Implications of Compressed Supersymmetry for Collider and Dark Matter Searches

Eun-Kyung Park
Bonn University, Germany

in collaboration with

H. Baer (Florida State U.), A. Box and X. Tata (U. of Hawaii)

: JHEP 0708 (2007) 060

ENTApP Visitor Program, DESY, Hamburg
February 28, 2008
Outline

• Introduction
 - Neutralino Dark matter
 - Review of mSUGRA

• SUSY models without universality in SSB terms
 - Non-universal scalar mass model
 - Non-universal gaugino mass model

• NUGM models at Colliders

• Compressed SUSY model

• Summary and Conclusion
Dark Matter

- Properties of Dark Matter
 - not detected visibly
 - inferred from gravitational effects
 - dominant composition of matter in our universe
 - no DM candidate in the SM

- Evidence for Dark Matter
 - Galactic Clustering
 - Rotation Curves

\[\text{http://map.gsfc.nasa.gov} \]

\[\text{Mon. Not. R. Astron. Soc. 249 (1991) 523} \]

- Gravitational Lensing
- Cosmic Microwave Background
- ...
Dark Matter Candidates

- Baryonic dark matter (MACHOs): small fraction of total DM
- Non-baryonic dark matter
 - Hot dark matter: ultra relativistic
 - Warm dark matter: relativistic
 - Cold dark matter: non-relativistic
 * Axion
 * WIMPs (Weakly Interacting Massive Particles): Neutralino (SUSY), KK-photon (extra dim. th.), branon (large extra dim. th.), ...
 * SuperWIMPs: gravitino
 * many other possibilities
Neutralino Dark Matter

- Dark Matter should be non-baryonic (no candidate in the SM), non-relativistic (cold), stable (or long-lived), weakly (or super-weakly) matter.

- Flat universes in the ΛCDM cosmological model are characterized by baryon density, matter density, vacuum density, expansion rate (h).

- From the WMAP results, the cold dark matter density of the universe is $\Omega_{CDM} h^2 = 0.111^{+0.011}_{-0.015}$ (upper bound is a tight constraint on SUSY models containing DM candidates: DM may consist of several components).

- In SUSY models with R-parity conservation
 \Rightarrow the Lightest Supersymmetric Particle (LSP) is absolutely stable
 \Rightarrow lightest neutralino $\tilde{\chi}_1$ is the LSP in most of MSSM parameter space
 \implies $\tilde{\chi}_1$ is a good candidate for Cold Dark Matter (CDM).

- Number density is governed by Boltzmann equation,
 \[\frac{dn}{dt} = -3Hn - \langle \sigma v_{\text{rel}} \rangle (n^2 - n_0^2) \]
 \Rightarrow requires evaluating many thousands Feynman diagrams
 \implies high (co-)annihilation cross section implies low relic abundance.
Review of mSUGRA

- **Parameter Space:**
 \[m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(\mu) \]

- **WMAP allowed Regions:**

 Region 1. \(\tilde{\tau} \) co-annihilation region at low \(m_0 \)

 Region 2. bulk region at low \(m_0 \) and \(m_{1/2} \)
 - light sleptons (LEP2 excluded)

 Region 3. \(A \)-funnel
 - \(H, A \) resonance annihilation

 Region 4. FP/HB region at large \(m_0 \), small \(\mu \)
 - mixed higgsino dark matter (MHDM)

- In most of the parameter space of the mSUGRA model, a value of neutralino relic density is beyond the WMAP bound
 \[\Omega_{CDM} h^2 = 0.111^{+0.011}_{-0.015} \]
SUSY models without universality

- Non-universal scalar mass models
 - Generation non-universality: Normal scalar mass hierarchy (NMH)
 - Non-universal Higgs mass: one extra parameter case
 (NUHM1_μ, NUHM1_A)
 - Non-universal Higgs mass: two extra parameter case (HS-Higgs Splitting)

- Non-universal gaugino mass models
 - Mixed Wino Dark Matter (MWDM)
 - Bino-Wino Co-Annihilation Scenario (BWCA)
 - Low |M_3| Dark Matter: Compressed SUSY (LM3DM)
 - High |M_2| Dark Matter: left-right split SUSY (HM2DM)

