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A typical spiral galaxy
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Rotation curve

Spiral galaxies rotate

For object on stable circular orbit:

centripetal force = gravitational force

v2

R
= GN

M(R)

R2

M(R): Mass w/in orbit

For large R: M(R) −→ const., i.e. expect v(R) ∝ 1/
√

R

Observe: v(R) ≃ const.

=⇒ M(R) ∝ R: Invisible, “Dark” Matter forms halo
around visible galaxy
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True picture of a galaxy
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A typical galaxy cluster
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Dark matter in clusters of galaxies

Virial theorem: 〈Ekin〉 = −1
2〈Epot〉 ∝ Mcluster

=⇒ total mass > 10× visible mass!
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Dark matter in clusters of galaxies

Virial theorem: 〈Ekin〉 = −1
2〈Epot〉 ∝ Mcluster

=⇒ total mass > 10× visible mass!

Similar argument holds for single atoms:
Temperature of gas in cluster ∝ Mcluster!
Gives consistent result.
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Dark matter in clusters of galaxies

Virial theorem: 〈Ekin〉 = −1
2〈Epot〉 ∝ Mcluster

=⇒ total mass > 10× visible mass!

Similar argument holds for single atoms:
Temperature of gas in cluster ∝ Mcluster!
Gives consistent result.

“Gravitational lensing”: Mass deflects light, by angle ∝
mass: Most direct way to measure
Mcluster ≥ 10 × Mvisible!
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Same cluster inX−ray light
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Example of gravitational lensing
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Cosmic Microwave Background (CMB)
(CMB)

Prediction: Gamov 1950; Discovery: Penzias und
Wilson 1964

Mean temperature: 2.7 K (= −270◦C)

Temperature variation: δT ≃ 10−4 K

From angular distribution and size of these variations:
can determine cosmological parameters!
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The Microwave Sky

Dark Matter – p. 11/44



Results of CMB Analysis

Total mass ≃ 7× mass of “ordinary” (baryonic) matter
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Results of CMB Analysis

Total mass ≃ 7× mass of “ordinary” (baryonic) matter

Universe is flat (euclidian)
=⇒ total energy density ≃ 3× mass density

About 2/3 of total mass/energy density in form of “Dark
Energy”! Confirmed by observations of distant
supernovae. Expansion of Universe is accelarating:
Dark Energy has “negative pressure”!

Dark Matter – p. 12/44



Results of CMB Analysis

Total mass ≃ 7× mass of “ordinary” (baryonic) matter

Universe is flat (euclidian)
=⇒ total energy density ≃ 3× mass density

About 2/3 of total mass/energy density in form of “Dark
Energy”! Confirmed by observations of distant
supernovae. Expansion of Universe is accelarating:
Dark Energy has “negative pressure”!

Universal Dark Matter density: ΩDMh2 = 0.105+0.007
−0.013

Spergel et al., astro–ph/0603449
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70% Dark Energy

25% non-baryonic DM

0.8% known
baryons

4.2% unknown
baryons

Composition of the Universe
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In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)
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In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)

Ca. 10−20 g Dark Matter (DM)
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In this room

1 ℓ contains:

Ca. 1 g baryonic matter (air)

Ca. 10−20 g Dark Matter (DM)

Ca. 10−25 g–equivalent Dark Energy (DE)
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis
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Big Bang Nucleosynthesis
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2 ≃ 0.02
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Need for non–baryonic DM

Total baryon density is determined by:

Big Bang Nucleosynthesis

Analyses of CMB data

Consistent result: Ωbarh
2 ≃ 0.02

=⇒ Need non–baryonic DM!
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Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!
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Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01
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Need for exotic particles

Only possible non–baryonic particle DM in SM: light
neutrinos!

Make hot DM: do not describe structure formation correctly
=⇒ Ωνh

2 <∼ 0.01

=⇒ Need exotic particles as DM!

