Astroparticle Physics at Colliders

Manuel Drees

Bonn University
1) Introduction: A brief history of the universe
Contents

1) Introduction: A brief history of the universe

2) Inflation
Contents

1) Introduction: A brief history of the universe

2) Inflation

3) Dark Energy
1) Introduction: A brief history of the universe
2) Inflation
3) Dark Energy
4) Baryogenesis
Contents

1) Introduction: A brief history of the universe
2) Inflation
3) Dark Energy
4) Baryogenesis
5) Dark Matter
Contents

1) Introduction: A brief history of the universe
2) Inflation
3) Dark Energy
4) Baryogenesis
5) Dark Matter
6) Summary
1 Introduction: History of the Universe

Before the Big Bang: Speculations about pre-BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.
1 Introduction: History of the Universe

- **Before the Big Bang:** Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- **Inflation:** Scale factor ("radius") \(R \rightarrow e^N R, \ N \geq 60 \)
1 Introduction: History of the Universe

- **Before the Big Bang:** Speculations about pre-BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- **Inflation:** Scale factor ("radius") \(R \rightarrow e^N R, \quad N \geq 60 \)

 - Universe was dominated by vacuum energy; empty at end of inflation
1 Introduction: History of the Universe

- **Before the Big Bang:** Speculations about pre-BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- **Inflation:** Scale factor (“radius”) $R \rightarrow e^N R, \ N \geq 60$

 - Universe was dominated by vacuum energy; empty at end of inflation

 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, . . .)
1 Introduction: History of the Universe

- **Before the Big Bang**: Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- **Inflation**: Scale factor ("radius") $R \rightarrow e^N R, \ N \geq 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, ...)
 - Scalar fields can get large vevs due to these fluctuations
1 Introduction: History of the Universe

- **Before the Big Bang:** Speculations about pre–BB universe, e.g. in superstring theory. Few predictions, no known connections with collider physics.

- **Inflation:** Scale factor (“radius”) $R \rightarrow e^{N} R, \ N \geq 60$
 - Universe was dominated by vacuum energy; empty at end of inflation
 - Quantum fluctuations can cause density perturbations: confirmed by CMB observations (WMAP, …)
 - Scalar fields can get large vevs due to these fluctuations
 - At least one model maybe testable at the LHC!
History (cont.d)

- **Reheating**: (Re-)populates Universe with particles.

 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
History (cont.d)

- **Reheating**: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)

- Thought to begin with coherent oscillation of inflaton field
History (cont.d)

- **Reheating**: (Re-)populates Universe with particles. Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
- Thought to begin with coherent oscillation of inflaton field
- Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)
Reheating: (Re-)populates Universe with particles. Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)

- Thought to begin with coherent oscillation of inflaton field
- Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)

Baryogenesis: Happened sometime after end of inflation
History (cont.d)

- **Reheating**: (Re-)populates Universe with particles.
 Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)

- **Baryogenesis**: Happened sometime after end of inflation
 - Many models exist
History (cont.d)

- **Reheating**: (Re-)populates Universe with particles.
 - Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)
 - Thought to begin with coherent oscillation of inflaton field
 - Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)

- **Baryogenesis**: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
History (cont.d)

Reheating: (Re-)populates Universe with particles.
Re-heat temperature T_R not known: $T_R \gtrsim 3$ MeV (BBN)

- Thought to begin with coherent oscillation of inflaton field
- Dynamics of thermalization has some connection to dynamics of heavy ion collisions (\rightarrow RHIC, LHC)

Baryogenesis: Happened sometime after end of inflation
- Many models exist
- Work at different temperatures
- Some models make predictions for colliders!
Creation of Dark Matter: Happened sometime after end of inflation
Creation of **Dark Matter**: Happened sometime after end of inflation

Many models exist
Creation of Dark Matter: Happened sometime after end of inflation
- Many models exist
- Work at different temperatures
Creation of **Dark Matter**: Happened sometime after end of inflation

- Many models exist
- Work at different temperatures
- Most models have connections to collider physics!
History (cont.d)

- **Creation of Dark Matter**: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!

