Making and Detecting Dark Matter Particles

Manuel Drees

Bonn University
Contents

1 Introduction: The need for DM
Contents

1 Introduction: The need for DM
2 “Sterile” neutrinos
Contents

1 Introduction: The need for DM
2 “Sterile” neutrinos
3 Super-/E–Wimps
Contents

1 Introduction: The need for DM
2 “Sterile” neutrinos
3 Super–/E–Wimps
4 WIMPs
Contents

1 Introduction: The need for DM
2 “Sterile” neutrinos
3 Super–/E–Wimps
4 WIMPs
5 MeV Dark Matter
1 Introduction: The need for DM
2 “Sterile” neutrinos
3 Super-/E–Wimps
4 WIMPs
5 MeV Dark Matter
6 Summary
Introduction: the need for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)
Introduction: the need for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)
Introduction: the need for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Models of structure formation, X ray temperature of clusters of galaxies, . . .
Introduction: the need for Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.
h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$ (?)

- Models of structure formation, X-ray temperature of clusters of galaxies, . . .

- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{DM} h^2 = 0.105^{+0.007}_{-0.013}$

Spergel et al., astro-ph/0603449
Need for non–baryonic DM

Total baryon density is determined by:

- Big Bang Nucleosynthesis → talk by K. Olive
Need for non–baryonic DM

Total baryon density is determined by:

- Big Bang Nucleosynthesis → talk by K. Olive
- Analyses of CMB data
Need for non–baryonic DM

Total baryon density is determined by:

- Big Bang Nucleosynthesis \rightarrow talk by K. Olive
- Analyses of CMB data

Consistent result: $\Omega_{\text{bar}}h^2 \approx 0.02$
Need for non–baryonic DM

Total baryon density is determined by:

- Big Bang Nucleosynthesis → talk by K. Olive
- Analyses of CMB data

Consistent result: $\Omega_{\text{bar}} h^2 \simeq 0.02$

\implies Need non–baryonic DM!
Need for exotic particles

Only possible non–baryonic particle DM in SM: light neutrinos!
Need for exotic particles

Only possible non–baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly

\[\Omega_\nu h^2 \lesssim 0.01 \]
Need for exotic particles

Only possible non–baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly

$\Omega_\nu h^2 \lesssim 0.01$

\Rightarrow Need exotic particles as DM!
Need for exotic particles

Only possible non–baryonic particle DM in SM: light neutrinos!

Make hot DM: do not describe structure formation correctly
\[\Omega_\nu h^2 \lesssim 0.01 \]

\[\implies \text{Need exotic particles as DM!} \]

Possible loophole: primordial black holes; not easy to make in sufficient quantity sufficiently early.
What we need

Since $h^2 \approx 0.5$: Need $\sim 20\%$ of critical density in

- **Matter** (with negligible pressure, $w \approx 0$)
What we need

Since $h^2 \simeq 0.5$: Need $\sim 20\%$ of critical density in

- Matter (with negligible pressure, $w \simeq 0$)
- which still survives today (lifetime $\tau \gg 10^{10}$ yrs)
What we need

Since \(h^2 \simeq 0.5 \): Need \(\sim 20\% \) of critical density in

- Matter (with negligible pressure, \(w \simeq 0 \))
- which still survives today (lifetime \(\tau \gg 10^{10} \) yrs)
- and has (strongly) suppressed coupling to elm radiation
Precise “WMAP” determination of DM density hinges on assumption of “standard cosmology”, including assumption of nearly scale–invariant primordial spectrum of density perturbations: almost assumes inflation!
Remarks

- Precise “WMAP” determination of DM density hinges on assumption of “standard cosmology”, including assumption of nearly scale–invariant primordial spectrum of density perturbations: almost assumes inflation!

- Evidence for $\Omega_{DM} \gtrsim 0.2$ much more robust than that! (Does, however, assume standard law of gravitation.)
Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

- Too many sub–halos are predicted: Might well be “dark dwarves” (w/o baryons; perhaps blown out by first supernovae)
Possible problems with cold DM

Simulations of structure formation show some discrepancies with observations on (sub–)galactic length scales:

- Too many sub–halos are predicted: Might well be “dark dwarves” (w/o baryons; perhaps blown out by first supernovae)

- Simulations seem to over–predict DM density near centers of galaxies (“cusp problem”). Warning: many things going on in these regions!
DM is collisionsless!

Observation of merging cluster 1E0657-56 ("bullet cluster"):
- Using X–rays (CHANDRA): observes hot (baryonic) gas
DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

- Using X–rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass
DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

- Using X–rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but \textit{not} the Dark Matter
DM is collisionsless!

