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Introduction: Finetuning Problem

In SM: loop corrections to squared Higgs boson mass
diverge quadratically!
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φ =

Λ2
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t + 2g2 + . . .
)

Λ: quadratic momentum cut–off

=⇒ Difficult to keep mφ much below highest energy where
SM is applicable!
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SUSY to the Rescue!

Supersymmetry postulates existence of superpartners with
spin differing by 1/2 unit, “same” interactions
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SUSY to the Rescue!

Supersymmetry postulates existence of superpartners with
spin differing by 1/2 unit, “same” interactions
=⇒ additional diagrams exist:
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Want δm2
φ ≤ (100 GeV)2 =⇒ need sparticle masses <∼ 1 TeV!
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Remarks

Smaller sparticle masses are better:
finetuning ∝ m2

t̃
,m2

fW
!

MSSM at the LHC – p. 5/35



Remarks

Smaller sparticle masses are better:
finetuning ∝ m2

t̃
,m2

fW
!

Argument strictly only applies to t̃, W̃ , Z̃ masses

MSSM at the LHC – p. 5/35



Remarks

Smaller sparticle masses are better:
finetuning ∝ m2

t̃
,m2

fW
!

Argument strictly only applies to t̃, W̃ , Z̃ masses

But:
g̃ couples strongly to t̃ : mg̃ ≫ mt̃2

not possible

Get (new) term δm2
φ ∼ g2

Y Yφ

8π2

∑
f̃
Y

f̃
m2

f̃

(U(1)Y D−term)
=⇒ Need all sfermions below (few) TeV! Or cancellations.

MSSM at the LHC – p. 5/35



Remarks

Smaller sparticle masses are better:
finetuning ∝ m2

t̃
,m2

fW
!

Argument strictly only applies to t̃, W̃ , Z̃ masses

But:
g̃ couples strongly to t̃ : mg̃ ≫ mt̃2

not possible

Get (new) term δm2
φ ∼ g2

Y Yφ

8π2

∑
f̃
Y

f̃
m2

f̃

(U(1)Y D−term)
=⇒ Need all sfermions below (few) TeV! Or cancellations.

Calculation holds for mass in potential, not physical
mass.
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Other reasons for weak–scale SUSY

Muon magnetic moment: expt. ∼ 3 sigma above SM
prediction; can be fixed via “light” µ̃, ν̃µ, gauginos.
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Other reasons for weak–scale SUSY

Muon magnetic moment: expt. ∼ 3 sigma above SM
prediction; can be fixed via “light” µ̃, ν̃µ, gauginos.

Unification of gauge couplings: Logarithmically
sensitive to sparticle masses

Dark Matter: can tolerate mχ̃0

1
> 1 TeV.
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Basics of MSSM Phenomenology

SUSY signals at LHC dominated by production and decay
of squarks and gluinos!
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Basics of MSSM Phenomenology

SUSY signals at LHC dominated by production and decay
of squarks and gluinos!
Partonic cross sections:(LO QCD; mg̃ = mq̃ = ŝ/8; nf = 5 deg. squarks)

Process σ̂
[
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ŝ

]

qiq̄j → q̃ ¯̃q 0.30δij + 0.47

gg → q̃ ¯̃q 0.36

qiqj → q̃q̃ 0.47 − 0.065δij

qq̄ → g̃g̃ 0.16

qg → q̃g̃ 1.21

gg → g̃g̃ 2.45
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SUSY signals at LHC dominated by production and decay
of squarks and gluinos!
Partonic cross sections:(LO QCD; mg̃ = mq̃ = ŝ/8; nf = 5 deg. squarks)

Process σ̂
[

πα2

s

ŝ

]

qiq̄j → q̃ ¯̃q 0.30δij + 0.47

gg → q̃ ¯̃q 0.36

qiqj → q̃q̃ 0.47 − 0.065δij

qq̄ → g̃g̃ 0.16

qg → q̃g̃ 1.21

gg → g̃g̃ 2.45

Reminiscent of hierarchy of QCD 2 → 2 cross sections: SUSY at
work!
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Partonic cross sections (cont’d)

First computed in 1980’s. Harrison & Llewellyn–Smith 1983; Dawson, Eichten

& Quigg 1985. Refinements:

NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996:
“k–factor” ∈ [1.0, 1.5] for q̃ production, ∈ [1.3, 2.5] for g̃g̃.
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Partonic cross sections (cont’d)

First computed in 1980’s. Harrison & Llewellyn–Smith 1983; Dawson, Eichten

& Quigg 1985. Refinements:

NLO QCD corrections Beenakker, Höpker, Spira, Zerwas 1996:
“k–factor” ∈ [1.0, 1.5] for q̃ production, ∈ [1.3, 2.5] for g̃g̃.