- **Electroweak Phase Transition**: Happened at
 \[T = T_{EW} \simeq 100 \text{ GeV}, \text{ if } T_R > T_{EW} \]
History (cont.d)

- **Creation of Dark Matter**: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!

- **Electroweak Phase Transition**: Happened at
 \[T = T_{EW} \simeq 100 \text{ GeV}, \text{ if } T_R > T_{EW} \]
 - May be related to baryogenesis
History (cont.d)

- **Creation of Dark Matter**: Happened sometime after end of inflation
 - Many models exist
 - Work at different temperatures
 - Most models have connections to collider physics!

- **Electroweak Phase Transition**: Happened at
 \[T = T_{EW} \approx 100 \text{ GeV}, \text{ if } T_R > T_{EW} \]
 - May be related to baryogenesis
 - May have some connection to collider physics (sphalerons)
QCD phase transition: Happened at

\[T = T_{\text{QCD}} \approx 170 \text{ MeV}, \text{ if } T_R > T_{\text{QCD}} \]
History (cont.d)

- **QCD phase transition**: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_r > T_{QCD}$

- Related to dynamics of heavy ion collisions, “soft” QCD (at negligible baryon density)
QCD phase transition: Happened at $T = T_{QCD} \approx 170 \text{ MeV}$, if $T_R > T_{QCD}$

Related to dynamics of heavy ion collisions, “soft” QCD (at negligible baryon density)

Big Bang Nucleosynthesis (BBN): Started at $T \approx 1 \text{ MeV}$
History (cont.d)

- **QCD phase transition**: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_R > T_{QCD}$

 Related to dynamics of heavy ion collisions, “soft” QCD (at negligible baryon density)

- **Big Bang Nucleosynthesis (BBN)**: Started at $T \simeq 1$ MeV

 Constrains many extensions of SM, if T_R was sufficiently high to create new particles
History (cont.d)

QCD phase transition: Happened at $T = T_{QCD} \simeq 170$ MeV, if $T_R > T_{QCD}$

Related to dynamics of heavy ion collisions, “soft” QCD (at negligible baryon density)

Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV

- Constrains many extensions of SM, if T_R was sufficiently high to create new particles
- Sets lower bound on T_R, if standard BBN is essentially correct
History (cont.d)

- **QCD phase transition**: Happened at $T = T_{\text{QCD}} \approx 170$ MeV, if $T_R > T_{\text{QCD}}$

- Related to dynamics of heavy ion collisions, "soft" QCD (at negligible baryon density)

- **Big Bang Nucleosynthesis (BBN)**: Started at $T \approx 1$ MeV

 - Constrains many extensions of SM, if T_R was sufficiently high to create new particles

 - Sets lower bound on T_R, if standard BBN is essentially correct

- **Matter–Radiation Equilibrium**: Happened at $T \approx 3$ eV.
History (cont.d)

QCD phase transition: Happened at $T = T_{\text{QCD}} \simeq 170$ MeV, if $T_R > T_{\text{QCD}}$

- Related to dynamics of heavy ion collisions, “soft” QCD (at negligible baryon density)

Big Bang Nucleosynthesis (BBN): Started at $T \simeq 1$ MeV

- Constrains many extensions of SM, if T_R was sufficiently high to create new particles
- Sets lower bound on T_R, if standard BBN is essentially correct

Matter–Radiation Equilibrium: Happened at $T \simeq 3$ eV.

- Energy density of the Universe begins to be dominated by (dark) matter
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3$ eV
History (cont.d)

- **Decoupling of Matter and Radiation:** Happened at $T \simeq 0.3$ eV
- “Last scattering” of CMB photons
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3 \text{ eV}$
 - “Last scattering” of CMB photons
 - Visible structures (galaxies etc.) start to form
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3 \text{ eV}$
 - “Last scattering” of CMB photons
 - Visible structures (galaxies etc.) start to form

- **Equilibrium of Matter and Dark Energy**: Probably happened at redshift $z \simeq 1$ ($T \simeq 6 \cdot 10^{-4} \text{ eV}$).
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3$ eV
 - “Last scattering” of CMB photons
 - Visible structures (galaxies etc.) start to form