Observation of merging cluster 1E0657-56 ("bullet cluster"):
- Using X–rays (CHANDRA): observes hot (baryonic) gas
- Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but *not* the Dark Matter
Resulting bound on DM–DM scattering cross section constrains models of interacting DM! Markevitch et al., astro–ph/0309303
Bullet cluster
Sterile keV neutrinos

Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or “cool”) DM: can solve cusp problem
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or “cool”) DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or “cool”) DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re–ionization of Universe (no longer a problem?)
Sterile keV neutrinos

- Are SM gauge singlets, with small mixing angle θ to (at least) one SM neutrino
- Have some independent motivation:
 - Are warm (or “cool”) DM: can solve cusp problem
 - Can explain pulsar kicks (through resonant oscillation in presence of strong magnetic field)
 - Can lead to early re–ionization of Universe (no longer a problem?)
- Are unstable!
Decays of “sterile” neutrinos

\[\Gamma(\nu_s) = \frac{G_F m_s^5}{192\pi^3} \sin^2 \theta \]

\[B(\nu_s \rightarrow \gamma \nu_i) \approx 1\% \]
Decays of “sterile” neutrinos

\[\Gamma(\nu_s) = \frac{G_F m_s^5}{192\pi^3} \sin^2 \theta \]

\[B(\nu_s \rightarrow \gamma \nu_i) \approx 1\% \]

Crossed version of left diagram contributes to production:

\[\nu_i + f \rightarrow \nu_s + f ; \quad \nu_i + f \rightarrow \nu_s + f' \]
Decays of “sterile” neutrinos

\[\Gamma(\nu_s) = \frac{G_F m_s^5}{192\pi^3} \sin^2 \theta \]

\[B(\nu_s \rightarrow \gamma \nu_i) \approx 1\% \]

Crossed version of left diagram contributes to production:

\[\nu_i + f \rightarrow \nu_s + f ; \quad \nu_i + f \rightarrow \nu_s + f' \]

Right diagram gives only way to detect \(\nu_s \): monochromatic (X–ray) photon at \(E_\gamma = m_{\nu_s}/2 \).
Standard sterile neutrinos are excluded!

Viel et al., astro-ph/0605706
Standard sterile neutrinos are excluded!

Loophole: Use non–standard production mechanism: large lepton asymmetry ($\Delta L \sim 0.1$), ν_s coupling to inflaton, . . .
Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak.

- Well motivated candidates exist: gravitino, axino
Super-/E-WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms: (→ parallel talk Steffen)
Super–/E–WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak.

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms: (parallel talk Steffen)
 - Thermal production: E.g. $g + g \rightarrow \tilde{g} + (\tilde{G} \text{ or } \tilde{a})$:
 $$\Omega_{\tilde{G}} h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}} \right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \times 10^7 \text{ GeV}}$$
 T_R : re–heat temperature of Universe
Super–/E–WIMPs

Are massive particles whose interactions with ordinary matter are much weaker than weak.

- Well motivated candidates exist: gravitino, axino
- Two production mechanisms: (→ parallel talk Steffen)
 - Thermal production: E.g. \(g + g \rightarrow \tilde{g} + (\tilde{G} \text{ or } \tilde{a}) \):
 \[
 \Omega_{\tilde{G}} h^2 \simeq 0.1 \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}} \right)^2 \frac{1 \text{ GeV}}{m_{\tilde{G}}} \frac{T_R}{2.4 \cdot 10^7 \text{ GeV}}
 \]

 \(T_R \) : re–heat temperature of Universe
 - From NLSP decay: E.g. \(\tilde{\tau}_1 \rightarrow \tau + \tilde{G} \text{ or } \tilde{a} \):
 \[
 \Omega_{\tilde{G} \text{ or } \tilde{a}} h^2 = \tilde{\Omega}_{\text{NLSP}} h^2 \frac{m_{\tilde{G} \text{ or } \tilde{a}}}{m_{\text{NLSP}}}
 \]
Super–/E–WIMPs (cont.d)

Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0}h^2 \gg 0.1$ DM safe, by setting $m_{\tilde{G}}$ or $\tilde{a} = \frac{m_{\tilde{\chi}_1^0}}{\Omega_{\tilde{\chi}_1^0}h^2} m_{\tilde{\chi}_1^0}$, and low T_R.
Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^{0} = \text{LSP}} h^2 \gg 0.1$ DM safe, by setting $m_{\tilde{G}}$ or $\tilde{a} = \frac{0.1}{\Omega_{\tilde{\chi}_1^{0} h^2} m_{\tilde{\chi}_1^{0}}}$, and low T_R

NLSP $\rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays
Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1^0} = \text{LSP} h^2 \gg 0.1$ DM safe, by setting $m_{\tilde{G}}$ or $\tilde{a} = \frac{0.1}{\Omega_{\tilde{\chi}_1^0} h^2} m_{\tilde{\chi}_1^0}$, and low T_R

$NLSP \rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays

DM Super-/E-WIMPs cannot be detected
Super–/E–WIMPs (cont.d)

- Can make SUSY scenarios giving $\Omega_{\tilde{\chi}_1}^{0} h^2 \gg 0.1$ DM safe, by setting $m_{\tilde{G}}$ or $\tilde{a} = \frac{0.1}{\Omega_{\tilde{\chi}_1}^{0} h^2} m_{\tilde{\chi}_1}^{0}$, and low T_R

- NLSP $\rightarrow (\tilde{G} \text{ or } \tilde{a}) + X$ decays tend to mess up BBN: nearly as problematic as inverse decays

- DM Super–/E–WIMPs cannot be detected

- Allow charged NLSP, e.g. $\tilde{\tau}_1$. In this case, scenario might be testable if NLSP is sufficiently long–lived, by collecting NLSPs produced at colliders and carefully measuring their decays. Hamaguchi et al., hep-ph/0409248; Feng & Smith, hep-ph/0409278; Brandenbyrg et al., hep-ph/0501287; Baltz et al., hep-ph/0602187. However, BBN?? (→ talk Olive)
WIMPs

Exist in well–motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
WIMPs

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))
- Can also (trivially) write down “tailor–made” WIMP models
WIMPs

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))

