Learning from WIMPs

Manuel Drees

Bonn University
Contents

1 Introduction
Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
4 Learning about WIMPs
Contents

1 Introduction
2 Learning about the early Universe
3 Learning about our galaxy
4 Learning about WIMPs
5 Summary
Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)
Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07 (?)$
Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply \(\Omega_{DM} h^2 \geq 0.05 \).

\(\Omega \): Mass density in units of critical density; \(\Omega = 1 \) means flat Universe.
\(h \): Scaled Hubble constant. Observation: \(h = 0.72 \pm 0.07 \) (?)

- Models of structure formation, X ray temperature of clusters of galaxies, ...
Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.
h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Models of structure formation, X ray temperature of clusters of galaxies, . . .

- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{DM} h^2 = 0.105^{+0.007}_{-0.013}$ Spergel et al., astro–ph/0603449
Weakly Interacting Massive Particles (WIMPs)

- Exist in well–motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor–made” WIMP models
Weakly Interacting Massive Particles (WIMPs)

- Exist in well–motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor–made” WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
Weakly Interacting Massive Particles (WIMPs)

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T-Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor-made” WIMP models
- In standard cosmology, roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
- Roughly weak interactions may allow both direct and indirect detection of WIMPs
Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi \chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.
WIMP production

Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_χ determined by Boltzmann equation:

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma_{\text{ann}}v \rangle (n^2_\chi - n^2_\chi,\text{eq})$$

$H = \dot{R}/R$: Hubble parameter
$\langle \ldots \rangle$: Thermal averaging
$\sigma_{\text{ann}} = \sigma(\chi\chi \rightarrow \text{SM particles})$
v : relative velocity between χ’s in their cms
n_χ,eq : χ density in full equilibrium
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$
Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$
Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_\chi,\text{eq} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negliglible, only annihilation relevant in Boltzmann equation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_{\chi,\text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_\chi h^2 \propto \frac{1}{\langle v \sigma_{\text{ann}} \rangle} \sim 0.1 \text{ for } \sigma_{\text{ann}} \sim \text{pb}$$
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:

 $$T_R > T_F \simeq m_\chi/20$$
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot:
 \[T_R > T_F \simeq m_\chi/20 \]

Can we test these assumptions, if Ω_χ and “all” particle physics properties of χ are known?
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)

Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T} \quad (s: \text{entropy density})$$
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)

Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T}$$

(s: entropy density).

Use non–relativistic expansion of cross section:

$$\sigma_{\text{ann}} = a + b v^2 + O(v^4) \implies \langle \sigma_{\text{ann}} v \rangle = a + 6b/x$$
Low temperature scenario

Assume $T_0 \lesssim T_F$, $n_\chi(T_0) = 0$ (T_0: Initial temperature)
Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T} \quad (s: \text{entropy density})$$

Use non–relativistic expansion of cross section:

$$\sigma_{\text{ann}} = a + bv^2 + O(v^4) \implies \left\langle \sigma_{\text{ann}} v \right\rangle = a + \frac{6b}{x}$$

![Graph showing dependence of $\Omega_\chi h^2$ on a with $x_0 = 22$ and WMAP constraints]
Using explicit form of H, $Y_{\chi,eq}$, Boltzmann eq. becomes

\[
\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^2 - cx^3 e^{-2x} \right) .
\]

\[
f = 1.32 \, m_\chi M_{P1} \sqrt{g_*}, \quad c = 0.0210 \, g_\chi^2 / g_*^2.
\]
Using explicit form of H, $Y_{\chi, eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^{2} - cx^{3}e^{-2x} \right).$$

$f = 1.32 \, m_{\chi} M_{P1} \sqrt{g_{*}}$, $c = 0.0210 \, g_{\chi}^{2} / g_{*}^{2}$

For $T_{0} \ll T_{F}$: Annihilation term $\propto Y_{\chi}^{2}$ negligible: defines 0–th order solution $Y_{0}(x)$, with

$$Y_{0}(x \to \infty) = f c \left[\frac{a}{2} x R e^{-2xR} + \left(\frac{a}{4} + 3b \right) e^{-2xR} \right].$$

Note: $\Omega_{\chi} h^{2} \propto \sigma_{\text{ann}}$ in this case!
Using explicit form of H, $Y_{\chi, eq}$, Boltzmann eq. becomes

$$\frac{dY_{\chi}}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_{\chi}^2 - cx^3 e^{-2x} \right).$$

$f = 1.32 \ m_\chi M_{Pl} \sqrt{g_*}, \ c = 0.0210 \ g_\chi^2/g_*^2$

For $T_0 \ll T_F$: Annihilation term $\propto Y_{\chi}^2$ negligible: defines 0-th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = f c \left[\frac{a}{2} x R e^{-2xR} + \left(\frac{a}{4} + 3b \right) e^{-2xR} \right].$$

Note: $\Omega_\chi h^2 \propto \sigma_{\text{ann}}$ in this case!