- Some benchmark cases with
 \[m_0, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu) = 300 \text{ GeV}, 300 \text{ GeV}, 0, 10, +1 \]
 and \[m_t = 171.4 \text{ GeV} \]

for more details, see Baer, Mustafayev, EKP and Tata, arXiv:0802.3384
Parameter space of SUSY models without universality

- Non-universal scalar mass models
 - NMH: $m_0(1,2), m_0, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
 $m_0(1,2)$: first/second generation, $m_0(3) = m_{H_u} = m_{H_d} \equiv m_0$: remaining
dial $m_0(1,2)$ to low enough to bulk (co-)annihilation via light sleptons
 - NUHM1$_\mu$, NUHM1$_A$: $m_0, \delta_\phi, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
 $m_\phi = m_0(1 + \delta_\phi), m_{H_u}^2 = m_{H_d}^2 \equiv \text{sign}(m_\phi)|m_\phi|^2$
 $m_\phi >> m_0$: small μ and MHDM, $m_\phi < 0$: $m_A \sim 2m_{\tilde{Z}_1}$
 - HS: $m_0, m_{H_u}^2$ (equivalently μ), $m_{H_d}^2$ (equivalently m_A), $m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
 $m_{H_{u,d}}^2 = m_0^2 (1 \mp \delta_H)$
 $\delta_H < 0$: low μ and low $m_A, \delta_H > 0$: WMAP region via $\tilde{l}_L/\tilde{\nu}$ or \tilde{u}_R/\tilde{c}_R
 co-annihilation
- Non-universal gaugino mass models
 - MWDM: m_0, M_1 (or M_2), $m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
 - BWCA: same as MWDM but M_1 and M_2 are in opposite sign
 - LM3DM: $m_0, M_3, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
 - HM2DM: $m_0, M_2, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$
<table>
<thead>
<tr>
<th>parameter</th>
<th>mSUGRA</th>
<th>NMH</th>
<th>NUHM1(\mu)</th>
<th>NUHM1(A)</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>special value</td>
<td>—</td>
<td>(m_0(1,2))</td>
<td>(m_{\phi})</td>
<td>(m_{\phi})</td>
<td>(\delta_H)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>385.1</td>
<td>386.5</td>
<td>105.8</td>
<td>748.5</td>
<td>269.3</td>
</tr>
<tr>
<td>(m_{\tilde{g}})</td>
<td>729.7</td>
<td>722.1</td>
<td>731.4</td>
<td>733.4</td>
<td>728.9</td>
</tr>
<tr>
<td>(m_{\tilde{u}_L})</td>
<td>720.8</td>
<td>658.4</td>
<td>724.3</td>
<td>720.5</td>
<td>720.1</td>
</tr>
<tr>
<td>(m_{\tilde{t}_1})</td>
<td>523.4</td>
<td>526.5</td>
<td>484.1</td>
<td>624.5</td>
<td>505.8</td>
</tr>
<tr>
<td>(m_{\tilde{b}_1})</td>
<td>656.8</td>
<td>659.8</td>
<td>642.2</td>
<td>689.5</td>
<td>645.4</td>
</tr>
<tr>
<td>(m_{\tilde{e}_L})</td>
<td>364.5</td>
<td>216.2</td>
<td>364.8</td>
<td>365.8</td>
<td>373.4</td>
</tr>
<tr>
<td>(m_{\tilde{e}_R})</td>
<td>322.3</td>
<td>128.9</td>
<td>322.5</td>
<td>321.9</td>
<td>301.8</td>
</tr>
<tr>
<td>(m_{\tilde{\tau}_1})</td>
<td>317.1</td>
<td>317.6</td>
<td>317.8</td>
<td>316.4</td>
<td>299.3</td>
</tr>
<tr>
<td>(m_{\tilde{W}_2})</td>
<td>411.7</td>
<td>412.7</td>
<td>264.7</td>
<td>754.8</td>
<td>321.1</td>
</tr>
<tr>
<td>(m_{\tilde{W}_1})</td>
<td>220.7</td>
<td>219.5</td>
<td>91.1</td>
<td>234.9</td>
<td>196.6</td>
</tr>
<tr>
<td>(m_{\tilde{Z}_2})</td>
<td>220.6</td>
<td>219.4</td>
<td>117.4</td>
<td>234.5</td>
<td>198.1</td>
</tr>
<tr>
<td>(m_{\tilde{Z}_1})</td>
<td>119.2</td>
<td>118.4</td>
<td>69.0</td>
<td>121.5</td>
<td>115.4</td>
</tr>
<tr>
<td>(m_A)</td>
<td>520.3</td>
<td>521.9</td>
<td>584.5</td>
<td>268.5</td>