Possible loophole: primordial black holes; not easy to make
in sufficient quantity sufficiently early.
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)
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Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)

which still survives today (lifetime τ ≫ 1010 yrs)
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What we need

Since h2 ≃ 0.5: Need ∼ 20% of critical density in

Matter (with negligible pressure, w ≃ 0)

which still survives today (lifetime τ ≫ 1010 yrs)

and has (strongly) suppressed coupling to elm radiation
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Remarks

Precise “WMAP” determination of DM density hinges
on assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!
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Remarks

Precise “WMAP” determination of DM density hinges
on assumption of “standard cosmology”, including
assumption of nearly scale–invariant primordial
spectrum of density perturbations: almost assumes
inflation!

Evidence for ΩDM >∼ 0.2 much more robust than that!
(Does, however, assume standard law of gravitation.)
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Possible problems with cold DM

Simulations of structure formation show some
discrepancies with observations on (sub–)galactic length
scales:

Too many sub–halos are predicted: Might well be “dark
dwarves” (w/o baryons; perhaps blown out by first
supernovae)
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Possible problems with cold DM

Simulations of structure formation show some
discrepancies with observations on (sub–)galactic length
scales:

Too many sub–halos are predicted: Might well be “dark
dwarves” (w/o baryons; perhaps blown out by first
supernovae)

Simulations seem to over–predict DM density near
centers of galaxies (“cusp problem”). Warning: many
things going on in these regions!
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter
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DM is collisionsless!

Observation of merging cluster 1E0657-56 (“bullet cluster”):

Using X–rays (CHANDRA): observes hot (baryonic) gas

Using gravitational lensing: observes mass

Result: Collision shock slows down the (ionized) gas, but
not the Dark Matter
Resulting bound on DM–DM scattering cross section
constrains models of interacting DM! Markevitch et al.,

astro–ph/0309303
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Bullet cluster
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The Standard Model of Particle Physics

Basic ingredients:

Matter particles: Spin–1/2 fermions (quarks and
leptons)

Dark Matter – p. 22/44



The Standard Model of Particle Physics

Basic ingredients:

Matter particles: Spin–1/2 fermions (quarks and
leptons)

Interactions determined by demanding invariance of L
under SU(3) × SU(2) × U(1)Y transformations =⇒
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The Standard Model of Particle Physics

Basic ingredients:

Matter particles: Spin–1/2 fermions (quarks and
leptons)

Interactions determined by demanding invariance of L
under SU(3) × SU(2) × U(1)Y transformations =⇒
Force carriers: Spin–1 bosons (gluons, photon,
W±, Z0)

SU(2) × U(1) invariance forbids all particle masses =⇒
Need Higgs mechanism for spontaneous symmetry
breaking; requires elementary spin–0 Higgs boson(s)
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The naturalness/hierarchy problem

Standard Problem of Standard Model of particle physics:
corrections to Higgs boson mass diverge quadratically!

t

t̄
φ φ

ft ft

δm2

φ,t = 3f2
t

8π2 Λ
2 + O(Λ/mφ)

Λ: cut–off for momentum in loop.
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t

t̄
φ φ

ft ft

δm2

φ,t = 3f2
t

8π2 Λ
2 + O(Λ/mφ)

Λ: cut–off for momentum in loop.

mφ Likes to be at highest relevant mass scale, e.g.
MGUT ∼ 1016 GeV, MPlanck ∼ 1018 GeV!
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The naturalness/hierarchy problem

Standard Problem of Standard Model of particle physics:
corrections to Higgs boson mass diverge quadratically!

t

t̄
φ φ

ft ft

δm2

φ,t = 3f2
t

8π2 Λ
2 + O(Λ/mφ)

Λ: cut–off for momentum in loop.

mφ Likes to be at highest relevant mass scale, e.g.
MGUT ∼ 1016 GeV, MPlanck ∼ 1018 GeV!

If m2
φ,phys. = m2

φ,0 + δm2
φ =≃ (100 GeV)2: Need to finetune

m2
φ,0 to 1 part in 1030!
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Nature abhors finetuning

Quantum corrections to gauge or Yukawa couplings at
worst diverge logarithmically: not so bad even for
Λ = MPlanck.
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Nature abhors finetuning

Quantum corrections to gauge or Yukawa couplings at
worst diverge logarithmically: not so bad even for
Λ = MPlanck.