Electroweak tree–level contributions Bornhauser, Drees, Dreiner &

Kim 2008: up to ∼ 20% in mSUGRA, up to ∼ 50% in general

Electroweak one–loop corrections Hollik & Mirabella 2008; Hollik,

Mirabella & Trenkel 2008; Gerner, Hollik, Mirabella & Trenkel 2010

QCD threshold resummation Langenfeld & Moch 2009; Kulesza &

Motyka 2009; Beenakker, Brensing, Krämer, Kulesza, Laenen & Niessen 2009;

Hagiwara & Yokoya 2009; Beneke, Falgari & Schwinn 2010

Flavor effects: See talk by Porod
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pp Cross Sections

σ(pp → S̃1S̃2X) =
∑

partons i,j

∫ 1

s/smin

dτ

∫ 1

τ

dx

x
fi|p(x,Q2)fj|p(

τ

x
,Q2)

·σ̂(ij → S̃1S̃2)(ŝ = τs) .

Orange: partonic flux function; depends on i, j, τ, (Q2 = ŝ).
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Flux Functions
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Flux Functions
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Fluxes drop off faster for mg̃,q̃ > 0.5 − 1.0 TeV!
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Total NLO q̃, g̃ cross sections at
√

s = 7 TeV
Baer, Barger, Lessa, Tata 2010
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q̃, g̃ vs ELW Gaugino Production

Assume gaugino mass unification =⇒ mfW
≃ mg̃/3
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Assume gaugino mass unification =⇒ mfW
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√

ŝ =
√

8mg̃:

S/B better for q̃, g̃ production than for elw χ̃χ̃ production, if χ̃
decays hadronically

Hence χ̃χ̃ production only relevant for large q̃, g̃ mass
(earlier if mq̃ > mg̃): Needs large luminosity.
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q̃, g̃ vs ELW Gaugino Production

Assume gaugino mass unification =⇒ mfW
≃ mg̃/3

Partonic cross sections similar: α2

s

m2

g̃

= α2

W

m2

fW

Fluxes: qq̄ flux at
√

ŝ =
√

8mfW
≃ mg̃ vs. qq + qq̄ + qg + gg flux

at
√

ŝ =
√

8mg̃:

S/B better for q̃, g̃ production than for elw χ̃χ̃ production, if χ̃
decays hadronically

Hence χ̃χ̃ production only relevant for large q̃, g̃ mass
(earlier if mq̃ > mg̃): Needs large luminosity.

Situation different at Tevatron: ∃ pure valence quark
contribution to qq̄ flux!
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Decays of Squarks and Gluinos

If LSP is stable: must be neutral. If Dark Matter: should
be lightest neutralino χ̃0

1. G̃ as LSP: see GMSB
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Decays of Squarks and Gluinos

If LSP is stable: must be neutral. If Dark Matter: should
be lightest neutralino χ̃0

1. G̃ as LSP: see GMSB

If gaugino masses unify (mSUGRA, mGMSB):
mg̃ : mfW

: m
B̃
≃ 6 : 2 : 1 at SUSY mass scale

mq̃ >∼ 0.75mg̃, or m2
q̃ turns negative at a rather low energy

scale Ellwanger 1984

Hence for gaugino mass unification:

q̃, g̃ → W̃ , B̃ decays possible

W̃ → B̃ decays possible
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If mq̃ > mg̃:

q̃ → g̃q dominant
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If mq̃ > mg̃:

q̃ → g̃q dominant

B(q̃ → W̃ q) ∼ 3αW

αs
I2
3,q̃: only for SU(2) doublet, “L”

squarks
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If mq̃ > mg̃:

q̃ → g̃q dominant

B(q̃ → W̃ q) ∼ 3αW

αs
I2
3,q̃: only for SU(2) doublet, “L”

squarks

B(q̃ → B̃q) ∼ αY

αs
Y 2

q̃

g̃ → qq̄W̃ , qq̄B̃, with ratio of Brs ≃ 3αW /αY if mq̃L
≃ mq̃R

.
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If mg̃ > mq̃:

q̃L → W̃ q dominant; ratio W̃± : W̃ 0 ≃ 2 : 1

q̃L → B̃q ∼ (few %): Yq̃L
= 1/6
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= 1/6

q̃R → B̃q dominant: I3,q̃R
= 0.

g̃ → q̃
L,R

q; about equally into q̃L and q̃R if mq̃L
≃ mq̃R

. But
rather close to edge of phase space!
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If mg̃ > mq̃:

q̃L → W̃ q dominant; ratio W̃± : W̃ 0 ≃ 2 : 1

q̃L → B̃q ∼ (few %): Yq̃L
= 1/6

q̃R → B̃q dominant: I3,q̃R
= 0.

g̃ → q̃
L,R

q; about equally into q̃L and q̃R if mq̃L
≃ mq̃R

. But
rather close to edge of phase space!

Quite often: m
ũ,d̃,s̃,c̃

> m
b̃,t̃

(RG effects of b, t Yukawas;
L − R mixing)
=⇒ g̃ → b̃(∗)b̄, t̃(∗)t̄ + cc often dominant!
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If m
W̃

> mB̃ (mSUGRA, mGMSB)

W̃ → B̃f f̄ via real or virtual f̃ , Higgs, W±/Z0 exchange.
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If m
W̃

> mB̃ (mSUGRA, mGMSB)

W̃ → B̃f f̄ via real or virtual f̃ , Higgs, W±/Z0 exchange.