For intermediate temperatures, $T_0 \lesssim T_F$: Define 1st-order solution

$$Y_1 = Y_0 + \delta.$$

$\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}.$$

$\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\text{ann}}^3$
Get good results for $\Omega_\chi h^2$ for all $T_0 \leq T_F$ through “resummation”:

$$Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0}\right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

$Y_{1,r} \propto 1/\sigma_{\text{ann}}$ for $|\delta| \gg Y_0$

MD, Imminniyaz, Kakizaki, hep-ph/0603165
Numerical comparison: $b = 0$

\[a = 10^{-8} \text{ GeV}^{-2} \]

\[a = 10^{-9} \text{ GeV}^{-2} \]
Numerical comparison: $b = 0$

Can extend validity of new solution to all T, including $T \gg T_0$, by using $\Omega_{\chi}(T_{\text{max}})$ if $T_0 > T_{\text{max}} \simeq T_F$
Numerical comparison: $b = 0$

Can extend validity of new solution to all T, including $T \gg T_0$, by using $\Omega_\chi(T_{\text{max}})$ if $T_0 > T_{\text{max}} \simeq T_F$

Note: $\Omega_\chi(T_0) \leq \Omega_\chi(T_0 \gg T_F)$

Learning from WIMPs – p. 11/29
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_0:
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_0:

![Graph showing the relationship between $\Omega_\chi h^2$ and x_0 for different values of a and b.]
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \simeq 0.1$ imposes lower bound on T_0:

$$\Rightarrow T_0 \geq \frac{m_\chi}{23}$$

Holds independent of σ_{ann}!
Application: lower bound on T_0 for thermal WIMP

If $n_\chi(T_0) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_0:

$$\implies T_0 \geq \frac{m_\chi}{23} \quad \text{Holds independent of } \sigma_{\text{ann}}!$$

If $T_0 \simeq m_\chi/22$: Get right $\Omega_\chi h^2$ for wide range of cross sections!
Constraining $H(T)$

- Assumptions
Constraining $H(T)$

Assumptions

- $\Omega_{\chi} h^2$ is known (see below)
Constraining $H(T)$

Assumptions

- $\Omega_{\chi} h^2$ is known (see below)
- a, b are known (from collider experiments)
Constraining $H(T)$

- Assumptions
 - $\Omega_\chi h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)
Constraining $H(T)$

- **Assumptions**
 - $\Omega_\chi h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)

- **Parameterize modified expansion history:**

 $$A(z) = \frac{H_{st}(z)}{H(z)} , \ z = T/m_\chi$$
Constraining $H(T)$

- **Assumptions**
 - $\Omega_\chi h^2$ is known (see below)
 - a, b are known (from collider experiments)
 - Only thermal χ production (otherwise no constraint)

- **Parameterize modified expansion history:**

 $$A(z) = \frac{H_{st}(z)}{H(z)}, \ z = T/m_\chi$$

- **Around decoupling:** $z \ll 1 \implies$ use Taylor expansion

 $$A(z) = A(z_{F, st}) + (z - z_{F, st}) A'(z_{F, st}) + (z - z_{F, st})^2 A''(z_{F, st}) / 2$$
Constraining $H(T)$

Assumptions
- $\Omega_\chi h^2$ is known (see below)
- a, b are known (from collider experiments)
- Only thermal χ production (otherwise no constraint)

Parameterize modified expansion history:

$$A(z) = \frac{H_{st}(z)}{H(z)}, \; z = \frac{T}{m_\chi}$$

Around decoupling: $z \ll 1 \implies$ use Taylor expansion

$$A(z) = A(z_{F,\text{st}}) + (z - z_{F,\text{st}}) A'(z_{F,\text{st}}) + (z - z_{F,\text{st}})^2 A''(z_{F,\text{st}})/2$$

Successful BBN $\implies k \equiv A(z \to 0) = 1.0 \pm 0.2$
Constraining $H(T)$ (cont.d)

Assume $T_0 \gg T_F \implies \Omega \chi h^2 \propto \frac{1}{\int_0^{z_F} A(z)(a+6bz)\,dz}$
Assume $T_0 \gg T_F \implies \Omega \chi h^2 \propto \frac{1}{\int_0^{z_F} A(z)(a+6bz) \, dz}$
The case $A''(z_{F, st}) = 0$
The case $A''(z_{F, st}) = 0$

Relative constraint on $A(z_{F, st})$ weaker than that on $\Omega_\chi h^2$.
Direct WIMP detection

- WIMPs are everywhere!
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:

$$\chi + N \rightarrow \chi + N$$

Measured quantity: recoil energy of N
Direct WIMP detection

- WIMPs are everywhere!

- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]

 Measured quantity: recoil energy of \(N \)

- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; \ldots

Learning from WIMPs – p. 16/29
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; . . .
- Is being pursued vigorously around the world!
Direct WIMP detection: theory

Counting rate given by

$$\frac{dR}{dQ} = AF^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv$$

Q: recoil energy
$A = \rho \sigma_0 / (2m_\chi m_r) = \text{const.}: \text{encodes particle physics}$
$F(Q)$: nuclear form factor
v: WIMP velocity in lab frame
$v_{\text{min}}^2 = m_N Q / (2m_r^2)$
v_{esc}: Escape velocity from galaxy
$f_1(v)$: normalized one–dimensional WIMP velocity distribution
Direct WIMP detection: theory

Counting rate given by
\[\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv \]

\(Q \): recoil energy
\(A = \frac{\rho \sigma_0}{(2m_\chi m_r)} = \text{const.}: \) encodes particle physics
\(F(Q) \): nuclear form factor
\(v \): WIMP velocity in lab frame
\(v_{\text{min}}^2 = \frac{m_N Q}{(2m_r^2)} \)
\(v_{\text{esc}} \): Escape velocity from galaxy
\(f_1(v) \): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure \(f_1(v) \)!
Direct reconstruction of f_1

$$f_1(v) = N \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r v^2 / m_N}$$
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r v^2 / m_N}$$

\mathcal{N}: Normalization ($\int_{0}^{\infty} f_1(v) dv = 1$).
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r v^2 / m_N}$$

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).
Need to know form factor \Rightarrow stick to spin–independent scattering.
Direct reconstruction of f_1

$$f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r^2v^2/m_N}$$

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).

Need to know form factor \Longrightarrow stick to spin–independent scattering.

Need to know m_χ, but do not need σ_0, ρ.
Direct reconstruction of f_1

\[f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\} \bigg|_{Q=2m_r v^2/m_N} \]

\mathcal{N}: Normalization ($\int_0^\infty f_1(v) dv = 1$).
Need to know form factor \implies stick to spin–independent scattering.
Need to know m_χ, but do not need σ_0, ρ.
Need to know *slope* of recoil spectrum!
Direct reconstruction of \(f_1 \)

\[
f_1(v) = \mathcal{N} \left\{ -2Q \frac{d}{dQ} \left[\frac{1}{F^2(Q)} \frac{dR}{dQ} \right] \right\}_{Q=2m_r v^2 / m_N}
\]

\(\mathcal{N} \): Normalization (\(\int_0^\infty f_1(v) dv = 1 \)).

Need to know form factor \(\Rightarrow \) stick to spin–independent scattering.

Need to know \(m_\chi \), but do not need \(\sigma_0, \rho \).

Need to know slope of recoil spectrum!

\(dR/dQ \) is approximately exponential: better work with logarithmic slope
Determining the logarithmic slope of \(dR/dQ \)

- Good local observable: Average energy transfer \(\langle Q \rangle_i \) in \(i \)–th bin
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i–th bin
- Stat. error on slope $\propto (\text{bin width})^{-1.5} \implies$ need large bins
Determining the logarithmic slope of dR/dQ

- Good local observable: Average energy transfer $\langle Q \rangle_i$ in i–th bin
- Stat. error on slope $\propto (\text{bin width})^{-1.5} \implies \text{need large bins}$
- To maximize information: use overlapping bins ("windows")
Recoil spectrum: prediction and simulated measurement

500 events, 5 bins, up to 3 bins per window

χ^2/dof = 0.73

input distribution
Recoil spectrum: prediction and simulated measurement

\[f_1(v) \text{ [s/km]} \]

\[v \text{ [km/s]} \]

5,000 events, 10 bins, up to 4 bins per window

\[\chi^2/\text{dof} = 0.98 \]
Statistical exclusion of constant f_1

Average over 1,000 experiments

- Probability
- N_{ev}

Mean and median curves are shown.
Statistical exclusion of constant f_1

Need several hundred events to begin direct reconstruction!
Determining moments of f_1

\[
\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) \, dv
\]
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$
$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$
$$\rightarrow \sum \text{events } a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\rightarrow \sum_{\text{events}} a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold
Determining moments of f_1

\[
\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv \\
\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ \\
\rightarrow \sum_{\text{events}} a \frac{Q^{(n-1)/2}}{F^2(Q_a)}
\]

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!
Determining moments of f_1

$$\langle v^n \rangle \equiv \int_0^\infty v^n f_1(v) dv$$

$$\propto \int_0^\infty Q^{(n-1)/2} \frac{1}{F^2(Q)} \frac{dR}{dQ} dQ$$

$$\rightarrow \sum_{\text{events}} a \frac{Q_a^{(n-1)/2}}{F^2(Q_a)}$$

Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!

