Identities for Pauli—-matrices

Define the “generalized Pauli-matrices” as
ot =(1,07); (1a)

o = (I, —o"). (1b)

where oP stands for the three ordinary Pauli-matrices, and I is the 2-dimensional unit
matrix. o# and " have one dotted and one undotted index each. These can be manipulated

using the “metric in spinor space” €, with €' = —€?! = —¢1y = €97 = 1, € = €44 = 0:
_nuAB _ _AC _BD _p .
ot =e"e7 ol (2a)
poo_ . . #DC
o'y = €aceppd’ . (2b)
We also need
wo_ b v=p o _ Yo v v v\t
o :Z(cra—oa); o :Z(oo—oa):(cr). (3)

The following identities follow directly from the properties of the Pauli-matrices:

0 500D = 2€AC€pD ; (4a)

5_MAB6HCD _ 2€BD€AC"; (4Db)

cr“ABc’ruCD = 25AD503 ; (4c)

(04" + ") = 295 (1

(cta” + 5”0“)AB = 2g“”<5A.]_-3 : (4e)

o'V 0P + 0PG5 ot = 2(g" o + g"Pot — gMPo") ; (4f)
glto’e? + GPov oM = 2<gﬂ’/5-ﬁ + gl’Pa-H _ gﬂpa-”) : <4g)
tr (ota") = 29" ; (4h)

tr(0"a"a"a") = 2(g"'g" + ¢ 9" — g""g"T — 1’7 (41)
1 .

tr (awaaﬁ) =3 (guagw _ guﬁgva + Z'Euvaﬁ) _ (4j)



Identities for spinors

Let &, x, ... be 2-component Weyl spinors in the (%, 0) representation of the homogeneous

Lorentz group. The corresponding hermitean conjugated spinors &, ¥, . .. then belong to the

(0, %) representation. The contraction of spinor indices is defined by

Ex=8%a=—xh x=6xt = - (5)
If the components of these spinors are anti-commuting (fermionic) field operators, we have
Ex=x&= (0" = (x9)". (6)

Moreover, let 64,0 be anti-commuting Grassmann variables or coordinates. They can
also be collected in 2-component spinors. We then have the following identities:

§ol'x = —xo"¢; (7a)
Eot'x = —xotE, E5MX = —xoME; (7b)
6198 = —%EAB%; (7c)
1
QAQB = §€AB00; (7d)
éAeB = —EABH_H_, (76)
QAQB eABée : (7f)
1

b€ Ox = —5€x 04 (7g)

o 1- _
0¢ Ox = —5€x 09 (7h)
1 .
ECXT = 580"X (0, (71)
_ 1z, = :
ECXT = 580" X (O, (73)
Ho"6 0o = %g‘“’@@ LE (7k)

1
(€ x0T = =5 (X £o"'T + (o™X £ou T (71
1

(€ xo"'T = —57E X0"'( —Ta"EXTLC; (7m)
(016) 400”0 — 60 Eg% —i(0"0) 4] : (7n)
(60" 305" = ~00 [ 50,9 + (00" (7o)

(7 g-o) are Fierz identities for 2—-component spinors.
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Relations involving 4—component spinors

Later we’ll want to write Feynman rues using the usual 4-component (Dirac— or Majorana)—
spinors. We'll use the “chiral” or “Weyl” representation of the Dirac matrices, defined by:

52 0 0 o
o= | 4 |, (Mvay)a = , AB ) q, . 8
(% ) e = e 7). ®)
Here a, is an arbitrary 4-vector, and die indices a,b run from 1 to 4. Indices A, A,...run

from 1 to 2, as before. 5 then has the form

w=(3 1) ()

A Dirac spinor in this representation can be written as

1A . )
v=| |, o=(¢ &.). (10)
¢4
i.e. the (%, 0) spinor &, is the left-handed component of the Dirac spinor v, while the (0, %)
spinor & forms the right-handed component. In a Majorana spinor these components are
by definition related by hermitean conjugation, i.e. a Majorana spinor can be written in
terms of a single Weyl spinor:

A4
Mr=| | A= (0 X)) (11)
S\A

This yields the following identities for products of Dirac spinors:

Urhy = &1-Eay + E146a; (12a)
Urysthe = —61-ay + &4 o (12b)
D1y = &M1& + £, sy ; (12¢)
D s = &1-0"E - — §140" 6y (12d)
DSy = &0 gy + 6115 € (12e)
Ditar, = &1-Cay ; (12f)