- Can also (trivially) write down “tailor–made” WIMP models

- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)
WIMPs

- Exist in well-motivated extensions of the SM: SUSY, (Little Higgs with T–Parity), ((Universal Extra Dimension))

- Can also (trivially) write down “tailor–made” WIMP models

- Roughly weak cross section automatically gives roughly right relic density for thermal WIMPs! (On logarithmic scale)

- Roughly weak interactions may allow both direct and indirect detection of WIMPs
Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.
WIMP production

Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_χ determined by Boltzmann equation:

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma_{\text{ann}}v \rangle (n^2_\chi - n^2_{\chi,\text{eq}}) + \sum_{X,Y} n_X \Gamma(X \rightarrow \chi + Y)$$

$H = \dot{R}/R$: Hubble parameter
$\langle \ldots \rangle$: Thermal averaging
$\sigma_{\text{ann}} = \sigma(\chi\chi \rightarrow \text{SM particles})$
v : relative velocity between χ’s in their cms
$n_{\chi,\text{eq}}$: χ density in full equilibrium
Assume χ was in full thermal equilibrium after inflation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \approx n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi$: $n_\chi \simeq n_\chi, \text{eq} \propto T^{3/2} e^{-m_\chi/T}$, \(H \propto T^2 \)

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_\chi \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_\chi : n_\chi \simeq n_{\chi,\text{eq}} \propto T^{3/2} e^{-m_\chi/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.
Thermal WIMP

Assume χ was in full thermal equilibrium after inflation.

Requires

$$n_{\chi} \langle \sigma_{\text{ann}} v \rangle > H$$

For $T < m_{\chi}$: $n_{\chi} \simeq n_{\chi, \text{eq}} \propto T^{3/2} e^{-m_{\chi}/T}$, $H \propto T^2$

Inequality cannot be true for arbitrarily small T; point where inequality becomes (approximate) equality defines decoupling (freeze–out) temperature T_F.

For $T < T_F$: WIMP production negligible, only annihilation relevant in Boltzmann equation.

Gives

$$\Omega_{\chi} h^2 \propto \frac{1}{\langle v \sigma_{\text{ann}} \rangle} \sim 0.1 \text{ for } \sigma_{\text{ann}} \sim \text{pb}$$
Thermal WIMPs: Assumptions

\(\chi \) is effectively stable, \(\tau_\chi \gg \tau_U \): partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
Thermal WIMPs: Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders
- No entropy production after χ decoupled: Not testable at colliders
- H at time of χ decoupling is known: partly testable at colliders
- Universe must have been sufficiently hot: $T_R > T_F \simeq m_\chi/20$
Low temperature scenario

Assume $T_R \lesssim T_F$, $n_\chi(T_R) = 0$
Low temperature scenario

Assume $T_R \lesssim T_F$, $n_\chi(T_R) = 0$

Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T}$$

(s: entropy density).

Use non–relativistic expansion of cross section:

$$\sigma_{\text{ann}} = a + bv^2 + \mathcal{O}(v^4) \implies \langle \sigma_{\text{ann}} v \rangle = a + \frac{6b}{x}$$
Low temperature scenario

Assume $T_R \lesssim T_F$, $n_\chi(T_R) = 0$

Introduce dimensionless variables

$$Y_\chi \equiv \frac{n_\chi}{s}, \quad x \equiv \frac{m_\chi}{T}$$

(s: entropy density).

Use non–relativistic expansion of cross section:

$$\sigma_{\text{ann}} = a + b v^2 + \mathcal{O}(v^4) \implies \langle \sigma_{\text{ann}} v \rangle = a + \frac{6b}{x}$$

Using explicit form of H, $Y_\chi,_{eq}$, Boltzmann eq. becomes

$$\frac{dY_\chi}{dx} = -f \left(a + \frac{6b}{x} \right) x^{-2} \left(Y_\chi^2 - cx^3 e^{-2x} \right) .$$

$$f = 1.32 \ m_\chi M_{\text{Pl}} \sqrt{g_*}, \quad c = 0.0210 \ g_\chi^2/g_*^2$$
For $T_R \ll T_F$: Annihilation term $\propto Y^2$ negligible: defines 0–th order solution $Y_0(x)$, with
\[Y_0(x \to \infty) = f c \left[\frac{a}{2} x_R e^{-2x_R} + \left(\frac{a}{4} + 3b \right) e^{-2x_R} \right]. \]
Note: $\Omega_\chi h^2 \propto \sigma_{\text{ann}}$ in this case!
Low temperature scenario (cont.’d)

For $T_R \ll T_F$: Annihilation term $\propto Y_\chi^2$ negligible: defines 0th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = f c \left[\frac{a}{2} x_R e^{-2x_R} + \left(\frac{a}{4} + 3b \right) e^{-2x_R} \right].$$

Note: $\Omega_\chi h^2 \propto \sigma_{\text{ann}}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st-order solution $Y_1 = Y_0 + \delta$.

$\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}.$$

$\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\text{ann}}^3$.
Low temperature scenario (cont.’d)

For $T_R \ll T_F$: Annihilation term $\propto Y^2 \chi$ negligible: defines 0–th order solution $Y_0(x)$, with

$$Y_0(x \to \infty) = fc \left[\frac{a}{2} x R e^{-2xR} + \left(\frac{a}{4} + 3b \right) e^{-2xR} \right].$$

Note: $\Omega_\chi h^2 \propto \sigma_{\text{ann}}$ in this case!