<td>279.0</td>
</tr>
<tr>
<td>(m_{H^+})</td>
<td>529.8</td>
<td>531.4</td>
<td>593.8</td>
<td>281.6</td>
<td>292.0</td>
</tr>
<tr>
<td>(m_h)</td>
<td>110.1</td>
<td>110.1</td>
<td>109.8</td>
<td>110.5</td>
<td>109.8</td>
</tr>
<tr>
<td>(\Omega_{\tilde{Z}_1} h^2)</td>
<td>1.1</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>(\sigma_{SI}(\tilde{Z}_1 p))</td>
<td>(2.1 \times 10^{-9}) pb</td>
<td>(2.1 \times 10^{-9}) pb</td>
<td>(7.8 \times 10^{-8}) pb</td>
<td>(1.2 \times 10^{-9}) pb</td>
<td>(2.7 \times 10^{-8}) pb</td>
</tr>
<tr>
<td>(R_{\tilde{H}})</td>
<td>0.15</td>
<td>0.14</td>
<td>0.84</td>
<td>0.06</td>
<td>0.26</td>
</tr>
<tr>
<td>parameter</td>
<td>mSUGRA</td>
<td>MWDM</td>
<td>BWCA</td>
<td>LM3DM</td>
<td>HM2DM</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>special</td>
<td>—</td>
<td>$M_1(M_{GUT})$</td>
<td>$M_1(M_{GUT})$</td>
<td>$M_3(M_{GUT})$</td>
<td>$M_2(M_{GUT})$</td>
</tr>
<tr>
<td>value</td>
<td>—</td>
<td>490</td>
<td>-480</td>
<td>160</td>
<td>900</td>
</tr>
<tr>
<td>μ</td>
<td>385.1</td>
<td>385.9</td>
<td>376.6</td>
<td>185.3</td>
<td>134.8</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>729.7</td>
<td>729.9</td>
<td>731.7</td>
<td>420.2</td>
<td>736.4</td>
</tr>
<tr>
<td>$m_{\tilde{\nu}_L}$</td>
<td>720.8</td>
<td>721.2</td>
<td>722.0</td>
<td>496.9</td>
<td>901.8</td>
</tr>
<tr>
<td>$m_{\tilde{\nu}_R}$</td>
<td>702.7</td>
<td>708.9</td>
<td>709.9</td>
<td>467.0</td>
<td>696.3</td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$</td>
<td>523.4</td>
<td>526.5</td>
<td>536.3</td>
<td>312.2</td>
<td>394.3</td>
</tr>
<tr>
<td>$m_{\tilde{b}_1}$</td>
<td>656.8</td>
<td>656.0</td>
<td>658.9</td>
<td>443.2</td>
<td>686.4</td>
</tr>
<tr>
<td>$m_{\tilde{e}_L}$</td>
<td>364.5</td>
<td>371.5</td>
<td>371.4</td>
<td>366.1</td>
<td>669.3</td>
</tr>
<tr>
<td>$m_{\tilde{e}_R}$</td>
<td>322.3</td>
<td>353.3</td>
<td>352.2</td>
<td>322.6</td>
<td>321.3</td>
</tr>
<tr>
<td>$m_{\tilde{W}_2}$</td>
<td>411.7</td>
<td>412.4</td>
<td>404.5</td>
<td>282.9</td>
<td>719.7</td>
</tr>
<tr>
<td>$m_{\tilde{W}_1}$</td>
<td>220.7</td>
<td>220.8</td>
<td>220.0</td>
<td>152.5</td>
<td>136.5</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_2}$</td>
<td>220.6</td>
<td>223.2</td>
<td>219.2</td>
<td>163.6</td>
<td>142.3</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_1}$</td>
<td>119.2</td>
<td>194.6</td>
<td>201.7</td>
<td>105.5</td>
<td>94.8</td>
</tr>
<tr>
<td>m_A</td>
<td>520.3</td>
<td>525.9</td>
<td>518.6</td>
<td>398.3</td>
<td>670.7</td>
</tr>
<tr>
<td>m_{H^+}</td>
<td>529.8</td>
<td>535.3</td>
<td>528.1</td>
<td>408.7</td>
<td>679.8</td>
</tr>
<tr>
<td>m_h</td>
<td>110.1</td>
<td>110.2</td>
<td>109.8</td>
<td>106.0</td>
<td>111.9</td>
</tr>
<tr>
<td>$\Omega_{\tilde{Z}_1}h^2$</td>
<td>1.1</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>$\sigma_{SI}(Z_1p)$</td>
<td>2.1×10^{-9} pb</td>
<td>1.5×10^{-8} pb</td>
<td>3.1×10^{-11} pb</td>
<td>7.2×10^{-8} pb</td>
<td>3.4×10^{-8} pb</td>
</tr>
<tr>
<td>$R_{\tilde{H}}$</td>
<td>0.15</td>
<td>0.25</td>
<td>0.16</td>
<td>0.50</td>
<td>0.67</td>
</tr>
</tbody>
</table>
m_0 = 300 GeV, m_{1/2} = 300 GeV, \tan beta = 10, A_0 = 0, \mu > 0, m_t = 175 GeV

