7}{8} \times 12 = 96.25$ Image: Second system $g_{\star} = 96.25 (1 + 3 \times 3) = 86.25$ Image: Second system $g_{\star} = 86.25 \frac{7}{8} \times 12 = 75.75$
- Charm quarks and tau leptons:
- $g_{\star} = 75.75 \frac{7}{8} \times (12 + 4) = 61.75$
- Matter undergoes the QCD transition and quarks combine into baryons and mesons.
- **5** For $\pi^{\pm}, \pi^{0}, e^{\pm}, \mu^{\pm}, \nu' s, \gamma$: $g_{\star} = 2 + 3 + \frac{7}{8} \times (4 + 4 + 6) = 17.25$
- In order to understand electron-positron annihilation we need entropy.

$g_{\star}(T)$ vs. T

Figure: Evolution of the number of relativistic degrees of freedom as a function of temperature in the Standard Model.

Image Source: Daniel D. Baumann, Lecture notes on Cosmology

Freeze-Out of Particles

- To describe the evolution of the Universe, we need a conserved quantity.
- Total entropy increases or stays constant.
- Entropy is conserved in equilibrium.
- To a good approximation, expansion of the Universe is adiabatic, therefore the total entropy stays constant beyond equilibrium.

Effective Number of degrees of freedom in Entropy

- Considering 2nd law of thermodynamics: TdS = dU + PdV. Using $U = \rho V$, then: $dS = d\left(\frac{\rho+P}{T}V\right)$ \Rightarrow entropy is conserved in equilibrium, $\frac{dS}{dt} = 0$. $(\dot{\rho} + 3H(\rho + P) = 0 \text{ and } \frac{\partial P}{\partial T} = \frac{\rho+P}{T})$
- Define entropy density: $s \equiv S/V \rightarrow s = \frac{\rho+P}{T}$ The total energy density for a collision of different particle species: $s = \sum_{i} \frac{\rho_i + P_i}{T_i} = \frac{2\pi^2}{45} g_{\star S}(T) T^3$

Effective Number of degrees of freedom in Entropy is $g_{\star S}(T) = g_{\star S}^{th}(T) + g_{\star S}^{dec}(T)$

- For species in equilibrium: $g_{\star S}^{th}(T) = g_{\star}^{th}(T)$
- For decoupled species:

$$g_{\star S}^{dec}(T) = \sum_{i=bosons} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8} \sum_{i=fermions} g_i \left(\frac{T_i}{T}\right)^3 \neq g_{\star}^{dec}(T)$$

• Conservation of entropy has 2 consequences:

() $s \propto a^{-3} \rightarrow$ the number of particles in a comoving volume: $N_i \equiv n_i/s$

- 10

- We already knew $\frac{\Gamma}{H} \sim \left(\frac{T}{1 MeV}\right)^3$
- After decoupling, ν 's move freely along geodesics and preserve relativistic Fermi-Dirac distribution.
- Momentum $p \propto 1/a$, thus we define $q \equiv ap$:

$$n_
u \propto rac{1}{a^3}\int rac{d^3q}{e^{(q/aT_
u)}+1}$$

consistent if $T_{
u} \propto 1/a$

• $T_\gamma \sim T_
u$, however particle annihilations will cause a deviation from $T_\gamma \propto 1/a$

• Shortly after neutrinos decouple, T drops below m_e and $e^+ - e^-$ annihilation occurs:

$$e^+ + e^- \leftrightarrow \gamma + \gamma$$

• If we neglect ν 's and other species:

$$g_{\star S}^{th}(T) = \begin{cases} 2 + \frac{7}{8} \times 4 = \frac{11}{2} & T \gtrsim m_e \\ 2 & T < m_e \end{cases}$$