For intermediate temperatures, $T_R \lesssim T_F$: Define 1st–order solution $Y_1 = Y_0 + \delta$.

$\delta < 0$ describes pure annihilation:

$$\frac{d\delta}{dx} = -f \left(a + \frac{6b}{x} \right) \frac{Y_0(x)^2}{x^2}.$$

$\delta(x)$ can be calculated analytically: $\delta \propto \sigma_{\text{ann}}^3$

Get good results for $\Omega_\chi h^2$ for all $T_R \leq T_F$ through “resummation”:

$$Y_1 = Y_0 \left(1 + \frac{\delta}{Y_0} \right) \simeq \frac{Y_0}{1 - \delta/Y_0} \equiv Y_{1,r}$$

$Y_{1,r} \propto 1/\sigma_{\text{ann}}$ for $|\delta| \gg Y_0$ MD, Imminniyaz, Kakizaki, hep-ph/0603165
Numerical comparison: $b = 0$

$a = 10^{-8} \text{ GeV}^{-2}$

$a = 10^{-9} \text{ GeV}^{-2}$
Numerical comparison: \(b = 0 \)

\[a = 10^{-8} \text{ GeV}^{-2} \]

\[a = 10^{-9} \text{ GeV}^{-2} \]

Can extend validity of new solution to all \(T \), including \(T \gg T_R \), by using \(\Omega_{\chi}(T_{\text{max}}) \) if \(T_R > T_{\text{max}} \approx T_F \)
Numerical comparison: \(b = 0 \)

\[a = 10^{-8} \ \text{GeV}^{-2} \]

\[a = 10^{-9} \ \text{GeV}^{-2} \]

Can extend validity of new solution to all \(T \), including \(T \gg T_R \), by using \(\Omega_{\chi}(T_{\text{max}}) \) if \(T_R > T_{\text{max}} \simeq T_F \)

Note: \(\Omega_{\chi}(T_R) \leq \Omega_{\chi}(T_R \gg T_F) \)
Application: lower bound on T_R for thermal WIMP

If $n_\chi(T_R) = 0$, demanding $\Omega_\chi h^2 \simeq 0.1$ imposes lower bound on T_R:
If $n_\chi(T_R) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_R:
Application: lower bound on T_R for thermal WIMP

If $n_\chi(T_R) = 0$, demanding $\Omega_\chi h^2 \sim 0.1$ imposes lower bound on T_R:

$$\Omega_\chi h^2 \simeq \frac{0.1^{a}}{0.079} \quad (a)$$

\hspace{1cm}

$$\Omega_\chi h^2 \simeq \frac{0.119^{b}}{0.079} \quad (b)$$

\hspace{1cm}

\[\implies T_R \geq \frac{m_\chi}{23} \]

Holds independently of σ_{ann}!
Best motivated WIMP: neutralino $\tilde{\chi}_1^0$

- Weak–scale Supersymmetry stabilizes hierarchy against radiative corrections
Best motivated WIMP: neutralino $\tilde{\chi}_1^0$

- Weak-scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S–matrix is product of gauge group and SUSY
Best motivated WIMP: neutralino $\tilde{\chi}^0_1$

- Weak–scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S–matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
Best motivated WIMP: neutralino $\tilde{\chi}^0_1$

- Weak–scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S–matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
Best motivated WIMP: neutralino $\tilde{\chi}_1^0$

- Weak–scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S–matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one–step unification of gauge couplings
Best motivated WIMP: neutralino $\tilde{\chi}_1^0$

- Weak–scale Supersymmetry stabilizes hierarchy against radiative corrections
- HLS theorem: biggest allowed symmetry of S–matrix is product of gauge group and SUSY
- Local SUSY closely related to gravity (hence Supergravity, SUGRA)
- Related to superstring theory: best candidate TOE
- Allows one–step unification of gauge couplings
- In simplest (R_p–invariant) version: LSP is stable: can be good candidate for DM particle! (Free bonus, not related to original motivation.)
Minimal Supergravity, mSUGRA

- SUSY needs to be broken; no “standard model of SUSY breaking” exists
Minimal Supergravity, mSUGRA

- SUSY needs to be broken; no “standard model of SUSY breaking” exists
- Most general soft breaking of MSSM introduces ~ 100 new free parameters! Most of this vast parameter space excluded by FCNC constraints, unless $m_\tilde{f} \gg 1$ TeV.
Minimal Supergravity, mSUGRA

- SUSY needs to be broken; no “standard model of SUSY breaking” exists.

- Most general soft breaking of MSSM introduces ~ 100 new free parameters! Most of this vast parameter space excluded by FCNC constraints, unless $m\tilde{f} \gg 1$ TeV.

- Way out: Postulate universal spectrum at GUT scale (“universal boundary conditions”): Spectrum parameterized by universal scalar mass m_0; universal gaugino mass $m_{1/2}$; universal trilinear scalar term A_0; ratio of Higgs vevs $\tan \beta$; sign of higgsino mass, sign(μ). (mSUGRA/CMSSM boundary conditions)
Advantages of mSUGRA

- FCNC small (but $b \to s\gamma, B_s \to \mu^+\mu^-$ do constrain parameter space)
Advantages of mSUGRA

- FCNC small (but $b \rightarrow s \gamma$, $B_s \rightarrow \mu^+ \mu^-$ do constrain parameter space)

- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive
Advantages of mSUGRA

- FCNC small (but $b \to s\gamma$, $B_s \to \mu^+\mu^-$ do constrain parameter space)

- Radiative symmetry breaking: loop corrections drive (combination of) squared Higgs masses negative, leaving squared sfermion masses positive

- Over much of parameter space, $\tilde{\chi}_1^0$ is stable LSP!
Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1} h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1} h^2$ also exist.
Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1} h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1} h^2$ also exist.

