Learning from WIMPs

Manuel Drees

Bonn University
Contents

1 Introduction
Contents

1 Introduction
2 Learning about the early Universe
Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
4 Summary
Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)
Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply $\Omega_{DM}h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.
h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.
h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Models of structure formation, X ray temperature of clusters of galaxies, ...
Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Models of structure formation, X ray temperature of clusters of galaxies, . . .

- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro-ph/0603449
Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))

- Can also (trivially) write down “tailor–made” WIMP models
Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor-made” WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
Weakly Interacting Massive Particles (WIMPs)

- Exist in well–motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor–made” WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both direct and indirect detection of WIMPs
Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.
Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_χ determined by Boltzmann equation:

$$\frac{dn_\chi}{dt} + 3H n_\chi = -\langle \sigma_{\text{ann}} v \rangle \left(n^2_\chi - n^2_{\chi, \text{eq}} \right)$$

$H = \dot{R}/R$: Hubble parameter
$\langle \ldots \rangle$: Thermal averaging
$\sigma_{\text{ann}} = \sigma(\chi\chi \rightarrow \text{SM particles})$
v : relative velocity between χ’s in their cms
$n_{\chi, \text{eq}}$: χ density in full equilibrium
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$
Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, \(H \propto T^2\).
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi / T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze-out) temperature T_F.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$:

$$n_\chi \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi/T}, \quad H \propto T^2$$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$:

$$n_\chi \simeq n_\chi,_{\text{eq}} \propto T^{3/2} e^{-m_\chi/T}, \quad H \propto T^2$$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_\chi h^2 \propto \frac{1}{\langle v \sigma_{\text{ann}} \rangle} \sim 0.1 \quad \text{for} \quad \sigma_{\text{ann}} \sim \text{pb}$$
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:
 \[T_R > T_F \simeq m_\chi/20 \]

Can we test these assumptions, if Ω_χ and “all” particle physics properties of χ are known?
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)
Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)
Introduce dimensionless variables
\[Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T} \quad (s: \text{entropy density}). \]
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)

Introduce dimensionless variables

$$ Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T} \quad (s:\text{ entropy density}). $$

Use non–relativistic expansion of cross section:

$$ \sigma_{\text{ann}} = a + bv^2 + \mathcal{O}(v^4) \implies \langle \sigma_{\text{ann}} v \rangle = a + 6b/x $$
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)

Introduce dimensionless variables

$Y_\chi \equiv \frac{n_\chi}{s}$, $x \equiv \frac{m_\chi}{T}$ (s: entropy density).

Use non–relativistic expansion of cross section:

$\sigma_{\text{ann}} = a + bv^2 + O(v^4) \implies \langle \sigma_{\text{ann}} v \rangle = a + 6b/x$

![Graph showing $\Omega_\chi h^2$ vs. a with $x_0 = 22$, $\Omega_\chi h^2_{\text{exact}}$, and $\Omega_\chi h^2_{\text{old}}$. The WMAP value is indicated.]
Using explicit form of H, $Y_{\chi, \text{eq}}$, Boltzmann eq. becomes

$$
\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^2 - cx^3 e^{-2x} \right).
$$

\[f = 1.32 \, m_\chi M_{\text{Pl}} \sqrt{g_*}, \quad c = 0.0210 \, g_{\chi}^2 / g_* \]
Using explicit form of H, $Y_{\chi,eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^2 - cx^3 e^{-2x} \right).$$

$f = 1.32 \, m_{\chi} M_{Pl} \sqrt{g_*}$, $c = 0.0210 \, g_{\chi}^2 / g_*^2$

For $T_0 \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = f \, c \left[\frac{a}{2} x R e^{-2xR} + \left(\frac{a}{4} + 3b \right) e^{-2xR} \right].$$

Note: $\Omega_{\chi} h^2 \propto \sigma_{\text{ann}}$ in this case!
Low temperature scenario (cont.’d)

Using explicit form of H, $Y_{\chi,\text{eq}}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^2 - c x^3 e^{-2x} \right).$$

$f = 1.32 \, m_{\chi} M_{\text{Pl}} \sqrt{g_*}$, $c = 0.0210 \, g_{\chi}^2 / g_*^2$

For $T_0 \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0–th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = f c \left[\frac{a}{2} x R e^{-2xR} + \left(\frac{a}{4} + 3b \right) e^{-2xR} \right].$$

Note: $\Omega_\chi h^2 \propto \sigma_{\text{ann}}$ in this case!