- Mild evolution of \(m_{H_d}^2 \) due to small Yukawa coupling \(f_b, f_\tau \)
- Lighter squarks and gluinos \(\rightarrow \) reduced effect of \(f_t \) on \(m_{H_u}^2 \)
 \(\Rightarrow \) smaller \(\mu \)
- \(\frac{dm_{H_d}^2}{dt} \propto f_{b,\tau}^2 X_{b,\tau}, \quad \frac{dm_{H_u}^2}{dt} \propto f_t^2 X_t \)
- \(\mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan \beta}{\tan^2 \beta - 1} - \frac{M_Z^2}{2} \approx -m_{H_u}^2 \)
NUGM at Colliders

- **CERN LHC and Fermilab Tevatron**
 - If $\tilde{Z}_2 \rightarrow \tilde{l} \bar{l}$ or $\tilde{Z}_2 \rightarrow \tilde{l}_1 \tilde{l}$ are open ($l = e$ or μ)
 \Rightarrow good prospects for measuring the $\tilde{Z}_2 - \tilde{Z}_1$ mass gap at the CERN LHC and possibly at the Fermilab Tevatron
 - In the mSUGRA case, most of the parameter space has $m_{\tilde{Z}_2} - m_{\tilde{Z}_1} > 90$ GeV,
 \Rightarrow $\tilde{Z}_2 \rightarrow \tilde{Z}_1 Z^0$ or $\tilde{Z}_1 h$ “spoiler” decays dominant
 - When the mass gap is much smaller
 * spoiler decays are closed, 3-body decays are open
 * $\tilde{l} \bar{l}$ mass edge always visible at LHC

- **Linear $e^+ e^-$ collider (ILC)**
 - $m_{\tilde{Z}_2}$, $m_{\tilde{W}_1}$ and $m_{\tilde{Z}_1}$ can be inferred from $\tilde{W}_1^+ \tilde{W}_1^- \rightarrow \tilde{l}_1 \tilde{Z}_1 + q \bar{q} \tilde{Z}_1$
 (dijet events)
 - $\tilde{W}_1^+ \tilde{W}_1^-$, $\tilde{Z}_1 \tilde{Z}_2$, $\tilde{Z}_2 \tilde{Z}_2$ production cross sections can be measured as a function of beam polarization: $P_L(e^-) = f_L - f_R$
 ($f_{L,R}$: fraction of left(right) polarized electron in the beam)
Dilepton Distribution at LHC