Several DM–allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$
Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1} h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1} h^2$ also exist.

Several DM–allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$

- $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component
Thermal mSUGRA Dark Matter

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1} h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1} h^2$ also exist.

Several DM–allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$

- $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component

- $\tan \beta \gg 1$: $m_A \approx 2m_{\tilde{\chi}_1^0}$ possible ("A–pole"; similar, smaller, "h–pole" also [barely] exists)
Thermal mSUGRA Dark Matter

Over most of collider–allowed parameter space, $\Omega_{\tilde{\chi}_1} h^2$ from standard cosmology comes out too large in mSUGRA. Regions with too small $\Omega_{\tilde{\chi}_1} h^2$ also exist.

Several DM–allowed regions do exist:

- $\tilde{\tau}_1$ co–annihilation region: $m_{1/2}^2 \gg m_0^2$

- $m_0^2 \gg m_{1/2}^2$: $\tilde{\chi}_1^0$ has sizable higgsino component

- $\tan \beta \gg 1$: $m_A \simeq 2m_{\tilde{\chi}_1^0}$ possible (“A–pole”; similar, smaller, “h–pole” also [barely] exists)

Following examples from Djouadi, MD, Kneurr, hep-ph/0602001
Example: \(m_t = 172.7 \text{ GeV}, \tan \beta = 10, A_0 = 0, \mu > 0 \)

Green: \(b \rightarrow s\gamma \) excluded
Pink: Higgs search excl.
Magenta: \(111 \text{ GeV} \leq m_h \leq 114 \text{ GeV} \)
Red: \(114 \text{ GeV} \leq m_h \leq 117 \text{ GeV} \)
Dark grey: \(m_{\tilde{\tau}_1} < m_{\tilde{\chi}^0_1} \)
Light grey: \(|\mu|^2 < 0 \) or sparticle search excl.
Black: DM favored
Effect of varying $\tan \beta$

$\tan \beta = 5$

$\tan \beta = 30$

Blue: $g_\mu - 2$ favored
$(e^+e^- \text{ data})$

$\tan \beta = 50$
Varying A_0: $m_t = 172.7$ GeV, $\tan \beta = 30$, $\mu > 0$

$A_0 = 0$ \hspace{1cm} $A_0 = -1$ TeV \hspace{1cm} $A_0 = -2$ TeV
Varying m_t: $\tan \beta = 50$, $A_0 = 0$, $\mu > 0$

$m_t = 167$ GeV

$m_t = 172.7$ GeV

$m_t = 178$ GeV
Mass Bounds

More meaningful than “size of allowed parameter space”

mSUGRA, all parameters scanned over allowed region

<table>
<thead>
<tr>
<th>particle</th>
<th>minimal mass [GeV]</th>
<th>min, max mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>basic</td>
<td>incl. $b \rightarrow s\gamma$</td>
</tr>
<tr>
<td>$\tilde{\chi}_1^0$</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>$\tilde{\chi}_1^\pm$</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>$\tilde{\chi}_3^0$</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>$\tilde{\tau}_1$</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>h</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>H^\pm</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>\tilde{g}</td>
<td>359</td>
<td>380</td>
</tr>
<tr>
<td>\tilde{d}_R</td>
<td>406</td>
<td>498</td>
</tr>
<tr>
<td>\tilde{t}_1</td>
<td>102</td>
<td>104</td>
</tr>
</tbody>
</table>
Indirect WIMP detection

- WIMPs are everywhere!
Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies
Indirect WIMP detection

- WIMPs are everywhere!
- In regions with increased WIMP density: WIMPs can annihilate into SM particles even today:
 - In halo of galaxies
 - Near center of galaxies
 - Inside the Sun or Earth
Indirect WIMP detection: signals

Slow \bar{p}, fast e^+: background? Propagation?
Indirect WIMP detection: signals

- Slow \bar{p}, fast e^+: background? Propagation?
- Slow \bar{d}: Propagation?
Indirect WIMP detection: signals

- Slow \bar{p}, fast e^+: background? Propagation?
- Slow \bar{d}: Propagation?
- Photons: Background?
Indirect WIMP detection: signals

- Slow \bar{p}, fast e^+: background? Propagation?
- Slow \bar{d}: Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate
Indirect WIMP detection: signals

- Slow \bar{p}, fast e^+: background? Propagation?
- Slow \bar{d}: Propagation?
- Photons: Background?
- GeV Neutrinos: Low rate

Further discussion: talks by de Boer, Mannheim
Direct WIMP detection

- WIMPs are everywhere!
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]

Measured quantity: recoil energy of \[N \]
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector: \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; . . .
Direct WIMP detection

- WIMPs are everywhere!
- Can elastically scatter on nucleus in detector:
 \[\chi + N \rightarrow \chi + N \]
 Measured quantity: recoil energy of \(N \)
- Detection needs ultrapure materials in deep–underground location; way to distinguish recoils from \(\beta, \gamma \) events; neutron screening; . . .
- Is being pursued vigorously around the world!
Direct WIMP detection: theory

Counting rate given by

\[
\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv
\]