For intermediate temperatures, $T_0 \lesssim T_F$: Define 1st–order solution

$$Y_1 = Y_0 + \delta.$$

$\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}.$$

$\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\text{ann}}^3$.
Get good results for $\Omega \chi h^2$ for all $T_0 \leq T_F$ through “resummation”:

$$Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0}\right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

$Y_{1,r} \propto 1/\sigma_{\text{ann}}$ for $|\delta| \gg Y_0$

MD, Imminiyaz, Kakizaki, hep-ph/0603165
Numerical comparison: $b = 0$

\begin{align*}
a &= 10^{-8} \text{ GeV}^{-2} \\
a &= 10^{-9} \text{ GeV}^{-2}
\end{align*}
Numerical comparison: \(b = 0 \)

\[a = 10^{-8} \text{ GeV}^{-2} \]

\[a = 10^{-9} \text{ GeV}^{-2} \]

Can extend validity of new solution to all \(T \), including \(T \gg T_0 \), by using \(\Omega_\chi(T_{\text{max}}) \) if \(T_0 > T_{\text{max}} \approx T_F \).
Numerical comparison: $b = 0$

Can extend validity of new solution to all T, including $T \gg T_0$, by using $\Omega_\chi(T_{\text{max}})$ if $T_0 > T_{\text{max}} \simeq T_F$

Note: $\Omega_\chi(T_0) \leq \Omega_\chi(T_0 \gg T_F)$
If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_0:
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \approx 0.1$ imposes lower bound on T_0:

\begin{align*}
\Omega_\chi h^2 &
\begin{array}{c}
\Omega_\chi h^2 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.119 & 0.079 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.1 & 0.119 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.119 & 0.079
\end{array}
\end{array}
\end{array}
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\Omega_\chi h^2 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.119 & 0.079 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.1 & 0.119 \\
\begin{array}{cccc}
\Omega_\chi h^2 &=& 0.119 & 0.079
\end{array}
\end{array}
\end{array}
\end{array}
\end{align*}
If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \simeq 0.1$ imposes lower bound on T_0:

$$\Omega_\chi h^2$$

$\Omega_\chi h^2$ blows up at T_0 near 10^{-9} GeV.

$$\Rightarrow T_0 \geq \frac{m_\chi}{23}$$

Holds independent of σ_{ann}!
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_0:

$$\implies T_0 \geq \frac{m_\chi}{23}$$

Holds independent of σ_{ann}!

If $T_0 \sim m_\chi/22$: Get right $\Omega_\chi h^2$ for wide range of cross sections!
Constraining $H(T)$

Assumptions
Constraining $H(T)$

- Assumptions
 - $\Omega \chi h^2$ is known (see below)
Constraining $H(T)$

- **Assumptions**
 - $\Omega_\chi h^2$ is known (see below)
 - a, b are known (from collider experiments)
Constraining $H(T)$

- Assumptions
 - $\Omega_{\chi} h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)
Constraining $H(T)$

- **Assumptions**
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)

- Parameterize modified expansion history:

\[
A(z) = \frac{H_{\text{st}}(z)}{H(z)}, \quad z = T/m_{\chi}
\]
Constraining $H(T)$

Assumptions

- $\Omega_\chi h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)

Parameterize modified expansion history:

$$A(z) = \frac{H_{st}(z)}{H(z)} , \ z = \frac{T}{m_\chi}$$

Around decoupling: $z \ll 1 \implies$ use Taylor expansion

$$A(z) = A(z_{F, st}) + (z - z_{F, st}) A'(z_{F, st}) + (z - z_{F, st})^2 A''(z_{F, st}) / 2$$
Constraining $H(T)$

- **Assumptions**
 - $\Omega_{\chi}h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)

- Parameterize modified expansion history:

 $$A(z) = \frac{H_{\text{st}}(z)}{H(z)}, \ z = \frac{T}{m_{\chi}}$$

- Around decoupling: $z \ll 1 \implies$ use Taylor expansion

 $$A(z) = A(z_{F, st}) + (z - z_{F, st})A'(z_{F, st}) + (z - z_{F, st})^2 A''(z_{F, st})/2$$

- Successful BBN $\implies k \equiv A(z \to 0) = 1.0 \pm 0.2$
Constraining $H(T)$ (cont.d)

Assume $T_0 \gg T_F \implies \Omega_\chi h^2 \propto \frac{1}{\int_{0}^{z_F} A(z)(a+6bz) \, dz}$
Constraining $H(T)$ (cont.d)

Assume $T_0 \gg T_F \implies \Omega_\chi h^2 \propto \frac{1}{\int_0^{z_F} A(z)(a+6bz)\,dz}$
The case $A''(z_{F,st}) = 0$
The case $A''(z_{F,st}) = 0$

Relative constraint on $A(z_{F,st})$ weaker than that on $\Omega_\chi h^2$.
Direct WIMP detection

- WIMPs are everywhere!
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; . . .
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
- Detection needs ultrapure materials in deep-underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; . . .
- Is being pursued vigorously around the world!
Direct WIMP detection: theory

Counting rate given by

\[
\frac{dR}{dQ} = AF^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} v f_1(v) \, dv
\]

\(Q\): recoil energy
\(A = \rho \sigma_0 / (2m_{\chi} m_r) = \text{const.: encodes particle physics}\)
\(F(Q)\): nuclear form factor
\(v\): WIMP velocity in lab frame
\(v_{\text{min}}^2 = m_N Q / (2m_r^2)\)
\(v_{\text{esc}}\): Escape velocity from galaxy
\(f_1(v)\): normalized one–dimensional WIMP velocity distribution
Direct WIMP detection: theory

Counting rate given by

\[\frac{dR}{dQ} = AF^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv \]

\(Q \): recoil energy
\(A = \frac{\rho \sigma_0}{(2m_\chi m_r)} = \text{const.: encodes particle physics} \)
\(F(Q) \): nuclear form factor
\(v \): WIMP velocity in lab frame
\(v_{\text{min}}^2 = m_N Q/(2m_r^2) \)
\(v_{\text{esc}} \): Escape velocity from galaxy
\(f_1(v) \): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure \(f_1(v) \)!
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_T v^2/m_N}$$
Direct reconstruction of f_1

\[f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2v^2/m_N} \]

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).
Direct reconstruction of f_1

\[f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\} \bigg|_{Q=2m_r v^2/m_N} \]

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).
Need to know form factor \Longrightarrow stick to spin–independent scattering.
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r v^2/m_N}$$

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).