• Since $g_{\star S}^{th}(aT_{\gamma})^3 = constant$, then aT_{γ} increases after $e^+ - e^$ annihilation by a factor $(11/4)^{1/3}$. Then $T_{\nu} = (4/11)^{1/3}T_{\gamma}$. • For $T \ll m_e$:

$$N_{eff} = 3.046$$

$$g_{\star} = 2 + \frac{7}{8} 2N_{eff} \left(\frac{4}{11}\right)^{4/3} = 3.36$$
$$g_{\star S} = 2 + \frac{7}{8} 2N_{eff} \left(\frac{4}{11}\right) = 3.94$$

Figure: Thermal history through $e^+ - e^-$ annihilation

Image Source: Daniel D. Baumann, Lecture notes on Cosmology

Abtin Narimani (Uni Bonn)

Freeze-Out of Particles

• In the absence of interactions, the number density of particle species evolves as:

$$\frac{1}{a^3}\frac{d(n_ia^3)}{dt} = \frac{dn_i}{dt} + 3\frac{\dot{a}}{a}n_i = 0$$

Number of particles in a fixed volume is conserved.

• To include interactions of particles, a collision term is added to the other side of equation:

$$\frac{1}{a^3}\frac{d(n_ia^3)}{dt}=C_i[\{n_j\}]$$

Boltzmann equation

Boltzmann equation

 We can limit ourselves to single-particle and two-particle scatterings / annihilations.

Consider process $1 + 2 \leftrightarrow 3 + 4$. Suppose we track the number density n_1 , then:

$$\frac{1}{a^3}\frac{d(n_1a^3)}{dt} = -An_1n_2 + Bn_3n_4$$

• $A = \langle \sigma v \rangle$: Thermally averaged cross section Since the collision term has to vanish in equilibrium: $B = \left(\frac{n_1 n_2}{n_3 n_4}\right)_{eq} A$ where n_i^{eq} are the equilibrium number densities. Then:

$$\frac{1}{a^3}\frac{d(n_1a^3)}{dt} = -\langle \sigma v \rangle \left[n_1n_2 + \left(\frac{n_1n_2}{n_3n_4}\right)_{eq} n_3n_4 \right]$$

• In terms of number of particles in a comoving volume:

$$\frac{d\ln N_1}{d\ln a} = -\frac{\Gamma_1}{H} \left[1 - \left(\frac{N_1 N_2}{N_3 N_4}\right)_{eq} \frac{N_3 N_4}{N_1 N_2} \right]$$

where $\Gamma_1 \equiv \textit{n}_2 \langle \sigma \textit{v} \rangle$

 $\frac{\Gamma_1}{H}$ describes the interaction efficiency

1 For $\Gamma_1 \gg H$, the system quickly relaxes to a steady state.

② When $\Gamma_1 < H$, r.h.s. gets suppressed and comoving density of particles approaches a constant relic density.

Dark Matter Relics

- We assume that the dark matter is a weakly interacting massive particle (WIMP).
- Solving Boltzmann eq. and determine the epoch of freeze-out and its relic abundance.
- Assumptions are:
 - Annihilation of a heavy dark matter particle and anti-particle produce two light particles: $X + \bar{X} \leftrightarrow I + \bar{I}$
 - 2 Light particles are tightly coupled to the cosmic plasma, thus $n_l = n_l^{eq}$
 - **③** There is no asymmetry between X and \bar{X} $(n_X = n_{\bar{X}})$

$$\frac{dN_X}{dt} = -s \langle \sigma v \rangle \left[N_X^2 - (N_X^{eq})^2 \right]$$
$$N_X \equiv n_X/s, N_X^{eq} \equiv n_X^{eq}/s$$

• Define $x \equiv M_X/T$, then write Boltzmann eq. in terms of x:

$$\frac{dx}{dt} = \frac{d}{dt} \left(\frac{M_X}{T} \right) = -\frac{1}{T} \frac{dT}{dt} x \simeq Hx$$

By assuming the radiation domination $h = H(M_X)/x^2$, then:

$$\frac{dN_X}{dx} = -\frac{\lambda}{x^2} \left[N_X^2 - (N_X^{eq})^2 \right]$$

where $\lambda \equiv rac{2\pi^2}{45}g_{\star S}rac{M_X^2\langle\sigma v
angle}{H(M_X)}$

It is called Riccati equation.