- **Equilibrium of Matter and Dark Energy**: Probably happened at redshift $z \simeq 1$ ($T \simeq 6 \cdot 10^{-4}$ eV).
 - Nobody knows when (or if) Dark Energy was created
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3$ eV
 - “Last scattering” of CMB photons
 - Visible structures (galaxies etc.) start to form

- **Equilibrium of Matter and Dark Energy**: Probably happened at redshift $z \simeq 1$ ($T \simeq 6 \cdot 10^{-4}$ eV).
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy \simeq const: Plays no role for $T > 0.1$ eV
History (cont.d)

- **Decoupling of Matter and Radiation**: Happened at $T \simeq 0.3 \text{ eV}$
 - “Last scattering” of CMB photons
 - Visible structures (galaxies etc.) start to form

- **Equilibrium of Matter and Dark Energy**: Probably happened at redshift $z \simeq 1$ ($T \simeq 6 \cdot 10^{-4} \text{ eV}$).
 - Nobody knows when (or if) Dark Energy was created
 - If Dark Energy $\simeq \text{const}$: Plays no role for $T > 0.1 \text{ eV}$
 - In models with dynamical Dark Energy (“quintessence”): Can affect dynamics of BBN, creation of Dark Matter, . . .
2 Inflation

- Most models of inflation are not testable at colliders
2 Inflation

- Most models of inflation are not testable at colliders
- Recent counter-example: “MSSM inflation”, aka “A–term inflation” Allahverdi et al., hep–ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112
2 Inflation

- Most models of inflation are not testable at colliders
- Basic idea: Use “flat directions” in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi- and trilinear terms from soft SUSY breaking
2 Inflation

Most models of inflation are not testable at colliders

Basic idea: Use “flat directions” in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi– and trilinear terms from soft SUSY breaking

Establishes link between inflationary potential and sparticle masses!
2 Inflation

- Most models of inflation are not testable at colliders

- Recent counter-example: “MSSM inflation”, aka “A–term inflation” Allahverdi et al., hep–ph/0605035, 0608296, 0610069, 0610134, 0610243, 0702112

- Basic idea: Use “flat directions” in space of scalar MSSM fields as inflationary potential: No quartic terms in potential; bi– and trilinear terms from soft SUSY breaking

- Establishes link between inflationary potential and sparticle masses!

- SUSY can also play crucial role in re–heating Allahverdi et al., hep–ph/0505050, 0512227, 0603244
3 Dark Energy

Origin and nature of DE are completely unclear:
Biggest mystery in current cosmology!
3 Dark Energy

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

- In 4 dimensions: No connection to collider physics
3 Dark Energy

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

- In 4 dimensions: **No** connection to collider physics

- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)
3 Dark Energy

- Origin and nature of DE are completely unclear: Biggest mystery in current cosmology!

- In 4 dimensions: No connection to collider physics

- In models with small extra dimensions: Connections to collider physics may exist (radion–Higgs mixing; spectrum of KK states), but no example is known (to me)

- In models with large extra dimension: LHC may be black hole factory; “cosmon” should be produced in bh decay
4 Baryogenesis

Reminder: Sakharov conditions: Need
4 Baryogenesis

- Reminder: Sakharov conditions: Need
- Violation of C and CP symmetries
4 Baryogenesis

- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
4 Baryogenesis

- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
 - Deviation from thermal equilibrium (or CPT violation)
4 Baryogenesis

- Reminder: Sakharov conditions: Need
 - Violation of C and CP symmetries
 - Violation of baryon or lepton number
 - Deviation from thermal equilibrium (or CPT violation)

- Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): no direct connection to collider physics; indirect connections in some models possible
4 Baryogenesis

Reminder: Sakharov conditions: Need
- Violation of C and CP symmetries
- Violation of baryon or lepton number
- Deviation from thermal equilibrium (or CPT violation)

Many models work at very high temperatures (GUT baryogenesis; most leptogenesis; most Affleck–Dine): no direct connection to collider physics; indirect connections in some models possible

