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Introduction: WIMPs as Dark Matter

Several observations indicate existence of non-luminous
Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply ΩDMh2 ≥ 0.05.

Ω: Mass density in units of critical density; Ω = 1 means flat
Universe.
h: Scaled Hubble constant. Observation: h = 0.72 ± 0.07 (?)

Models of structure formation, X ray temperature of
clusters of galaxies, . . .

Cosmic Microwave Background anisotropies (WMAP)
imply ΩDMh2 = 0.105+0.007

−0.013 Spergel et al., astro–ph/0603449
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Weakly Interacting Massive Particles (WIMPs)

Exist in well–motivated extensions of the SM: SUSY,
(Little Higgs with T−Parity), ((Universal Extra
Dimension))

Can also (trivially) write down “tailor–made” WIMP
models

In standard cosmology, roughly weak cross section
automatically gives roughly right relic density for
thermal WIMPs! (On logarithmic scale)

Roughly weak interactions may allow both direct and
indirect detection of WIMPs

Learning from WIMPs – p. 4/29



WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.
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WIMP production

Let χ be a generic DM particle, nχ its number density (unit:
GeV3). Assume χ = χ̄, i.e. χχ ↔SM particles is possible,
but single production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(

n2
χ − n2

χ, eq

)

H = Ṙ/R : Hubble parameter
〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM particles)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium
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Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires
nχ〈σannv〉 > H

For T < mχ : nχ ≃ nχ, eq ∝ T 3/2e−mχ/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

For T < TF : WIMP production negligible, only annihilation
relevant in Boltzmann equation.

Gives
Ωχh2 ∝ 1

〈vσann〉
∼ 0.1 for σann ∼ pb
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Thermal WIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders
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Thermal WIMPs: Assumptions

χ is effectively stable, τχ ≫ τU: partly testable at
colliders

No entropy production after χ decoupled: Not testable
at colliders

H at time of χ decoupling is known: partly testable at
colliders

Universe must have been sufficiently hot:
TR > TF ≃ mχ/20

Can we test these assumptions, if Ωχ and “all” particle
physics properties of χ are known?
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Low temperature scenario

Assume T0 <∼ TF , nχ(T0) = 0 (T0: Initial temperature)
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Low temperature scenario

Assume T0 <∼ TF , nχ(T0) = 0 (T0: Initial temperature)
Introduce dimensionless variables

Yχ ≡ nχ

s , x ≡ mχ

T (s: entropy density).
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Low temperature scenario

Assume T0 <∼ TF , nχ(T0) = 0 (T0: Initial temperature)
Introduce dimensionless variables

Yχ ≡ nχ

s , x ≡ mχ

T (s: entropy density).

Use non–relativistic expansion of cross section:
σann = a + bv2 + O(v4) =⇒ 〈σannv〉 = a + 6b/x
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Low temperature scenario

Assume T0 <∼ TF , nχ(T0) = 0 (T0: Initial temperature)
Introduce dimensionless variables

Yχ ≡ nχ

s , x ≡ mχ

T (s: entropy density).

Use non–relativistic expansion of cross section:
σann = a + bv2 + O(v4) =⇒ 〈σannv〉 = a + 6b/x
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Low temperature scenario (cont.’d)

Using explicit form of H, Yχ,eq, Boltzmann eq. becomes
dYχ

dx
= −f

(

a + 6b
x

)

x−2
(

Y 2
χ − cx3e−2x

)

.

f = 1.32 mχMPl
√

g∗, c = 0.0210 g2
χ/g2

∗

Learning from WIMPs – p. 9/29



Low temperature scenario (cont.’d)

Using explicit form of H, Yχ,eq, Boltzmann eq. becomes
dYχ

dx
= −f

(

a + 6b
x

)

x−2
(

Y 2
χ − cx3e−2x

)

.

f = 1.32 mχMPl
√

g∗, c = 0.0210 g2
χ/g2

∗

For T0 ≪ TF : Annihilation term ∝ Y 2
χ negligible: defines 0−th order

solution Y0(x), with

Y0(x → ∞) = fc
[

a
2xRe−2xR +

(

a
4 + 3b

)

e−2xR
]

.