Standard cosmology has “flatness problem”:
ΩBBN − 1 ≃ 10−16 (Ωnow − 1)

Here: Ω = ρ/ρcrit; Ω = 1 means flat Universe.
Is solved by inflation, which predicts:

Ωnow ≃ 1

Approximately scale invariant spectrum of density
perturbations

Both predictions were confirmed by WMAP!
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Supersymmetry solves finetuning problem

Postulate symmetry between bosons and fermions:
boson → fermion, fermion → boson

This is called a supersymmetry to distinguish it from the
usual (gauge) symmetries.
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Supersymmetry solves finetuning problem

Postulate symmetry between bosons and fermions:
boson → fermion, fermion → boson

This is called a supersymmetry to distinguish it from the
usual (gauge) symmetries.

Requires doubling of particle spectrum: each known
particle gets superpartner!

In particular: higgsino h̃ is superpartner of Higgs boson φ.

Quantum corrections:
δmφ =

SUSY
δmh̃ ∝ ln Λ

mφ

No quadratic divergencies!
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Diagrammatically: each chirality state of t quark has scalar
superpartner t̃L, t̃R: get new corrections:

φ

t̃L,R

f2
t
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Diagrammatically: each chirality state of t quark has scalar
superpartner t̃L, t̃R: get new corrections:

φ

t̃L,R

f2
t

δm2
φ,t̃

= −3f2

t

8π2 Λ2 + · · · = −δm2
φ,t + O

(

[m2
t − m2

t̃
] ln Λ

mt

)

Quadratic divergencies cancel exactly!
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Other arguments for Supersymmetry

Biggest possible symmetry of interacting QFT:
(Lorentz symmetry) ⊗ (gauge symmetry) ⊗ Supersymmetry !
HLS theorem
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Other arguments for Supersymmetry
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(Lorentz symmetry) ⊗ (gauge symmetry) ⊗ Supersymmetry !
HLS theorem
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New particles automatically lead to unification of gauge
couplings at scale MGUT ≃ 2 · 1016 GeV.
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Other arguments for Supersymmetry

Biggest possible symmetry of interacting QFT:
(Lorentz symmetry) ⊗ (gauge symmetry) ⊗ Supersymmetry !
HLS theorem

Local supersymmetry invariance implies invariance
under coordinate trafos, i.e. GR: local SUSY ≡ SUGRA

New particles automatically lead to unification of gauge
couplings at scale MGUT ≃ 2 · 1016 GeV.

Automatically contains good Dark Matter candidate
(see below).
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Interactions of superparticles

Are largely determined by supersymmetry!

eQf

γ
f

f̄

ff

φ
f

f̄

γ
f̃

˜̄feQf

γ̃

˜̄f

f

h̃

f̃

f̄
ff

φ

φ

f̃

˜̄f
f2

f
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Interactions of superparticles

Are largely determined by supersymmetry!

eQf

γ
f

f̄

ff

φ
f

f̄

γ
f̃

˜̄feQf

γ̃

˜̄f

f

h̃

f̃

f̄
ff

φ

φ

f̃

˜̄f
f2

f

Note: Even number of superpartners at each vertex ⇒ the
lightest superparticle (LSP) is stable!
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Breaking supersymmetry

Exact SUSY predicts mparticle = msparticle ⇒ SUSY must be
broken!
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Exact SUSY predicts mparticle = msparticle ⇒ SUSY must be
broken!

Two basic approaches:

Postulate simple form of supersymmetry breaking at
some high energy scale: Good for global analyses
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Breaking supersymmetry

Exact SUSY predicts mparticle = msparticle ⇒ SUSY must be
broken!

Two basic approaches:

Postulate simple form of supersymmetry breaking at
some high energy scale: Good for global analyses

Allow general values for parameters relevant for specific
process: Good for dedicated phenomenological
analyses
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Supersymmetric Dark Matter

LSP χ̃0
1 has all properties of good DM candidate:
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Supersymmetric Dark Matter

LSP χ̃0
1 has all properties of good DM candidate:

It is neutral, hence dark (and evades constraints on
exotic isotopes)

It is stable (in simple SUSY models, with conserved R
parity)

It has the right (thermal) relic density for some range of
model parameters

Note: DM is free bonus of Supersymmetry!
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Dark Matter production

Let χ̃ be the LSP, nχ̃ its number density (unit: GeV3).
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Dark Matter production

Let χ̃ be the LSP, nχ̃ its number density (unit: GeV3).