Some models work at rather low temperature: can be tested at colliders! Will discuss two such models.
Leptogenesis with degenerate neutrinos

- Basic idea of leptogenesis:
Leptogenesis with degenerate neutrinos

- Basic idea of leptogenesis:
 - Out-of-equilibrium decay of heavy “right–handed” neutrinos N_i creates lepton asymmetry
Leptogenesis with degenerate neutrinos

Basic idea of leptogenesis:
- Out-of-equilibrium decay of heavy “right-handed” neutrinos N_i creates lepton asymmetry
- Is partially transformed to baryon asymmetry via elw sphaleron transitions
Leptogenesis with degenerate neutrinos

- Basic idea of leptogenesis:
 - Out-of-equilibrium decay of heavy “right-handed” neutrinos N_i creates lepton asymmetry
 - Is partially transformed to baryon asymmetry via elw sphaleron transitions

- Standard thermal leptogenesis with hierarchical heavy neutrinos requires $T_R \geq M_1 \geq 10^8$ GeV: Not testable at colliders

Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004
Leptogenesis with degenerate neutrinos

Basic idea of leptogenesis:
- Out–of–equilibrium decay of heavy “right–handed” neutrinos N_i creates lepton asymmetry
- Is partially transformed to baryon asymmetry via elw sphaleron transitions

Standard thermal leptogenesis with hierarchical heavy neutrinos requires $T_R \geq M_1 \geq 10^8$ GeV: Not testable at colliders Buchmüller, Di Bari, Plümacher 2002/3/4; Davidson 2003; Giudice et al. 2004

If $M_2 - M_1 \ll M_1$: effective CP violation enhanced: Can have $M_1 \sim \text{TeV}$! Pilaftsis 1997/9; Pilaftsis & Underwood 2004
Leptogenesis (cont.d)

Enhanced for $i = 1, k = 2$
Leptogenesis (cont.d)

Enhanced for $i = 1$, $k = 2$

N_i only couple to Higgs boson(s): productions at colliders not easy!
Leptogenesis (cont.d)

N_i only couple to Higgs boson(s): productions at colliders not easy!

If $M_{N_{1,2}} \lesssim 500$ GeV: may see CPV at LHC! Bray et al., hep-ph/0702294
Leptogenesis (cont.d)

\[N_i \] only couple to Higgs boson(s): productions at colliders not easy!

If \(M_{N_{1,2}} \lesssim 500 \text{ GeV} \) **may see CPV at LHC!** Bray et al., hep-ph/0702294

Other scenarios with low-scale leptogenesis: Grossman, Kashti, Nir, Roulet 2004; Hambye et al. 2003; Raidal, Strumia, Turzynski 2004
Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of exact $SU(2)$. Baryon asymmetry generated during transport through bubble walls.
Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of exact $SU(2)$. Baryon asymmetry generated during transport through bubble walls.

B violation: elw sphalerons
Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of exact $SU(2)$. Baryon asymmetry generated during transport through bubble walls.

- B violation: elw sphalerons
- Out of equilibrium: Elw. phase transition was strongly 1st order
Electroweak Baryogenesis

Basic idea: Bubbles of true vacuum form in phase of exact $SU(2)$. Baryon asymmetry generated during transport through bubble walls.

- B violation: elw sphalerons
- **Out of equilibrium:** Elw. phase transition was strongly 1st order
- CP violation: in bubble wall
Electroweak Baryogenesis

- **Basic idea:** Bubbles of true vacuum form in phase of exact $SU(2)$. Baryon asymmetry generated during transport through bubble walls.
 - B violation: elw sphalerons
 - Out of equilibrium: Elw. phase transition was strongly 1st order
 - CP violation: in bubble wall

- Does not work in SM: cross–over (no phase transition) for $m_H \gtrsim 60$ GeV!
Baryogenesis (cont.d)

Mechanism can work in MSSM! Requirements:
Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: \(m_h \lesssim 120 \) GeV: testable at LHC!
Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L - \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L - \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_\mu \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV
Baryogenesis (cont.d)

