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Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07 (?)

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.105+0.007

−0.013 Spergel et al., astro–ph/0603449
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Weakly Interacting Massive Particles (WIMPs)

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Can also (trivially) write down “tailor–made” WIMP
models

In standard cosmology, roughly weak cross section
automatically gives roughly right relic density for
thermal WIMPs! (On logarithmic scale)

Roughly weak interactions may allow both indirect and
direct detection of WIMPs

Direct WIMP Detection – p. 4/30



Probing WIMPs

Detection of WIMP annihilation products (“indirect
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Probing WIMPs

Detection of WIMP annihilation products (“indirect
detection”) suffers from uncertainties in

Backgrounds

Propagation, esp. for charged particles (e+, p̄, d̄)

WIMP production at colliders: Can’t be sure that

WIMP is stable on cosmological time scales

Cosmology is right
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Direct WIMP Detection

Look for elastic scattering of ambient WIMP off nucleus in
detector; measure nuclear recoil energy.

Direct WIMP detection is easiest convincing way to prove
that WIMPs form DM! Other possibilities: γ line, high−E ν’s
from Sun: less “likely” to work.

Can also be interesting probe!
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Direct WIMP Detection: Formalism

Counting rate given by
dR
dQ = AF 2(Q)

∫ vmax

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min
= mNQ/(2m2

r) (mr: reduced mass)
vmax: Maximal velocity of WIMPs bound to galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
Note: Q2 ∝ v2(1 − cos θ∗) ⇒ dσ

dQ
∝ 1

v2
dσ

d cos θ∗
.
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Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min
= mNQ/(2m2

r) (mr: reduced mass)
vmax: Maximal velocity of WIMPs bound to galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
Note: Q2 ∝ v2(1 − cos θ∗) ⇒ dσ

dQ
∝ 1

v2
dσ

d cos θ∗
.

Can invert this relation to measure f1(v)!
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Direct reconstruction of f1

MD & C.L. Shan, astro-ph/0703651

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN
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Direct reconstruction of f1

MD & C.L. Shan, astro-ph/0703651

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN

N : Normalization (
∫

∞

0 f1(v)dv = 1).

Need to know form factor =⇒ stick to spin–independent
scattering.

Need to know mχ, but do not need σ0, ρ.

Need to know slope of recoil spectrum!

dR/dQ is approximately exponential: better work with
logarithmic slope: from 〈Q〉 in bin!
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Recoil spectrum: prediction and simulated measurement
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Statistical exclusion of constantf1
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Need several hundred events to begin direct reconstruction!
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Determining moments off1

〈vn〉 ≡
∫
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Determining moments off1

〈vn〉 ≡
∫

∞

0 vnf1(v)dv

∝
∫

∞

0 Q(n−1)/2 1
F 2(Q)

dR
dQdQ

→ ∑

events a
Q

(n−1)/2
a

F 2(Qa)

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!
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Constraining a “late infall” component
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Determining the WIMP mass
MD & C.L. Shan, arXiv:0803447 (hep–ph)

Method described above yields normalized f1(v) for any
assumed mχ
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Determining the WIMP mass
MD & C.L. Shan, arXiv:0803447 (hep–ph)

Method described above yields normalized f1(v) for any
assumed mχ

⇒ cannot determine mχ from single recoil spectrum,
unless f1(v) is (assumed to be) known

Can determine mχ model–independently from two (or
more) measurement, by demanding that they yield the
same (moments of) f1!

Can also get mχ from comparison of event rates,
assuming equal cross section on neutrons and protons.
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Systematic errors

Equality of moments of f1 holds only if integrals run
over identical ranges of v, e.g. vmin = 0, vmax = ∞.
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For vmin: Systematic effect not very large if mχ >∼ 20 GeV,
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Systematic errors

Equality of moments of f1 holds only if integrals run
over identical ranges of v, e.g. vmin = 0, vmax = ∞.

Real experiments have finite acceptance windows for
Q, and hence for v

Ensuring vmin,X = vmin,Y and vmax,X = vmax,Y only
possible if mχ is known

For vmin: Systematic effect not very large if mχ >∼ 20

GeV, Qmin <∼ 3 keV, Qmin,X = Qmin,Y terms included in In.

Use Qmin = 0 from now on.
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Effect of finite Qmax

(Higher) moments are very sensitive to high−Q region,
even to region with 〈Nev〉 < 1
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Effect of finite Qmax

(Higher) moments are very sensitive to high−Q region,
even to region with 〈Nev〉 < 1

Imposing finite Qmax can alleviate this problem,

but introduces systematic error unless Qmax values of
two targets are matched; matching depends on mχ.
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Effect of finite Qmax

(Higher) moments are very sensitive to high−Q region,
even to region with 〈Nev〉 < 1

Imposing finite Qmax can alleviate this problem,

but introduces systematic error unless Qmax values of
two targets are matched; matching depends on mχ.

Developed a method for this matching, based on χ2 fit
of several moments.
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Median reconstructed WIMP mass
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Distribution of measurements
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WIMP Density times Cross Section

For spin–independent scattering:

ρχσχp ∝ r(Qmin)

〈v−1〉 (mχ + mN )

∝
(

2
√

Qminr(Qmin)

F 2(Qmin)
+ I0

)

(mχ + mN ) . (1)

r(Qmin) = dR
dQ

∣

∣

∣

Q=Qmin

First factor on r.h.s. in 2nd line comes from normalization of
−1st moment.
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WIMP Density times Cross Section

For spin–independent scattering:

ρχσχp ∝ r(Qmin)

〈v−1〉 (mχ + mN )

∝
(

2
√

Qminr(Qmin)

F 2(Qmin)
+ I0

)

(mχ + mN ) . (2)

r(Qmin) = dR
dQ

∣

∣

∣

Q=Qmin

First factor on r.h.s. in 2nd line comes from normalization of
−1st moment.