Q: recoil energy

$A = \rho \sigma_0 / (2 m_x m_r) = \text{const.}$

$F(Q)$: nuclear form factor

v: WIMP velocity in lab frame

$v_{\text{min}}^2 = m_N Q / (2 m_r^2)$

v_{esc}: Escape velocity from galaxy

$f_1(v)$: normalized one-dimensional WIMP velocity distribution
Direct WIMP detection: theory

Counting rate given by

\[
\frac{dR}{dQ} = A F^2(Q) \int_{v_{\text{min}}}^{v_{\text{esc}}} \frac{f_1(v)}{v} dv
\]

\(Q\): recoil energy
\(A = \rho \sigma_0/(2m_\chi m_r) = \text{const.}\)
\(F(Q)\): nuclear form factor
\(v\): WIMP velocity in lab frame
\(v_{\text{min}}^2 = m_N Q/(2m_r^2)\)
\(v_{\text{esc}}\): Escape velocity from galaxy
\(f_1(v)\): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure \(f_1(v)\)!
Recoil spectrum: prediction and simulated measurement
MD, Shan, in progress

500 events on Ge
$f_1(v)$: prediction and simulated measurement

500 events on Ge: stat. error only
$f_1(v)$: prediction and simulated measurement

A few moments of $f_1(v)$ may be measurable with relatively few events
MeV Dark Matter

Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)
MeV Dark Matter

Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTERNational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

Line width (FWHM) $\simeq 3$ keV; resolution $\simeq 2.2$ keV
Motivated by excess of 511 keV photons observed from direction of galactic center, by everyone who looked; most recently, by INTEGRAL satellite.

INTErnational Gamma Ray Astrophysical Laboratory: observes sky in γ rays from highly eccentric orbit (perigee 10,000 km, aphogee 152,000 km, orbital period 3 days)

Line width (FWHM) $\simeq 3$ keV; resolution $\simeq 2.2$ keV

Background: continuum plus CR-induced 511 keV line (from empty sky region)
INTEGRAL results (cont’d)

Source is extended
Source is extended

Angular width (FWHM) $\sim 10^\circ$; resolution $\sim 2^\circ$
INTEGRAL results (cont’d)

Source is extended

Angular width (FWHM) \(\approx 10^\circ \); resolution \(\approx 2^\circ \)

No evidence for substructure
Interpretation

- Line is quite sharp \implies must come from annihilation of non-relativistic e^+e^-
Interpretation

- Line is quite sharp \Rightarrow must come from annihilation of non-relativistic e^+e^-
- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
Interpretation

- Line is quite sharp \implies must come from annihilation of non–relativistic e^+e^-

- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 - rate of positron production uncertain
Interpretation

° Line is quite sharp \implies must come from annihilation of non–relativistic e^+e^-

° Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 ° rate of positron production uncertain
 ° difficulty filling entire bulge
Interpretation

- Line is quite sharp \implies must come from annihilation of non–relativistic e^+e^-

- Astrophysical sources (novae, supernovae, hypernovae, stellar flares):
 - rate of positron production uncertain
 - difficulty filling entire bulge

- Dark Matter $\rightarrow e^+e^-$ annihilation: Can work!!
DM particles χ annihilate: $\chi\bar{\chi} \rightarrow e^+e^- \ (\chi \equiv \bar{\chi} \text{ is possible.})$
Interpretation in terms of MeV DM

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)

- If $m_\chi \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms
Interpretation in terms of MeV DM

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^- \ (\chi \equiv \bar{\chi} \text{ is possible.})$

- If $m_\chi \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms

- Magnetic fields keep positrons within ~ 1 pc of their origin
Interpretation in terms of MeV DM

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+ e^-$ ($\chi \equiv \bar{\chi}$ is possible.)
- If $m_\chi \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms
- Magnetic fields keep positrons within ~ 1 pc of their origin
- \implies Flux of 511 keV photons $\propto n_\chi^2$!
Interpretation in terms of MeV DM

- DM particles χ annihilate: $\chi \bar{\chi} \rightarrow e^+e^-$ ($\chi \equiv \bar{\chi}$ is possible.)

- If $m_\chi \leq 100$ MeV: positrons get slowed down sufficiently fast before annihilating; main mechanism: ionization of neutral atoms

- Magnetic fields keep positrons within ~ 1 pc of their origin

\implies Flux of 511 keV photons $\propto n_\chi^2$!

- In this case, DM distribution according to galactic models can reproduce angular distribution of signal reasonably well; less so, if flux $\propto n_\chi$ (decaying DM models)
Additional astrophysical constraints

Come from higher-order (radiative) process:

\[
\tilde{\chi} e^- \rightarrow \gamma \chi + \tilde{\chi} e^- \rightarrow \gamma \chi
\]
Additional astrophysical constraints

Come from higher-order (radiative) process:

\[\chi \, \bar{\chi} \rightarrow e^+ e^- \]

Cross section \(\sigma_{\text{rad}} \propto \alpha \ln \frac{m_\chi}{m_e} \cdot \sigma(\chi \bar{\chi} \rightarrow e^+ e^-) \), \(E_\gamma \propto m_\chi \)
Additional astrophysical constraints

Come from higher-order (radiative) process:

\[
\chi \bar{\chi} e^+ + \chi \bar{\chi} e^- \gamma
\]

Cross section \(\sigma_{\text{rad}} \propto \alpha \ln \frac{m_\chi}{m_e} \cdot \sigma(\chi \bar{\chi} \to e^+ e^-), \ E_\gamma \propto m_\chi\)

To avoid overproduction of MeV photons: \(m_\chi \leq 20\) MeV!