There is no analytic solution for it.

Freeze-out density of DM

- At high temperature (x < 1): $N_X \approx N_X^{eq} \simeq 1$
- At low temperature (x \gg 1): $N_X^{eq} \sim e^{-x}$

Thus X particles will become so rare and they cannot find each other fast enough to maintain equilibrium abundance.

- Freeze-out happens at $x_f \sim 20$, where solution starts to deviate from equilibrium.
- Final relic abundance: $N_X^\infty \equiv N_X(x=\infty)$ (freeze-out density of DM)
- After freeze-out $N_X \gg N_X^{eq}$, thus we can drop N_X^{eq} :

 $\begin{array}{ll} \frac{dN_X}{dx}\simeq -\frac{\lambda N_X^2}{x^2} & \rightarrow & \int_{x_f}^\infty(...) & \rightarrow & \frac{1}{N_X^\infty}-\frac{1}{N_X^f}=\frac{\lambda}{x_f}\\ \text{where } N_X^f\equiv N_X(x_f). \text{ Typically, } N_X^f\gg N_X^\infty, \text{ then: } N_X^\infty\simeq \frac{x_f}{\lambda}\\ \text{This predicts the freeze-out abundance } N_X^\infty \text{ decreases as the interaction rate } \lambda \text{ increases.} \end{array}$

Abtin Narimani (Uni Bonn)

Dark Matter Relics

Figure: Abundance of dark matter particles as the temperature drops below the mass.

Image Source: Daniel D. Baumann, Lecture notes on Cosmology

Relating the freeze-out abundance of DM relics to the DM density today:

$$\begin{split} \Omega_X &\equiv \frac{\rho_{X,0}}{\rho_{c,0}} \\ &= \frac{M_X n_{X,0}}{3M_{PL}^2 H_0^2} = \frac{M_X N_{X,0} s_0}{3M_{PL}^2 H_0^2} = M_X N_X^\infty \frac{s_0}{3M_{PL}^2 H_0^2} \\ &= \frac{H(M_X)}{M_X^2} \frac{x_f}{\langle \sigma v \rangle} \frac{g_{\star S}(T_0)}{g_{\star S}(M_X)} \frac{T_0^3}{3M_{PL}^2 H_0^2} \\ &= \frac{\pi}{9} \frac{x_f}{\langle \sigma v \rangle} \sqrt{\frac{g_{\star}(M_X)}{10}} \frac{g_{\star S}(T_0)}{g_{\star S}(M_X)} \frac{T_0^3}{3M_{PL}^2 H_0^2} \end{split}$$

$$\Rightarrow \Omega_X h^2 \sim 0.1 \frac{x_f}{10} \sqrt{\frac{10}{g_\star(M_X)}} \frac{10^{-8} GeV^{-2}}{\langle \sigma v \rangle}$$

This reproduces the observed DM density if:

$$\sqrt{\langle \sigma v
angle} \sim 10^{-4} \text{GeV}^{-1} \sim 0.1 \sqrt{\text{G}_{\text{F}}}$$

The fact that a thermal relic with a cross section characteristic of the weak interaction gives the right dark matter abundance is called the WIMP miracle.

- The early Universe was in thermal equilibrium and freeze-out happened when $\Gamma \lesssim H.$
- After freeze-out particles fell out of equilibrium and decoupled.
- Deviations from equilibrium explain why there is something rather than nothing in the Universe.
- Boltzmann equation is useful to explain non-equilibrium processes.
- Calculate the relic abundance of Dark Matter.
- Cross section of the order of weak interaction gives the right Dark Matter abundance.

- Edward W. Kolb, Michael S. Turner, *The Early Universe*, Westview Press, 1994.
- Daniel D. Baumann, Lecture notes on Cosmology. http://www.damtp.cam.ac.uk/user/db275/Cosmology/ (version: 29.09.2015).