- Mechanism can work in MSSM! Requirements:
 - Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
 - Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
 - Little $\tilde{t}_L - \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
 - CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV

- Remains to be checked:
Baryogenesis (cont.d)

Mechanism can work in MSSM! Requirements:

- Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
- Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
- Little $\tilde{t}_L - \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
- CP violation in $\tilde{\chi}$ sector: $\phi_\mu \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV

Remains to be checked:

- Determination of $\theta_{\tilde{t}}$ in presence of CP violation
Mechanism can work in MSSM! Requirements:

- Light SM–like Higgs: $m_h \lesssim 120$ GeV: testable at LHC!
- Light stop: $m_{\tilde{t}_1} \lesssim m_t$: testable at LHC?
- Little $\tilde{t}_L - \tilde{t}_R$ mixing: $\theta_{\tilde{t}} \simeq \pi/2$
- CP violation in $\tilde{\chi}$ sector: $\phi_{\mu} \gtrsim 0.1$, $|M_2|$, $|\mu| \lesssim 150$ GeV

Remains to be checked:

- Determination of $\theta_{\tilde{t}}$ in presence of CP violation
- Determination of ϕ_{μ} in relevant region of parameter space
5 Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)
Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$
5 Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.

h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Models of structure formation, X ray temperature of clusters of galaxies, . . .
5 Dark Matter

Several observations indicate existence of non-luminous Dark Matter (DM) (more exactly: missing force)

- Galactic rotation curves imply $\Omega_{DM} h^2 \geq 0.05$.

Ω: Mass density in units of critical density; $\Omega = 1$ means flat Universe.
h: Scaled Hubble constant. Observation: $h = 0.72 \pm 0.07$

- Models of structure formation, X ray temperature of clusters of galaxies, . . .

- Cosmic Microwave Background anisotropies (WMAP) imply $\Omega_{DM} h^2 = 0.105^{+0.007}_{0.013}$

Spergel et al., astro-ph/0603449
Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_\chi(T_f)\langle v\sigma(\chi\chi \rightarrow \text{any})\rangle = H(T_f)$$

n_χ: χ number density $\propto e^{-m_\chi/T}$

v: Relative velocity

$\langle \ldots \rangle$: Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$
Density of thermal DM

Decoupling of DM particle χ defined by:

$$n_\chi(T_f)\langle v\sigma(\chi\chi \rightarrow \text{any})\rangle = H(T_f)$$

n_χ: χ number density $\propto e^{-m_\chi/T}$

v: Relative velocity

$\langle \ldots \rangle$: Thermal average

H: Hubble parameter; in standard cosmology $\sim T^2/M_{\text{Planck}}$

Gives average relic mass density

$$\Omega_\chi \propto \frac{1}{\langle v\sigma(\chi\chi \rightarrow \text{any})\rangle}$$

Gives roughly right result for weak cross section!
Assumptions

\(\chi \) is effectively stable, \(\tau_\chi \gg \tau_U \): partly testable at colliders
Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders

- No entropy production after χ decoupled: Not testable at colliders
Assumptions

- χ is effectively stable, $\tau_\chi \gg \tau_U$: partly testable at colliders

- No entropy production after χ decoupled: Not testable at colliders

- H at time of χ decoupling is known: partly testable at colliders
Thermal WIMPs at colliders: Generalities

Only $\langle \nu \sigma (\chi \chi \rightarrow \text{anything}) \rangle$ is known
Thermal WIMPs at colliders: Generalities

- Only \(\langle v\sigma(\chi\chi \rightarrow \text{anything}) \rangle \) is known
- No guarantee that \(\chi \) couples to light quarks or electrons (which we can collide)
Thermal WIMPs at colliders: Generalities

- Only $\langle v\sigma(\chi\chi \rightarrow \text{anything})\rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
Thermal WIMPs at colliders: Generalities

- Only $\langle v\sigma(\chi\chi \rightarrow \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with “Überbau” of heavier, strongly interacting new particles decaying into χ
Thermal WIMPs at colliders: Generalities