Additional astrophysical constraints

Come from higher-order (radiative) process:

\[
\begin{align*}
\bar{\chi} & \rightarrow e^- + \gamma \\
\chi & \rightarrow e^+ + \gamma \\
\end{align*}
\]

Cross section \(\sigma_{\text{rad}} \propto \alpha \ln \frac{m_{\chi}}{m_e} \cdot \sigma(\chi \bar{\chi} \rightarrow e^+ e^-), E_\gamma \propto m_{\chi} \)

To avoid overproduction of MeV photons: \(m_{\chi} \leq 20 \text{ MeV}! \)

Bound reduced to \(\sim 3 \text{ MeV} \) if photons produced during slow–down of \(e^{\pm} \) are included. Beacom & Yuksel, Phys. Rev. Lett. 97, 071102 (2006)
To explain flux of 511 keV photons: need

\[10^{-3} \text{ fb} \leq v\sigma(\chi\bar{\chi} \rightarrow e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_\chi}\right)^2 \cdot \kappa \leq 1 \text{ fb} \]

\[\kappa = 1 \text{ (2) if } \chi = \bar{\chi} \text{ (} \chi \neq \bar{\chi} \text{). Expanded range in Boehm et al. by factor 10 in both directions. Note: } \rho_\chi \text{ fixed from galactic modelling } \Rightarrow n_\chi \propto 1/m_\chi. \]
Particle physics model

- To explain flux of 511 keV photons: need

\[10^{-3} \text{ fb} \leq \nu \sigma(\chi \bar{\chi} \rightarrow e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_\chi} \right)^2 \cdot \kappa \leq 1 \text{ fb} \]

\[\kappa = 1 \ (2) \text{ if } \chi = \bar{\chi} \ (\chi \neq \bar{\chi}). \] Expanded range in Boehm et al. by factor 10 in both directions. Note: \(\rho_\chi \) fixed from galactic modelling \(\Rightarrow n_\chi \propto 1/m_\chi. \)

- Mass range for DM particle \(\chi: \)

\[m_e \leq m_\chi \leq 20 \text{ MeV} \]
To explain flux of 511 keV photons: need

\[10^{-3} \text{ fb} \leq v\sigma(\chi\bar{\chi} \rightarrow e^+e^-) \cdot \left(\frac{1 \text{ MeV}}{m_\chi}\right)^2 \cdot \kappa \leq 1 \text{ fb} \]

\(\kappa = 1 \ (2) \) if \(\chi = \bar{\chi} \ (\chi \neq \bar{\chi}) \). Expanded range in Boehm et al. by factor 10 in both directions. Note: \(\rho_\chi \) fixed from galactic modelling \(\Rightarrow n_\chi \propto 1/m_\chi \).

Mass range for DM particle \(\chi \):

\[m_e \leq m_\chi \leq 20 \text{ MeV} \]

Taken together, these constraints imply that \(\chi \) was in thermal equilibrium (using \(T_R > 0.7 \text{ MeV} \) from BBN; Guidice et al. 2001).
To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs.
To get right thermal relic density, χ annihilation cross section at decoupling must have been much higher than the current cross section into e^+e^- pairs.

Strongly hints at annihilation from $P-$wave only: $v\sigma \propto v^2$. Note: $v^2_{\text{dec.}} \sim 0.1$, $v^2_{\text{now}} \sim 10^{-6}$.
To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs

Strongly hints at annihilation from P–wave only: $\nu\sigma \propto \nu^2$. Note: $\nu_{\text{dec.}}^2 \sim 0.1$, $\nu_{\text{now}}^2 \sim 10^{-6}$.

Simplest realization: χ annihilation mediated by exchange of spin–1 Boson U; χ is complex scalar or Majorana spin–1/2 fermion. (Dirac fermion would annihilate from S–wave!)
Particle physics model (cont’d)

- To get right thermal relic density, χ annihilation cross section at decoupling must have been *much* higher than the current cross section into e^+e^- pairs

- Strongly hints at annihilation from $P-$wave only: $v\sigma \propto v^2$. Note: $v_{\text{dec.}}^2 \sim 0.1$, $v_{\text{now}}^2 \sim 10^{-6}$.

- Simplest realization: χ annihilation mediated by exchange of spin–1 Boson U; χ is complex scalar or Majorana spin–$1/2$ fermion. (Dirac fermion would annihilate from $S-$wave!)

- Relic density essentially fixes product $g_\chi^2 (g_{eR}^2 + g_{eL}^2)$ of $U-$boson couplings.
Model building aspects

For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure P-wave
Model building aspects

- For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{eL} = g_{eR}$: both are pure $P-$wave
- $g_e - 2$ constraint implies $g_\chi > g_{eR}, g_{eL}$
Model building aspects

- For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure $P-$wave
- $g_e - 2$ constraint implies $g_{\chi} > g_{e_R}, g_{e_L}$
- $g_{\chi} \gg g_{e_R}, g_{e_L}$ natural if U couples to electrons only through mixing with γ, Z!
Model building aspects

- For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure $P-$wave

- $g_e - 2$ constraint implies $g_\chi > g_{e_R}, g_{e_L}$

- $g_\chi \gg g_{e_R}, g_{e_L}$ natural if U couples to electrons only through mixing with γ, Z!