Evolution of nχ̃ determined by Boltzmann equation:

dnχ̃

dt
+ 3Hnχ̃ = −〈σannv〉

(

n2
χ̃ − n2

χ̃, eq

)

H = Ṙ/R : Hubble parameter
〈. . . 〉 : Thermal averaging
σann = σ(χ̃χ̃ → SM particles)
v : relative velocity between χ̃’s in their cms
nχ̃, eq : χ̃ density in full equilibrium
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Thermal LSP Dark Matter

Assume χ̃ was in full thermal equilibrium after inflation.
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Thermal LSP Dark Matter

Assume χ̃ was in full thermal equilibrium after inflation.
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nχ̃〈σannv〉 > H

For T < mχ̃ : nχ̃ ≃ nχ̃, eq ∝ T 3/2e−mχ̃/T , H ∝ T 2
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Requires
nχ̃〈σannv〉 > H

For T < mχ̃ : nχ̃ ≃ nχ̃, eq ∝ T 3/2e−mχ̃/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

Dark Matter – p. 32/44



Thermal LSP Dark Matter

Assume χ̃ was in full thermal equilibrium after inflation.

Requires
nχ̃〈σannv〉 > H
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Thermal LSP Dark Matter

Assume χ̃ was in full thermal equilibrium after inflation.

Requires
nχ̃〈σannv〉 > H

For T < mχ̃ : nχ̃ ≃ nχ̃, eq ∝ T 3/2e−mχ̃/T , H ∝ T 2

Inequality cannot be true for arbitrarily small T ; point where
inequality becomes (approximate) equality defines
decoupling (freeze–out) temperature TF .

For T < TF : LSP production negligible, only annihilation
relevant in Boltzmann equation.

Gives
Ωχ̃h2 ∝ 1

〈vσann〉
∼ 0.1 for σann ∼ pb
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Application: Constraining SUSY Parameter Space

Here: for mSUGRA ≡ CMSSM: define spectrum through:
m0: Common scalar mass at GUT scale;
m1/2: Common gaugino mass at GUT scale;
A0: Common tri–linear scalar interaction at GUT scale;
tanβ: Ratio of Higgs vevs; signµ.

Advantages of mSUGRA:

FCNC small (but b → sγ, Bs → µ+µ− do constrain
parameter space)
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Application: Constraining SUSY Parameter Space

Here: for mSUGRA ≡ CMSSM: define spectrum through:
m0: Common scalar mass at GUT scale;
m1/2: Common gaugino mass at GUT scale;
A0: Common tri–linear scalar interaction at GUT scale;
tanβ: Ratio of Higgs vevs; signµ.

Advantages of mSUGRA:

FCNC small (but b → sγ, Bs → µ+µ− do constrain
parameter space)

Radiative symmetry breaking: loop corrections drive
(combination of) squared Higgs masses negative,
leaving squared sfermion masses positive

Over much of parameter space, χ̃0
1 is stable LSP!
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Example: mt = 172.7 GeV, tan β = 10, A0 = 0, µ > 0

(Djouadi, MD, Kneur, hep–ph/0602001)

m0 [GeV]

m1/2 [GeV]

Green: b → sγ excluded
Pink: Higgs search excl.
Magenta: 111 GeV ≤ mh ≤ 114 GeV
Red: 114 GeV ≤ mh ≤ 117 GeV
Dark grey: mτ̃1

< mχ̃0

1

Light grey: |µ|2 < 0 or sparticle search excl.

Black: DM favored
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Is the apparently small size of the allowed parameter
parameter space a problem? Not necessarily . . .