- Only $\langle v\sigma(\chi\chi \rightarrow \text{anything}) \rangle$ is known
- No guarantee that χ couples to light quarks or electrons (which we can collide)
- At LHC: direct χ pair production is undetectable
- Hence can generally only test models with “Überbau” of heavier, strongly interacting new particles decaying into χ
- Such particles exist for best–motivated χ candidates: SUSY, Little Higgs, universal extra dimension
SUSY Dark Matter

Conditions for successful DM candidate:

- Must be stable \(\Rightarrow \chi = \text{LSP} \) and \(R \)–parity is conserved
 (if LSP in visible sector)
SUSY Dark Matter

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = \text{LSP}$ and R-parity is conserved (if LSP in visible sector)

- Exotic isotope searches $\Rightarrow \chi$ must be neutral
SUSY Dark Matter

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = \text{LSP}$ and $R-$parity is conserved (if LSP in visible sector)

- Exotic isotope searches $\Rightarrow \chi$ must be neutral

- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is . . .
SUSY Dark Matter

Conditions for successful DM candidate:

- Must be stable $\Rightarrow \chi = \text{LSP}$ and $R-$parity is conserved (if LSP in visible sector)

- Exotic isotope searches $\Rightarrow \chi$ must be neutral

- Must satisfy DM search limits $\Rightarrow \chi \neq \tilde{\nu}$

And the winner is . . .

$$\chi = \tilde{\chi}^0_1$$

(or in hidden sector)
\(\tilde{\chi}_1^0 \) relic density

To predict thermal \(\tilde{\chi}_1^0 \) relic density: have to know

\[
\sigma(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \text{SM particles})
\]

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!
$\tilde{\chi}_1^0$ relic density

To predict thermal $\tilde{\chi}_1^0$ relic density: have to know

$$\sigma(\tilde{\chi}_1^0\tilde{\chi}_1^0 \rightarrow \text{SM particles})$$

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

$$M_0 = \begin{pmatrix}
M_1 & 0 & -M_Z \cos\beta \sin\theta_W & M_Z \sin\beta \sin\theta_W \\
0 & M_2 & -M_Z \cos\beta \cos\theta_W & -M_Z \sin\beta \cos\theta_W \\
-M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 & -\mu \\
M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -\mu & 0
\end{pmatrix}$$
\(\tilde{\chi}_1^0 \) relic density

To predict thermal \(\tilde{\chi}_1^0 \) relic density: have to know

\[
\sigma(\tilde{\chi}_1^0\tilde{\chi}_1^0 \rightarrow \text{SM particles})
\]

In general, this requires knowledge of almost all sparticle and Higgs masses and of all couplings of the LSP!

Neutralino mass matrix in the MSSM:

\[
M_0 = \begin{pmatrix}
M_1 & 0 & -M_Z \cos\beta \sin\theta_W & M_Z \sin\beta \sin\theta_W \\
0 & M_2 & M_Z \cos\beta \cos\theta_W & -M_Z \sin\beta \cos\theta_W \\
-M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 & -\mu \\
M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -\mu & 0
\end{pmatrix}
\]

\(\rightarrow \) Can determine decomposition of \(\tilde{\chi}_1^0 \) by studying \(\tilde{\chi}_1^\pm, \tilde{\chi}_2^0, \tilde{\chi}_3^0 \).
\(\tilde{\chi}_1^0 \) annihilation in the MSSM

\[m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}} : \text{Needed for } \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f} \]
$\tilde{\chi}_1^0$ annihilation in the MSSM

1. $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}$

2. $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V\phi, \phi\phi$ (V: Massive gauge boson; ϕ: Higgs boson).
$\tilde{\chi}_1^0$ annihilation in the MSSM

- $m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}}$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}$

- $m_h, m_H, m_A, \alpha, \tan \beta$: Needed for $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V\phi, \phi \phi$ (V: Massive gauge boson; ϕ: Higgs boson).

- For many masses: lower bounds may be sufficient
\(\tilde{\chi}_1^0 \) annihilation in the MSSM

- \(m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}} \): Needed for \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f} \)

- \(m_h, m_H, m_A, \alpha, \tan \beta \): Needed for \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V\phi, \phi\phi \) (\(V \): Massive gauge boson; \(\phi \): Higgs boson).

