Origin of Dark Matter

Manuel Drees

Bonn University
1 Introduction
Contents

1 Introduction
2 Network Activities
Contents

1 Introduction
2 Network Activities
3 Other Developments
Contents

1 Introduction
2 Network Activities
3 Other Developments
4 Summary
1 Introduction

There’s still no viable alternative to Dark Matter
1 Introduction

There's still no viable alternative to Dark Matter

CMB anisotropies (WMAP 5 yr) imply
\[\Omega_{DM} h^2 = 0.1099 \pm 0.0062 \]
Dunkley et al., arXiv:0803.0586 [astro-ph]

Was \[\Omega_{DM} h^2 = 0.105^{+0.007}_{-0.013} \]
Spergel et al., astro-ph/0603449
Network activities: Making DM

Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.
Network activities: Making DM

Let χ be a generic DM particle, n_χ its number density (unit: GeV3). Assume $\chi = \bar{\chi}$, i.e. $\chi\chi \leftrightarrow$ SM particles is possible, but single production of χ is forbidden by some symmetry.

Evolution of n_χ determined by Boltzmann equation; in standard cosmology:

$$\frac{dn_\chi}{dt} + 3H n_\chi = -\langle \sigma_{\text{ann}} v \rangle \left(n_\chi^2 - n_{\chi, \text{eq}}^2 \right)$$

$H = \dot{R}/R$: Hubble parameter
$\langle \ldots \rangle$: Thermal averaging
$\sigma_{\text{ann}} = \sigma(\chi\chi \rightarrow \text{SM particles})$
v : relative velocity between χ’s in their cms
$n_{\chi, \text{eq}}$: χ density in full equilibrium
Neutralino DM

Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

- **Finetuning in NUHM**: “Finetuning” decreases if several contributions to σ_{ann} happen to be comparable (which is not generic). [Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]]
Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

- **Finetuning in NUHM**: “Finetuning” decreases if several contributions to σ_{ann} happen to be comparable (which is not generic). Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]

Neutralino DM

Two papers investigated neutralino DM in SUGRA scenarios with non–universal boundary conditions:

- **Finetuning in NUHM**: “Finetuning” decreases if several contributions to σ_{ann} happen to be comparable (which is not generic). Ellis, King, Roberts, arXiv:0711.2741 [hep-ph]

Decreasing $H(T \lesssim T_F)$ in ST gravity: Need several “matter sectors” with different CFs to decrease H; increasing H is easier. Catena, Fornengo, Masiero, Pietroni, Schelke, arXiv:0712.3173 [hep-ph].
DM Candidates

DM Candidates

- Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV–ish doubly charged Higgses. $S \rightarrow e^+e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].
DM Candidates

- Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV–ish doubly charged Higgses. $S \rightarrow e^+ e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].

- 10–point test: $\Omega_\chi h^2$; cold; neutral; BBN; stellar evolution; self–interactions; direct searches; γ rays; other astrophysics; testable. Taoso, Bertone, Masiero, arXiv:0711.4996 [astro-ph].
DM Candidates

- Type-II seesaw and singlet scalar DM: Can also incorporate TeV scale leptogenesis, with TeV–ish doubly charged Higgses. $S \rightarrow e^+e^-$ can be significant if $m_S \sim 3$ MeV. McDonald, Sahu, Sarkar, arXiv:0711.4820 [hep-ph].

- 10–point test: $\Omega_\chi h^2$; cold; neutral; BBN; stellar evolution; self–interactions; direct searches; γ rays; other astrophysics; testable. Taoso, Bertone, Masiero, arXiv:0711.4996 [astro-ph].

DM Candidates (cont.’d)

- **Gravitinos:** Production through WW fusion. Ferrantelli, arXiv:0712.2171 [hep-ph].

- **Flaxino \tilde{F}:** Is the (lightest) axino in multi–field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \rightarrow \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph].
DM Candidates (cont.’d)

- **Flaxino \tilde{F}**: Is the (lightest) axino in multi–field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \rightarrow \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph]. ★

DM Candidates (cont.’d)

- **Flaxino \tilde{F}**: Is the (lightest) axino in multi–field, flat direction axion models, with $f_a \sim 10^{10}$ GeV: $\tilde{\tau}_1 \rightarrow \tau + \tilde{F}$ is sufficiently fast, but detectable. Chun, H.B. Kim, Kohri, Lyth, arXiv:0801.4108 [hep-ph]. ★

- **Z_2 singlino**: OK if it interacts with Higgses through scalar S with $m_S \lesssim 10$ TeV; applicable to NMSSM; does not need R–parity. McDonald, Sahu, arXiv:0802.3847 [hep-ph].
Constraining DM properties with INTEGRAL/SPI: No evidence for strong angular variation of flux in X–ray lines between 20 keV and 7 MeV; constrains e.g. “sterile” ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].
DM detection

- **Constraining DM properties with INTEGRAL/SPI:** No evidence for strong angular variation of flux in X–ray lines between 20 keV and 7 MeV; constrains e.g. “sterile” ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].

- **DM caustics and indirect detection:** Caustics relevant only for quite extreme NFW–type distributions. Mohayee, Salati, arXiv:0801.3271 [astro-ph].
Constraining DM properties with INTEGRAL/SPI: No evidence for strong angular variation of flux in X–ray lines between 20 keV and 7 MeV; constrains e.g. “sterile” ν. Boyarsky, Malyshev, Neronov, Ruchayskiy, arXiv:0710.4922 [astro-ph].

DM detection (cont.’d)

- WIMP–mass from direct detection experiments: Can be done model–independently with \(\geq 2 \) positive detections.

DM detection (cont.’d)

- **WIMP–mass from direct detection experiments:** Can be done model–independently with \(\geq 2 \) positive detections.

- **Solar \(\nu \) background to direct WIMP detection:** Relevant only for \(\sigma_{\chi p} < 10^{-10} \) pb, \(Q \lesssim 5 \) keV.
Outside developments: Experiment

- Direct detection sensitivity improving quickly: Xenon, CDMS–II, COUPP, KIMS, …
Outside developments: Experiment

- Direct detection sensitivity improving quickly: Xenon, CDMS–II, COUPP, KIMS, …
- LHC isn’t here yet, but hopefully coming!!!
Outside developments: Experiment

- Direct detection sensitivity improving quickly: Xenon, CDMS–II, COUPP, KIMS, . . .
- LHC isn’t here yet, but *hopefully* coming!!!
- PAMELA preliminary data confirm HEAT excess; Phys. Rev. (sensibly) refuses to publish theory papers on this until data are official.
Summary and Conclusions

- We’re still pretty sure that non–baryonic Dark Matter exists
Summary and Conclusions

- We’re still pretty sure that non–baryonic Dark Matter exists
- We still don’t know what it’s made of
Summary and Conclusions

bullet We’re still pretty sure that non–baryonic Dark Matter exists
bullet We still don’t know what it’s made of
bullet Experiment may give clues soon: LHC, GLAST, PAMELA, Xenon–100, . . .