Need to know form factor \implies stick to spin–independent scattering.

Need to know m_χ, but do not need σ_0, ρ.
Direct reconstruction of f_1

\[f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2v^2/m_N} \]

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).

Need to know form factor \implies stick to spin–independent scattering.

Need to know m_χ, but do not need σ_0, ρ.

Need to know slope of recoil spectrum!
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\} _{Q=2m_r v^2 / m_N}$$

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).
Need to know form factor \Rightarrow stick to spin–independent scattering.
Need to know m_χ, but do not need σ_0, ρ.
Need to know slope of recoil spectrum!
dR/dQ is approximately exponential: better work with logarithmic slope
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i–th bin
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i–th bin

- Stat. error on slope $\propto (\text{bin width})^{-1.5}$ \implies need large bins
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i–th bin
- Stat. error on slope $\propto (\text{bin width})^{-1.5} \implies$ need large bins
- To maximize information: use overlapping bins ("windows")
Recoil spectrum: prediction and simulated measurement

\[f_1(v) \text{ [s/km]} \]

\(\chi^2 / \text{dof} = 0.73 \)

500 events, 5 bins, up to 3 bins per window

input distribution

v [km/s]
Recoil spectrum: prediction and simulated measurement

χ²/dof = 0.98

5,000 events, 10 bins, up to 4 bins per window

input distribution
Statistical exclusion of constant f_1

Average over 1,000 experiments

- Probability vs. N_{ev}
- Graph shows the mean and median probability values for different N_{ev} values.
- The probability decreases as N_{ev} increases.

Learning from WIMPs – p. 22/28
Statistical exclusion of constant f_1

Need several hundred events to begin direct reconstruction!
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$
Determining moments of f_1

\[
\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv \\
\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ
\]
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\rightarrow \sum_{\text{events}} a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv \propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \to \sum \text{events } a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\rightarrow \sum_{\text{events}} a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$ \propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{1}{dQ} dQ$$

$$ \rightarrow \sum_{\text{events}} a \frac{Q_{a}^{(n-1)/2}}{F^2(Q_{a})}$$

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!

High moments, and their errors, are underestimated in “typical” experiment: get large contribution from large Q
Determination of first 10 moments

\[\frac{\langle v^n \rangle}{\langle v^n \rangle_{\text{exact}}} \]

100 events
Constraining a “late infall” component

\[\Delta \chi^2 = 1 \]
\[\Delta \chi^2 = 4 \]

25 events, fit moments \(n = -1, 1, 2 \)
Constraining a “late infall” component

100 events, fit moments $n = -1, 1, 2, 3$

$\Delta \chi^2 = 1$

$\Delta \chi^2 = 4$

v_{esc} [km/s]
Determining the WIMP mass

Can determine m_χ from requirement that different targets yield same moments of f_1.
Learning about the Early Universe:
Learning about the Early Universe:

If all DM is thermal WIMPs: \(T_0 \geq m_\chi / 23 \sim 10^4 T_{BBN} \)
Learning about the Early Universe:

- If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$
Summary

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: \(T_0 \geq \frac{m_\chi}{23} \sim 10^4 T_{\text{BBN}} \)
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

- Learning about our galaxy:
Learning about the Early Universe:

- If all DM is thermal WIMPs: \(T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}} \)
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

Learning about our galaxy:

- Direct reconstruction of \(f_1(v) \) needs several hundred events
Summary

- **Learning about the Early Universe:**
 - If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}}$
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$

- **Learning about our galaxy:**
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non–trivial statements about moments of f_1 possible with few dozen events
Learning about the Early Universe:

- If all DM is thermal WIMPs: \(T_0 \geq \frac{m_\chi}{23} \sim 10^4 T_{\text{BBN}} \)

- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

Learning about our galaxy:

- Direct reconstruction of \(f_1(v) \) needs several hundred events

- Non–trivial statements about moments of \(f_1 \) possible with few dozen events

- Needs to be done to determine \(\rho_\chi \): required input for learning about early Universe!
Summary

- **Learning about the Early Universe:**
 - If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{BBN}$
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$

- **Learning about our galaxy:**
 - Direct reconstruction of $f_1(v)$ needs several hundred events
 - Non–trivial statements about moments of f_1 possible with few dozen events
 - Needs to be done to determine ρ_χ: required input for learning about early Universe!

- **Learning about WIMPs:** Can determine m_χ from moments of f_1 measured with two different targets.