For many masses: lower bounds may be sufficient

If coannihilation is important: final answer depends exponentially on mass difference
\(\tilde{\chi}_1^0 \) annihilation in the MSSM

- \(m_{\tilde{f}_L}, m_{\tilde{f}_R}, \theta_{\tilde{f}} \): Needed for \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f} \)

- \(m_h, m_H, m_A, \alpha, \tan \beta \): Needed for
 \(\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow f \bar{f}, VV, V\phi, \phi\phi \) (\(V \): Massive gauge boson; \(\phi \): Higgs boson).

- For many masses: lower bounds may be sufficient

- If coannihilation is important: final answer depends exponentially on mass difference

- Parameters in Higgs and squark sector are also needed to predict \(\tilde{\chi}_1^0 \) detection rate, i.e. \(\sigma(\tilde{\chi}_1^0 N \rightarrow \tilde{\chi}_1^0 N) \)
Impact on particle physics (mSUGRA)

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^\pm$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb
Impact on particle physics (mSUGRA)

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

- Higgs searches, in particular light CP–even Higgs search at LEP (parameterized)
Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^\pm$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

- Higgs searches, in particular light CP–even Higgs search at LEP (parameterized)

- Brookhaven $g_\mu - 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction
Impact on particle physics (mSUGRA)

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^\pm$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

- Higgs searches, in particular light CP–even Higgs search at LEP (parameterized)

- Brookhaven $g_\mu - 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction

- Radiative b decays (BELLE, . . .): Take $2.65 \cdot 10^{-4} \leq B(b \to s\gamma) \leq 4.45 \cdot 10^{-4}$
Impact on particle physics (mSUGRA)

Parameter space is constrained by:

- Sparticle searches, in particular $\tilde{\chi}_1^{\pm}$, $\tilde{\tau}_1$ searches at LEP: $\sigma < 20$ fb

- Higgs searches, in particular light CP–even Higgs search at LEP (parameterized)

- Brookhaven $g_\mu - 2$ measurement: Take envelope of constraints using τ and e^+e^- data for SM prediction

- Radiative b decays (BELLE, . . .): Take $2.65 \cdot 10^{-4} \leq B(b \to s\gamma) \leq 4.45 \cdot 10^{-4}$

- Simple CCB constraints (at weak scale only)
mSUGRA, $m_t = 178$ GeV, $\tan\beta = 10$, $\mu > 0$, $A_0 = 0$

All constraints except DM included

$\tilde{\tau}_1$ is LSP

h is too light

$\tilde{\chi}_1^+ \text{is too light}$
mSUGRA, $m_t = 178$ GeV, $\tan\beta = 10$, $\mu > 0$, $A_0 = 0$

All constraints included
Predicting $\Omega_{\tilde{\chi}_1^0} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}_1^0} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187
Predicting $\Omega_{\tilde{\chi}_1^0} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}_1^0} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

- “Bulk region”: $\tilde{\chi}_1^0 \chi_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!
Predicting $\Omega_{\tilde{\chi}_1^0} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}_1^0} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

- “Bulk region”: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!

- “Focus point” region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow V V, Z h \ (V = Z, W^{\pm})$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%
Predicting $\Omega_{\tilde{\chi}^0_1} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}^0_1} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

- "Bulk region": $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}^0_1$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}^0_1} h^2$ to 7%!

- "Focus point" region: $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow VV, Zh$ ($V = Z, W^\pm$) via \tilde{h} component of $\tilde{\chi}^0_1$: $\Omega_{\tilde{\chi}^0_1} h^2$ to 82%

- "Co–annihilation region": $m_{\tilde{\chi}^0_1} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}^0_1} h^2$ to 170%
Predicting $\Omega_{\tilde{\chi}_1^0} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}_1^0} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

- “Bulk region”: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!