- If total gauge group $G = G_{SM} \times G_U$: $SU(2)$ invariance implies $g_{e_L} = g_{\nu_e}$: took $g_{e_L} = 0$ most of the time.
Model building aspects

- For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{eL} = g_{eR}$: both are pure $P-$wave

- $g_e - 2$ constraint implies $g_\chi > g_{eR}, g_{eL}$

- $g_\chi \gg g_{eR}, g_{eL}$ natural if U couples to electrons only through mixing with γ, Z!

- If total gauge group $G = G_{SM} \times G_U$: $SU(2)$ invariance implies $g_{eL} = g_{\nu_e}$: took $g_{eL} = 0$ most of the time.

- DM and $g_e - 2$ constraints are compatible only for $M_U \lesssim 0.2$ GeV!
Model building aspects

- For most purposes, scalar $\chi \simeq$ Majorana χ with $g_{e_L} = g_{e_R}$: both are pure $P-$wave

- $g_e - 2$ constraint implies $g_\chi > g_{e_R}, g_{e_L}$

- $g_\chi \gg g_{e_R}, g_{e_L}$ natural if U couples to electrons only through mixing with γ, Z!

- If total gauge group $G = G_{SM} \times G_U$: $SU(2)$ invariance implies $g_{e_L} = g_{\nu_e}$: took $g_{e_L} = 0$ most of the time.

- DM and $g_e - 2$ constraints are compatible only for $M_U \lesssim 0.2$ GeV!

- Did not attempt to build full (renormalizable) model.
Tests at low energy $e^+e^-\text{ colliders}$

$U-$boson must couple to electrons: can be produced at $e^+e^-\text{ colliders}!$

\[e^- \rightarrow U \]
\[e^+ \rightarrow \gamma \]
\[e^- \rightarrow U \]
\[e^+ \rightarrow \gamma \]
Tests at low energy e^+e^- colliders

U-boson must couple to electrons: can be produced at e^+e^- colliders!

$$\frac{d\sigma(e^+e^- \rightarrow U\gamma)}{d \cos \theta} = \frac{\alpha \left(g_{eL}^2 + g_{eR}^2\right)}{4s (1-y) \sin^2 \theta} \left[2 \left(1 + y^2\right) - \sin^2 \theta \left(1 - y\right)^2\right]$$

$$y = \frac{M_U^2}{s} < 0.04 \text{ even at DAΦNE}.$$
Cross section $\propto 1/s \implies$ lower energy is in principle better!
Remarks

- Cross section $\propto 1/s \implies$ lower energy is in principle better!

- However: $\left. \int \mathcal{L} dt \right|_{\text{DAΦNE}} < \left. \int \mathcal{L} dt \right|_{\text{B-factories}} : B-$factories should have better chance
Remarks

- Cross section $\propto 1/s \implies$ lower energy is in principle better!

- However: $\frac{\int \mathcal{L} dt}{s}_{DA\Phi NE} < \frac{\int \mathcal{L} dt}{s}_{B-\text{factories}}$: $B-$factories should have better chance

- Two possible final states:
Remarks

- Cross section $\propto 1/s \Rightarrow$ lower energy is in principle better!

- However: $\frac{\int L dt}{s}^{DA\Phi NE} < \frac{\int L dt}{s}^{B-\text{factories}}$: B-factories should have better chance

- Two possible final states:
 - $U \rightarrow e^+ e^-$: have $e^+ e^- \gamma$ final state
Remarks

- Cross section $\propto 1/s \implies$ lower energy is in principle better!

- However: $\frac{\int L dt}{s}_{\text{DAΦNE}} < \frac{\int L dt}{s}_{\text{B-factories}}$ should have better chance

- Two possible final states:
 - $U \to e^+e^-$: have $e^+e^-\gamma$ final state
 - $U \to \nu\bar{\nu}, \chi\bar{\chi}$: have $\gamma+$ ‘nothing’ final state (trigger??)
Reach for DAΦNE

Allowed range of coupling for $g_{e_L} = 0$, $g_\chi = 10g_{e_R}$, Majorana-χ

$g_{\chi e_R}$ (min, max)

M_U [GeV]

upper bound from $g_{e_L} - 2$

$g_{\chi e_R}$

$m_\chi > M_U/2$

max. sensitivity (e$^+$e$^-$ channel)

$m_\chi < M_U/2$

max. sensitivity (invisible channel)
Reach for B–factories

Allowed range of coupling for $g_{e_L} = 0$, $g_\chi = 1$, scalar χ

10^{-8}

$max. \ sensitivity$
$(e^+ e^- \ channel)$

$max. \ sensitivity$
$(invisible \ channel)$

$max. \ sensitivity$
$(e^+ e^- \ channel)$
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible.
- Neutralinos in mSUGRA remain well motivated, viable candidate.
- Standard sterile ν’s probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN.
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile ν’s probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile ν's probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal WIMPs: lower bound on T_R increases by factor $\sim 10^4$
Summary

- Lots of different particle DM candidates have been suggested; not all are equally plausible
- Neutralinos in mSUGRA remain well motivated, viable candidate
- Standard sterile ν’s probably excluded; MeV DM testable at low energy colliders; gravitino/axino DM constrained by BBN
- Thermal production of DM particles is most attractive mechanism: least dependent on details of cosmology
- If DM is made from thermal WIMPs: lower bound on T_R increases by factor $\sim 10^4$
- WIMPs can be detected in a variety of ways; once detected, allow new probes of Universe