- mSUGRA: sharp peak at $m(l^+l^-) \sim M_Z$ from $\tilde{Z}_2 \rightarrow \tilde{Z}_1 Z^0$ decays
- NUGM: Z^0 peak from $\tilde{Z}_3, \tilde{Z}_4, \tilde{W}_2$ decays + continuum distribution $m(l^+l^-) < m\tilde{Z}_2 - m\tilde{Z}_1$
Cross Section for $\tilde{W}_1^+\tilde{W}_1^-$ and $\tilde{Z}_i\tilde{Z}_j$ Production at ILC

- \tilde{W}_1 and \tilde{Z}_2 are mainly wino-like
 $\rightarrow \sigma(\tilde{W}_1\tilde{W}_1)$ and $\sigma(\tilde{Z}_2\tilde{Z}_2)$ are similar to one another
- $\tilde{Z}_1\tilde{Z}_2$ process are quite different
Compressed SUSY*: mass spectrum

- \(M_3 < M_1 \) or \(M_2 \rightarrow \) gluino and squark masses reduced \(\rightarrow \) compressed sparticle mass spectrum

- **Parameter Space at** \(Q = M_{GUT} \)
 - Case A: \(m_0, m_{1/2}, M_3, A_0, \tan \beta, \text{sign}(\mu) \)
 \((M_1 = M_2 = m_{1/2}, A_0 = -1.5m_{1/2}) \)
 - Case B: \(m_0, M_1, A_0, \tan \beta, \text{sign}(\mu) \)
 \((1.5M_1 = M_2 = 3M_3, m_t = 175 \text{ GeV}, \)
 \(A_0 = -0.75M_1, \mu > 0, \tan \beta = 10, m_0 = 340 \text{ GeV}) \)

- **Case B**
 - cut after 1000 GeV: \(\tilde{t}_1 \) LSP \(\rightarrow \) imply upper bound on gluino and squark masses
 - LEP2 bound on chargino mass below \(\sim 160 \) GeV
 - 440 GeV < \(M_1 \) < 1000 GeV: light \(\tilde{t} \) (NLSP),
 \(m_{\tilde{Z}_1} > m_t \) \(\Rightarrow \tilde{Z}_1 \tilde{Z}_1 \rightarrow t\bar{t} \) accessible in the early Universe

Eun-Kyung Park Implications of Compressed SUSY for Collider and Dark matter Searches
Compressed SUSY: neutralino relic density

- M_1 400 - 800 GeV: $\tilde{Z}_1 \tilde{Z}_1 \rightarrow t\bar{t}$ dominant ⇒ neutralino relic density is in close accord with WMAP value
- larger M_1: $\tilde{t}_1 - \tilde{Z}_1$ mass gap low ⇒ $\tilde{t}_1 \tilde{Z}_1$ co-annihilation rate large ⇒ below WMAP value
- $M_1 < 400$ GeV: annihilation into $t\bar{t}$ not allowed, \tilde{Z}_1 dominantly into WW and quarks and leptons ⇒ h and Z poles
Compressed SUSY: direct and indirect DM searches

- a) Direct detection: as M_1 decreases, the rate increases due to decreasing $m_{\tilde{q}}$ and μ
 $t\bar{t}$ dominant region \Rightarrow detectable by SuperCDMS or 100-1000 kg noble liquid DM detectors

- b) Detection of μ: neutrinos in the solar core: as M_1 decreases, the rate slightly increases due to increasing spin-dependent $\tilde{Z}_1 - N$ cross section
 $M_1 < 400 \text{ GeV}$: rate jumps b/c $\nu\bar{\nu}$ jumps once $t\bar{t}$ turns off
Compressed SUSY: direct and indirect DM searches (cont’d)

• c)d)e) Detection of anti-particle (e^+, \bar{p}, \bar{D}): annihilation in the galactic halo
 In the region where $m_{\tilde{Z}_1} > m_t$ so that $\tilde{Z}_1 \tilde{Z}_1 \to t\bar{t}$ occurs, signals increase
 For the less clumpy Burkert halo profile, \bar{D} rate lowered by a factor of 10-15