- “Focus point” region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow V V, Z h \ (V = Z, W^\pm)$ via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%

- “Co–annihilation region”: $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%

- “Funnel region”: $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%
Predicting $\Omega_{\tilde{\chi}_1^0} h^2$ from LHC data

The precision with which $\Omega_{\tilde{\chi}_1^0} h^2$ can be predicted strongly depends on SUSY parameters: black Battaglia et al., hep–ph/0602187

- "Bulk region": $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \ell^+ \ell^-$ via $\tilde{\ell}$ exchange, needs rather light $\tilde{\chi}_1^0$, $\tilde{\ell}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 7%!

- "Focus point" region: $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow VV, Zh$ ($V = Z, W^\pm$) via \tilde{h} component of $\tilde{\chi}_1^0$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 82%

- "Co–annihilation region": $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 170%

- "Funnel region": $m_{\tilde{\chi}_1^0} \simeq m_A/2$: $\Omega_{\tilde{\chi}_1^0} h^2$ to 400%

Based on spectrum information only!
Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212
Hidden Sector Dark Matter

Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212 . . .

- **The gravitino** Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski; . . .
Any mSUGRA parameter set can have the right DM density if LSP is in hidden or invisible sector. It could be:

- **The axino** Covi et al., hep-ph/9905212
- **The gravitino** Buchmüller et al.; J.L. Feng et al.; J. Ellis et al.; Di Austri and Roszkowski;
- **A modulino**
Unfortunately, Ω_{DM} can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}} h^2 \propto T_{\text{reheat}}$
Unfortunately,

- Ω_{DM} can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}} h^2 \propto T_{\text{reheat}}$

- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived
Unfortunately,

- Ω_{DM} can no longer be predicted from particle physics alone; e.g. $\Omega_{\tilde{G}} h^2 \propto T_{\text{reheat}}$

- hidden sector LSP may leave no imprint at colliders, unless lightest visible sparticle (LVSP) is charged; LVSP is quite long-lived

- Detection of hidden sector DM seems impossible: Cross sections are way too small!
Nonstandard cosmology

Can either reduce or increase density of stable $\tilde{\chi}_1^0$
Nonstandard cosmology

Can either reduce or increase density of stable $\tilde{\chi}_{1}^{0}$

- **Increase**: through increase of $H(T_f)$; or through non-thermal $\tilde{\chi}_{1}^{0}$ production mechanisms.
Nonstandard cosmology

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- **Increase**: through increase of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.

- **Reduce**: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat}.
Nonstandard cosmology

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- **Increase**: through increase of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.
- **Reduce**: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat}.

None of these mechanisms in general has observable consequences (except DM density).
Nonstandard cosmology

Can either reduce or increase density of stable $\tilde{\chi}_1^0$

- **Increase**: through increase of $H(T_f)$; or through non-thermal $\tilde{\chi}_1^0$ production mechanisms.

- **Reduce**: through decrease of $H(T_f)$; through late entropy production; or through low T_{reheat}.

None of these mechanisms in general has observable consequences (except DM density).

If $\tilde{\chi}_1^0$ makes DM: Can use measurements at colliders to constrain cosmology!
Dark Energy: Difficult to probe at colliders; perhaps some possibilities if $D > 4$
6 Summary

- **Dark Energy**: Difficult to probe at colliders; perhaps some possibilities if $D > 4$

- **Baryogenesis**: Some models can be tested at colliders, others cannot
6 Summary

- **Dark Energy**: Difficult to probe at colliders; perhaps some possibilities if $D > 4$

- **Baryogenesis**: Some models can be tested at colliders, others cannot

- **Dark Matter:**
6 Summary

- Dark Energy: Difficult to probe at colliders; perhaps some possibilities if $D > 4$

- Baryogenesis: Some models can be tested at colliders, others cannot

- Dark Matter:
 - Many models can be tested at colliders, some cannot
6 Summary

- **Dark Energy**: Difficult to probe at colliders; perhaps some possibilities if $D > 4$

- **Baryogenesis**: Some models can be tested at colliders, others cannot

- **Dark Matter**:
 - Many models can be tested at colliders, some cannot
 - SUSY WIMPs: Relic density often depends very sensitively on parameters: need very accurate measurements in collider experiments!