Dithor = E14&a; (12g)

D1y har, = £14.5" €0y ; (12h)
U1y"har = §1-0MEs; (12i)

U = E11bos + &1 (12j)
POyshe = —E1iboyp + &b (12k)



The analogous results for two Majorana 4—spinors Ajy; and Aojy are:

AmAanr = AtAa + Ado = Ao A (13a)
MmYsdonr = —A1As + Ads = Aoy A ; (13b)
Mm Y Aanr = A" Aa 4+ Ao™ da = = Aoy A ; (13c)
Ay s den = Ao* A — Ao Aa = Aoy s Aia ; (13d)
M S donr = Aot dg + A6™ Xy = — Ao SFv s (13e)
;\lM)\2M(L,R) = 5\2M)\1M(L,R) ) (13f)
5\1M’Y“)\2M(L,R) = —5\2M’Y“)\1M(L,R) 3 (13g)
Ay A = 0. (13h)

Finally there are “mixed” identities:

Abr = Ay ; (14a)
AR = A& (14b)
VLA = Ay ; (14c)
YrAM = N (14d)

Another useful identity for the product of 4 Majorana spinors is:
Ay s A Ay s A = g (dn)® = =g (s Aun)? (15)

which holds for Majorana spinors Ay, at a fized space—time point z.

Calculus with Grassmann variables

Derivatives w.r.t. a Grassmann variable are defined as 04 = %, oA = %, oA = %,
- 0
0 = PYoR This immediately leads to the following identities:
008 =6 (16a)
005 = 67 (16b)
9,0° =67 (16¢)
948y, = 6%, ; (16d)
Oabp = —€ap; (16e)
9408 = —AB (16f)
9498 = —eAB (16g)
5A§B = —€iB (16h)



Moreover, we obviously have 0 = 8,493 — 9408 = 8A§B = 8A§B = 5‘493 — 0498 = 5,498 =
0,05,
Note that raising or lowering of an index gives an extra minus sign in case of Grassmann

derivatives. The following identities hold for Grassmann derivatives of an arbitrary function
of § and 0:

ABYy = — 9, (17a)
€ap0” = —0a; (17b)
€apd” = —05; (17c)
8o, = -0 (17d)

All components of 9, 9 anti-commute, i.e. 0 = {04,0p} = {0,035} = {0a,05} etc.
Grassmann derivatives of products of fermionic fields ), x etc. and/or Grassmann coordi-
nates can be evaluated using the chain rule, which however contains an additional minus
sign. E.g. 0(vx) = (0¥)x — ¥ (9x) etc. This leads to the following identities for second

Grassmann derivatives 00 = 0494 and 90 = 0 AgA:
00(00) = 00(00) = 4. (18)

Clearly the product of three or more derivatives w.r.t. 6 or 6 vanishes.
An integral over a Grassmann variable is almost the same as a derivative w.r.t. this
variable. In particular:

/ 0405 = Sap . (19)

An analogous relation holds for the integral over § ;. When generalizing to higher—dimensional
integrals it is convenient to require [ d?06* = 1. This leads to the following definition of the
measure of integration:

1

d*0 = —ZdGAdGA; (20a)
_ 1 - .

d*0 = —740 dO (20b)
d*0 = d*0d?0 . (20c)

Moreover, the integral over “unsaturated” Grassmann variables vanishes, i.e. [dfsf =0
if f does not depend on 4. This implies:

/d20:/d2§:/d200A:/d2§§A:O. (21)

These defining properties lead to the following identities:

1

/ 06407 — e (22a)
S

/d 0005 = —5can (22b)

/ 2006 — / 42606 = 1 (22¢)

bt



/ d4*000 96 = 1. (22d)

Occasionally it is useful to introduce d—functions of Grassmann variables:
/ d205@ (9) = / 265@(F) =1, (23a)

§@(0) =066, 62 () =68 (23h)

Finally, the following identities involving integration and differentiation can be shown to

hold:

/d20f(0,§) — iaaf(e,e); (24a)
/d2§f(0,§) — iaaf(e,e); (24b)
/d20 041 (0,0) = /d2§ 54 1(6,8) = 0; (24¢)
/ d'0 £(0,0) = %aa 591(8,8) . (24d)