• Detection of γ - ray: from the galactic center
 For the Burkert halo model, scale downwards by over 4 orders
Compressed SUSY: LHC searches

- \tilde{t}_1 decay branching fraction
 - at large M_1, $m_{\tilde{t}_1} > m_b + M_W + m_{\tilde{Z}_1}$: $\tilde{t}_1 \rightarrow c\tilde{Z}_1$
 - for lower M_1: $\tilde{t}_1 \rightarrow bW\tilde{Z}_1$ opens up
 - for $M_1 < 400$ GeV, $m_{\tilde{t}_1} > m_b + m_{\tilde{W}_1}$: $\tilde{t}_1 \rightarrow b\tilde{W}_1$

- muti-isolated-lepton + jet + E_T^{miss}
 - signals in all channels observable with $E_T^c = 200$ GeV
 - jet multiplicity $n_{jet} \geq 2$, transverse sphericity $S_T > 0.2$, $E_T(j_1)$, $E_T(j_2) > E_T^c$ and $E_T^{miss} > E_T^c$
 - isolated leptons classified: $p_T > 10$ GeV, $|\eta(\ell)| < 2.5$, visible activity within a cone of $R = 0.3 < E_T(\text{cone}) = 5$ GeV.

Summary and Conclusion

- In most region of mSUGRA parameter space, neutralino relic abundance is too high compared to the WMAP measured result
- Allowing non-universality of gaugino or scalar masses provides the relic density in agreement with WMAP
- Many relic-density-consistent models should lead to observable signals at LHC. For instance, in the models $\tilde{Z}_2 - \tilde{Z}_1$ mass gap is less than M_Z, so that at least one dilepton mass edge is likely to be detectable at LHC
- In non-universal models with mixed higgsino or higgsino-wino dark matter, we have enhanced rates for direct and indirect DM searches.
- In models with bino-like dark matter, if we have a mechanism to elevate neutralino annihilation rates such as into top-antitop quark pairs via top squark, we should be able to get enhanced direct and indirect detection rates due to reduced gluino, squark masses and μ parameter
$BF(b \to s\gamma)$

$m_0 = 340 \text{ GeV}, \quad A_0 = -0.75M_1, \quad \tan\beta = 10, \quad \mu > 0, \quad m_1 = 175 \text{ GeV}$

$1.5M_1 = M_2 = 3M_3$
MSSM RGEs

\[
\frac{dm_{H_u}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 + \frac{3}{10} g_1^2 S + 3 f_t^2 X_t \right)
\]

\[
\frac{dm_{H_d}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + 3 f_b^2 X_b + f_{\tau}^2 X_{\tau} \right)
\]

\[
\frac{dm_{Q_3}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{1}{15} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{10} g_1^2 S + f_t^2 X_t + f_b^2 X_b \right)
\]

\[
\frac{dm_{i_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{16}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 - \frac{2}{5} g_1^2 S + 2 f_t^2 X_t \right)
\]

\[
\frac{dm_{b_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{4}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{5} g_1^2 S + 2 f_b^2 X_b \right)
\]

\[
\frac{dm_{L_3}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3 g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + f_{\tau}^2 X_{\tau} \right)
\]

\[
\frac{dm_{\tau_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{12}{5} g_1^2 M_1^2 + \frac{3}{5} g_1^2 S + 2 f_{\tau}^2 X_{\tau} \right)
\]

\[
S = m_{H_u}^2 - m_{H_d}^2 + Tr \left[m_Q^2 - m_L^2 - 2m_U^2 + m_D^2 + m_E^2 \right]
\]
where \(t = \log(Q) \), \(f_{t,b,\tau} \) are the \(t, b \) and \(\tau \) Yukawa couplings, and

\[
\begin{align*}
X_t &= m_{Q3}^2 + m_{tR}^2 + m_{Hu}^2 + A_t^2 \\
X_b &= m_{Q3}^2 + m_{bR}^2 + m_{Hd}^2 + A_b^2 \\
X_\tau &= m_{L3}^2 + m_{\tau R}^2 + m_{Hd}^2 + A_\tau^2
\end{align*}
\]