Can model–independently determine cross section times
density from scattering data! MD & C.–L. Shan, to appear
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Results forQmax = 50 keV
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Results forQmax = 100 keV
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WIMP–Proton Scattering in SUSY

WIMP is lightest neutralino χ̃0
1.

Direct WIMP Detection – p. 23/30
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WIMP is lightest neutralino χ̃0
1.

Stick to spin–independent contribution: Leff = fpp̄pχ̃
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1.

Stick to spin–independent contribution: Leff = fpp̄pχ̃
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1χ̃

0
1

Come from spin–independent χ̃0
1q interactions:
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WIMP–Proton Scattering in SUSY

WIMP is lightest neutralino χ̃0
1.

Stick to spin–independent contribution: Leff = fpp̄pχ̃
0
1χ̃

0
1

Come from spin–independent χ̃0
1q interactions:

χ̃0
1 χ̃0

1

h, H

q q

χ̃0
1

χ̃0
1

q̃

q

q
χ̃0

1 χ̃0
1

q̃

q q

To O(m−2
q̃ ): Interaction ∝ mq! From Higgs(ino) Yukawa,

q̃L − q̃R mixing.
=⇒ need matrix elements mq〈p|q̄q|p〉!
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Matrix Elements mq〈p|q̄q|p〉

For heavy quarks, q = c, b, t: Calculate perturbatively
via gluon loop. Shifman et al. 1977. Result is independent of
mq. Need some modification for t̃ in loop. MD & Nojiri 1993
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Matrix Elements mq〈p|q̄q|p〉

For heavy quarks, q = c, b, t: Calculate perturbatively
via gluon loop. Shifman et al. 1977. Result is independent of
mq. Need some modification for t̃ in loop. MD & Nojiri 1993

Need current quark masses ⇒ contributions from u, d
are small

=⇒ σχ̃0
1p

≃ σχ̃0
1n

for spin–indep. contribution!
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Matrix Elements mq〈p|q̄q|p〉

For heavy quarks, q = c, b, t: Calculate perturbatively
via gluon loop. Shifman et al. 1977. Result is independent of
mq. Need some modification for t̃ in loop. MD & Nojiri 1993

Need current quark masses ⇒ contributions from u, d
are small

=⇒ σχ̃0
1p

≃ σχ̃0
1n

for spin–indep. contribution!

Strange quark contribution important, but poorly known!
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Determinations of 〈p|s̄s|p〉
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Effect of this uncertainty

Ellis, Olive & Savage, arXiv:0801.3656
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Larger ΣπN implies larger 〈p|s̄s|p〉.
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Survey of Benchmark Points
Points from Battaglia et al. (2003)

Solid squares: Bulk region
Open squares: focus point region
Crosses: Co–ann. region

Stars: Higgs funnel
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Survey of Benchmark Points
Points from Battaglia et al. (2003)

Solid squares: Bulk region
Open squares: focus point region
Crosses: Co–ann. region

Stars: Higgs funnel

Consider A, E, G!

Direct WIMP Detection – p. 27/30



Effect of Varying SUSY Parameter

Let’s vary one (weak–scale) parameter by 20%, and
compute the resulting change of σχ̃0

1p
!
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Effect of Varying SUSY Parameter

Let’s vary one (weak–scale) parameter by 20%, and
compute the resulting change of σχ̃0

1p
!

Point σχ̃0
1

[pb] δσ(mq̃) δσ(µ) δσ(tan β) δσ(mA)

A 0.49 × 10−9 -1.7% -45.3% -15.8% -4.7%

E 18.6 × 10−9 -6.3% -60.3% -8.5% -2.9%

G 2.54 × 10−9 -4.7% -44.5% +18% -28%
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Lessons

Relatively easily measurable squark mass has little
influence: Higgs exchange dominates!
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is most sensitive to µ, which determines
gaugino–higgsino mixing: difficult to measure, except
maybe in focus point region
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Lessons

Relatively easily measurable squark mass has little
influence: Higgs exchange dominates!

σχ̃0
1p

is most sensitive to µ, which determines
gaugino–higgsino mixing: difficult to measure, except
maybe in focus point region

If tan β ≫ 1 (point G): σχ̃0
1p

∝ tan2 β/m4
H : need

parameters of Higgs sector!
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Summary
WIMPs are still great CDM candidates!
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Summary
WIMPs are still great CDM candidates!

Learning from direct detection:

Direct reconstruction of f1(v) needs several hundred events

Non–trivial statements about moments of f1 possible with

few dozen events

With ≥ 2 experiments: can get mχ!

Learning about direct detection (σχ̃0
1p):

Large hadronic uncertainty, especially from ms〈p|s̄s|p〉
(almost equivalently, ΣπN )

In SUSY: Have to measure parameters of Higgs(ino) sector!

Probably difficult to do at LHC.

Both f1(v) and σχp are needed to determine ρχ: required input

for learning about early Universe!
Direct WIMP Detection – p. 30/30
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