Note: Ωχh2 ∝ σann in this case!
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Low temperature scenario (cont.’d)

Using explicit form of H, Yχ,eq, Boltzmann eq. becomes
dYχ

dx
= −f

(

a + 6b
x

)

x−2
(

Y 2
χ − cx3e−2x

)

.

f = 1.32 mχMPl
√

g∗, c = 0.0210 g2
χ/g2

∗

For T0 ≪ TF : Annihilation term ∝ Y 2
χ negligible: defines 0−th order

solution Y0(x), with

Y0(x → ∞) = fc
[

a
2xRe−2xR +

(

a
4 + 3b

)

e−2xR
]

.

Note: Ωχh2 ∝ σann in this case!

For intermediate temperatures, T0 <∼ TF : Define 1st–order solution

Y1 = Y0 + δ .

δ < 0 describes pure annihilation:
dδ
dx

= −f
(

a + 6b
x

) Y0(x)2

x2 .

δ(x) can be calculated analytically: δ ∝ σ3
ann
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Low temperature scenario (cont.’d)

Get good results for Ωχh2 for all T0 ≤ TF through
“resummation”:

Y1 = Y0

(

1 + δ
Y0

)

≃ Y0

1−δ/Y0
≡ Y1,r

Y1,r ∝ 1/σann for |δ| ≫ Y0 MD, Imminniyaz, Kakizaki, hep-ph/0603165
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Numerical comparison: b = 0
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Numerical comparison: b = 0

10
-3

10
-2

10
-1

 10  15  20  25  30

Ω
χh

2

x
0

x
F
 = 23.5

Ωχh
2

exact

Ωχh
2

old

Ωχh
2

new

10
-2

10
-1

10
0

 10  15  20  25  30

Ω
χh

2

x
0

x
F
 = 21.3

Ωχh
2

exact

Ωχh
2

old

Ωχh
2

new

a = 10−8 GeV−2 a = 10−9 GeV−2

Can extend validity of new solution to all T , including T ≫ T0,
by using Ωχ(Tmax) if T0 > Tmax ≃ TF

Note: Ωχ(T0) ≤ Ωχ(T0 ≫ TF )
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Application: lower bound on T0 for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

If nχ(T0) = 0, demanding Ωχh2 ≃ 0.1 imposes lower bound
on T0:
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Application: lower bound on T0 for thermal WIMP

MD, Imminniyaz, Kakizaki, arXiv:0704.1590 [hep-ph]

If nχ(T0) = 0, demanding Ωχh2 ≃ 0.1 imposes lower bound
on T0:
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 26
Ωχ h2

1 0.1 10-2

0.119 0.079

b [GeV-2]

x0

=⇒ T0 ≥ mχ

23 Holds independent of σann!
If T0 ≃ mχ/22: Get right Ωχh2 for wide range of cross
sections!
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Constraining H(T )

Assumptions
Ωχh2 is known (see below)
a, b are known (from collider experiments)
Only thermal χ production (otherwise no constraint)

Parameterize modified expansion history:

A(z) = Hst(z)/H(z) , z = T/mχ

Around decoupling: z ≪ 1 =⇒ use Taylor expansion

A(z) = A(zF,st)+(z−zF,st)A
′(zF,st)+(z−zF,st)

2A′′(zF,st)/2

Learning from WIMPs – p. 13/29



Constraining H(T )

Assumptions
Ωχh2 is known (see below)
a, b are known (from collider experiments)
Only thermal χ production (otherwise no constraint)

Parameterize modified expansion history:

A(z) = Hst(z)/H(z) , z = T/mχ

Around decoupling: z ≪ 1 =⇒ use Taylor expansion

A(z) = A(zF,st)+(z−zF,st)A
′(zF,st)+(z−zF,st)