1e-06 0.0001 0.01 1 100
m

e
 [GeV]

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

α

QED parameter space
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Mass Bounds
More meaningful than “size of allowed parameter space”

mSUGRA, all parameters scanned over allowed region

particle minimal mass [GeV] min, max mass

basic incl. b → sγ incl. DM aggr. aµ incl. DM

χ̃0

1
52 52 53 53, 359 55, 357

χ̃±
1

105 105 105 105, 674 105, 667

χ̃0

3
135 135 135 135, 996 292, 991

τ̃1 99 99 99 99, 1020 99, 915

h 91 91 91 91, 124 91, 124

H± 128 128 128 128, 979 128, 960

g̃ 359 380 380 399, 1880 412, 1870

d̃R 406 498 498 498, 1740 498, 1740

t̃1 102 104 104 231, 1440 244, 1440
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Low Temperature Scenarios

Found semi–analytic solution of Boltzmann eq. for low
post–inflationary reheat temperature, TR <∼ TF . MD, Imminniyaz,

Kakizaki, hep-ph/0603165
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Low Temperature Scenarios

Found semi–analytic solution of Boltzmann eq. for low
post–inflationary reheat temperature, TR <∼ TF . MD, Imminniyaz,

Kakizaki, hep-ph/0603165

Assuming purely thermal LSP production: (x0 = mχ̃/TR)
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Low Temperature Scenarios

Found semi–analytic solution of Boltzmann eq. for low
post–inflationary reheat temperature, TR <∼ TF . MD, Imminniyaz,

Kakizaki, hep-ph/0603165

Assuming purely thermal LSP production: (x0 = mχ̃/TR)
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=⇒ TR ≥ mχ

23

Holds independently of σann!
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Dark Matter detection 1: “Indirect”

LSPs are everywhere!
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Dark Matter detection 1: “Indirect”

LSPs are everywhere!

In regions with increased LSP density: LSPs can
annihilate into SM particles even today:

In halo of galaxies
Near center of galaxies
Inside the Sun or Earth
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Indirect Dark Matter detection: signals

Slow p̄, fast e+: background? Propagation?
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Indirect Dark Matter detection: signals

Slow p̄, fast e+: background? Propagation?

Slow d̄: Propagation?

Photons: Background?

GeV Neutrinos: Low rate

At any given time, several claimed signals, but none is very
reliable.
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Dark Matter detection 2: “Direct”

LSPs are everywhere!
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Dark Matter detection 2: “Direct”

LSPs are everywhere!

Can elastically scatter on nucleus in detector:
χ̃ + N → χ̃ + N

Measured quantity: recoil energy of N

Dark Matter – p. 40/44



Dark Matter detection 2: “Direct”

LSPs are everywhere!

Can elastically scatter on nucleus in detector:
χ̃ + N → χ̃ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .
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Dark Matter detection 2: “Direct”

LSPs are everywhere!

Can elastically scatter on nucleus in detector:
χ̃ + N → χ̃ + N

Measured quantity: recoil energy of N

Detection needs ultrapure materials in
deep–underground location; way to distinguish recoils
from β, γ events; neutron screening; . . .

Is being pursued vigorously around the world!
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min
= mNQ/(2m2

r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution
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Direct WIMP detection: theory

Counting rate given by
dR
dQ = AF 2(Q)

∫ vesc

vmin

f1(v)
v dv

Q: recoil energy
A= ρσ0/(2mχmr) = const.
F (Q): nuclear form factor
v: WIMP velocity in lab frame
v2

min
= mNQ/(2m2

r)

vesc: Escape velocity from galaxy
f1(v): normalized one–dimensional WIMP velocity distribution

In principle, can invert this relation to measure f1(v)!
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Recoil spectrum: prediction and simulated measurement
MD, Shan, in progress
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500 events on Ge
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f1(v): prediction and simulated measurement
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f1(v): prediction and simulated measurement
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500 events on Ge: stat. error only

A few moments of f1(v) may be measurable with relatively
few events
Once f1(v) and σ(χ̃N → χ̃N) are known: Can measure local
ρχ̃.
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Summary

Compelling astrophysical evidence for exotic Dark
Matter
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Summary

Compelling astrophysical evidence for exotic Dark
Matter

Neutralinos in mSUGRA remain well motivated, viable
candidate

Thermal production of DM particles remains most
attractive mechanism: least dependent on details of
cosmology

If DM is made from thermal LSPs: lower bound on TR

increases by factor ∼ 104

LSP Dark Matter can be detected in a variety of ways;
once detected, allows new probes of Universe

Dark Matter – p. 44/44
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