High moments, and their errors, are underestimated in “typical” experiment: get large contribution from large Q
Determination of first 10 moments

![Graph showing the determination of first 10 moments with 100 events. The graph plots \(\langle v^n \rangle / \langle v^n \rangle_{\text{exact}} \) against \(n \) from 0 to 10. The y-axis ranges from 0 to 1.5, and the x-axis ranges from 0 to 10. There are error bars at each point, indicating the variability of the measurements.]}
Constraining a “late infall” component

25 events, fit moments $n = -1, 1, 2$

$\Delta \chi^2 = 1$
$\Delta \chi^2 = 4$

v_{esc} [km/s]

N_1
Constraining a “late infall” component

100 events, fit moments n = -1, 1, 2, 3

$\Delta \chi^2 = 1$

$\Delta \chi^2 = 4$

N_1 vs. v_{esc} [km/s]
Determining the WIMP mass

Can determine \(m_\chi \) from requirement that different targets yield \textit{same} moments of \(f_1 \)

MD & C.L. Shan, in progress
Range of WIMP mass from simulation

Preliminary!

50 + 50 events, Si and Ge, standard halo

$\mu_{\text{rec, hi, lo}}$ [GeV]

m_{in} [GeV]

$n = -1$

$n = 1$

$n = 2$

σ

tot

Learning from WIMPs – p. 28/29
Range of WIMP mass from simulation

Preliminary!

500+ 500 events, Si and Ge, standard halo

![Graph showing the range of WIMP mass from simulation with different n values and total (tot).]
Range of WIMP mass from simulation
Preliminary!

500+ 500 events, Si and Ge, standard halo plus 10% late infall

\[m_{\text{rec, hi, lo}} \] [GeV]

\[m_{\text{in}} \] [GeV]

- \(n = -1 \)
- \(n = 1 \)
- \(n = 2 \)
- \(\sigma \)
Range of WIMP mass from simulation

Preliminary!

500+ 500 events, Si and Xe, standard halo
Summary

- Learning about the Early Universe:
Learning about the Early Universe:

- If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}}$
Summary

Learning about the Early Universe:

- If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$
Summary

Learning about the Early Universe:

- If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{BBN}$
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$

Learning about our galaxy:
Summary

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: $T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}}$
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on $\Omega_\chi h^2$

- Learning about our galaxy:
 - Direct reconstruction of $f_1(v)$ needs several hundred events
Summary

Learning about the Early Universe:

- If all DM is thermal WIMPs: \(T_0 \geq m_\chi/23 \sim 10^4 T_{\text{BBN}} \)
- Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

Learning about our galaxy:

- Direct reconstruction of \(f_1(v) \) needs several hundred events
- Non–trivial statements about moments of \(f_1 \) possible with few dozen events
Summary

- Learning about the Early Universe:
 - If all DM is thermal WIMPs: \(T_0 \geq m_\chi / 23 \sim 10^4 T_{\text{BBN}} \)
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

- Learning about our galaxy:
 - Direct reconstruction of \(f_1(v) \) needs several hundred events
 - Non–trivial statements about moments of \(f_1 \) possible with few dozen events
 - Needs to be done to determine \(\rho_\chi \): required input for learning about early Universe!
Summary

- **Learning about the Early Universe:**
 - If all DM is thermal WIMPs: \(T_0 \geq m_\chi/23 \sim 10^4 T_{BBN} \)
 - Error on Hubble parameter during WIMP freeze–out somewhat bigger than that on \(\Omega_\chi h^2 \)

- **Learning about our galaxy:**
 - Direct reconstruction of \(f_1(v) \) needs several hundred events
 - Non–trivial statements about moments of \(f_1 \) possible with few dozen events
 - Needs to be done to determine \(\rho_\chi \): required input for learning about early Universe!

- **Learning about WIMPs:** Can determine \(m_\chi \) from moments of \(f_1 \) measured with two different targets.