2A′′(zF,st)/2

Successful BBN =⇒ k ≡ A(z → 0) = 1.0 ± 0.2
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Constraining H(T ) (cont.d)

Assume T0 ≫ TF =⇒ Ωχh2 ∝ 1
R zF
0

A(z)(a+6bz) dz
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Constraining H(T ) (cont.d)

Assume T0 ≫ TF =⇒ Ωχh2 ∝ 1
R zF
0

A(z)(a+6bz) dz
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The caseA′′(zF,st) = 0
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The caseA′′(zF,st) = 0
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Relative constraint on A(zF,st) weaker than that on Ωχh2.
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Direct WIMP detection

WIMPs are everywhere!
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Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .
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Direct WIMP detection

WIMPs are everywhere!

Can elastically scatter on nucleus in detector:
χ + N → χ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

Is being pursued vigorously around the world!
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.: encodes particle physics
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min = mNQ/(2m2
r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure f1(v)!
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Direct reconstruction of f1

MD & C.L. Shan, astro-ph/0703651

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN
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f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN

N : Normalization (
∫ ∞
0 f1(v)dv = 1).
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Direct reconstruction of f1

MD & C.L. Shan, astro-ph/0703651

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN

N : Normalization (
∫ ∞
0 f1(v)dv = 1).

Need to know form factor =⇒ stick to spin–independent
scattering.
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{
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d
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[

1
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dQ

]}

Q=2m2
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N : Normalization (
∫ ∞
0 f1(v)dv = 1).

Need to know form factor =⇒ stick to spin–independent
scattering.
Need to know mχ, but do not need σ0, ρ.
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Direct reconstruction of f1

MD & C.L. Shan, astro-ph/0703651

f1(v) = N
{

−2Q
d

dQ

[

1

F 2(Q)

dR

dQ

]}

Q=2m2
rv2/mN

N : Normalization (
∫ ∞
0 f1(v)dv = 1).

Need to know form factor =⇒ stick to spin–independent
scattering.
Need to know mχ, but do not need σ0, ρ.
Need to know slope of recoil spectrum!
dR/dQ is approximately exponential: better work with
logarithmic slope
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Determining the logarithmic slope ofdR/dQ

Good local observable: Average energy transfer 〈Q〉i in
i−th bin
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bins
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Determining the logarithmic slope ofdR/dQ

Good local observable: Average energy transfer 〈Q〉i in
i−th bin

Stat. error on slope ∝ (bin width)−1.5 =⇒ need large
bins

To maximize information: use overlapping bins
(“windows”)
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Recoil spectrum: prediction and simulated measurement
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Recoil spectrum: prediction and simulated measurement
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Statistical exclusion of constantf1
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Need several hundred events to begin direct reconstruction!
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Can incorporate finite energy (hence velocity) threshold

Moments are strongly correlated!

High moments, and their errors, are underestimated in
“typical” experiment: get large contribution from large Q
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Determination of first 10 moments
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Constraining a “late infall” component
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Determining the WIMP mass

MD & C.L. Shan, in progress

Can determine mχ from requirement that different targets
yield same moments of f1
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Range of WIMP mass from simulation
Preliminary!
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Range of WIMP mass from simulation
Preliminary!
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Summary

Learning about the Early Universe:

If all DM is thermal WIMPs: T0 ≥ mχ/23 ∼ 104TBBN

Error on Hubble parameter during WIMP freeze–out
somewhat bigger than that on Ωχh2

Learning about our galaxy:
Direct reconstruction of f1(v) needs several hundred
events
Non–trivial statements about moments of f1 possible
with few dozen events
Needs to be done to determine ρχ: required input for
learning about early Universe!

Learning about WIMPs: Can determine mχ from
moments of f1 measured with two different targets.

Learning from WIMPs – p. 32/29
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