Brs strongly depend on many parameters

If mfW
> m

ℓ̃
: W̃ 0 → ℓ+ℓ−B̃ via two 2–body decays!

But: if mfW
> m

ℓ̃L
: W̃ → τ̃1τ dominates! (τ̃1 is lighter, has

sizable τ̃L component.)
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“Typically” (mGMSB, much of mSUGRA)

Higgsino mass |µ| > mfW
> m

B̃
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“Typically” (mGMSB, much of mSUGRA)

Higgsino mass |µ| > mfW
> m

B̃

=⇒ mχ̃0

3
≃ mχ̃0

4
≃ mχ̃±

2

≃ |µ| higgsino–like
mχ̃0

2
≃ mχ̃±

1

≃ mfW
wino–like

mχ̃0

1
≃ mχ̃0

2
/2 bino–like.
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“Typically” (mGMSB, much of mSUGRA)

Higgsino mass |µ| > mfW
> m

B̃

=⇒ mχ̃0

3
≃ mχ̃0

4
≃ mχ̃±

2

≃ |µ| higgsino–like
mχ̃0

2
≃ mχ̃±

1

≃ mfW
wino–like

mχ̃0

1
≃ mχ̃0

2
/2 bino–like.

But: |µ| ≃ mfW
or |µ| ≃ mB̃ possible even in mSUGRA: gives

more complicated mixing patterns!
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Examples of final states (many possibilities!)

qq → q̃Rq̃R → (qχ̃0
1)(qχ̃

0
1)

2 very energetic jets (ET >∼ mq̃R
/2), large missing

ET ( >∼ mq̃R
/
√

2).
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Examples of final states (many possibilities!)

qq → q̃Rq̃R → (qχ̃0
1)(qχ̃

0
1)

2 very energetic jets (ET >∼ mq̃R
/2), large missing

ET ( >∼ mq̃R
/
√

2).

qq → q̃Rq̃L → (qχ̃0
1)(qχ̃

0
2) → (qχ̃0

1)(qχ̃
0
1ℓ

+ℓ−)

2 jets, ℓ+ℓ− pair and missing ET .

ud → ũLd̃L → (dχ̃+
1 )(uχ̃−

1 ) → (dχ̃0
1ℓ

+νℓ)(uχ̃0
1ℓ

′−νℓ̄′)

2 jets, ℓ+ℓ′− pair and missing ET
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Examples of final states (many possibilities!)

qq → q̃Rq̃R → (qχ̃0
1)(qχ̃

0
1)

2 very energetic jets (ET >∼ mq̃R
/2), large missing

ET ( >∼ mq̃R
/
√

2).

qq → q̃Rq̃L → (qχ̃0
1)(qχ̃

0
2) → (qχ̃0

1)(qχ̃
0
1ℓ

+ℓ−)

2 jets, ℓ+ℓ− pair and missing ET .

ud → ũLd̃L → (dχ̃+
1 )(uχ̃−

1 ) → (dχ̃0
1ℓ

+νℓ)(uχ̃0
1ℓ

′−νℓ̄′)

2 jets, ℓ+ℓ′− pair and missing ET

ug → ũLg̃ → (dχ̃+
1 )(¯̃t1t) → (dℓ+νℓχ̃

0
1)(b̄sc̄χ̃

0
1bℓ

′+νℓ′)

5 jets (incl. 2 b−jets), ℓ+ℓ′+ pair and missing ET .
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Classification of events

Standard classifiers are: Number of jets nj , number of
charged leptons nℓ (ℓ = e, µ)
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Standard classifiers are: Number of jets nj , number of
charged leptons nℓ (ℓ = e, µ)

If nℓ = 2: distinguish like sign (LS) pairs and opposite sign
(OS) pairs, depending on charge; among latter, opposite
sign same flavor (OSSF) is subcategory.
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Classification of events

Standard classifiers are: Number of jets nj , number of
charged leptons nℓ (ℓ = e, µ)

If nℓ = 2: distinguish like sign (LS) pairs and opposite sign
(OS) pairs, depending on charge; among latter, opposite
sign same flavor (OSSF) is subcategory.

Number of b−tags nb is occasionally used

In addition, could look for:

τ candidates, via τ → ντ + hadrons:
e.g. from χ̃±

1 → τ̃±1 ντ → τ±χ̃0
1ντ .

Z0 candidates, via Z0 → ℓ−ℓ+: e.g. from χ̃0
i → χ̃0

j<iZ
0

top candidates, via “top tagging”: e.g. from g̃ → t̃1t̄

Higgs candidates, via h → bb̄: e.g. from χ̃0
i → χ̃0

j<ih
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mSUGRA≡CMSSM
Most widely studied SUSY framework of SUSY. Defined by:

Common scalar mass m0

Common gaugino mass m1/2

Common trilinear scalar interaction A0

at scale of Grand Unification MX ≃ 2 · 1016 GeV.
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at scale of Grand Unification MX ≃ 2 · 1016 GeV.

Bilinear scalar parameter B0 assumed independent of A0;
traded for ratio of vevs tanβ
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Most widely studied SUSY framework of SUSY. Defined by:

Common scalar mass m0

Common gaugino mass m1/2

Common trilinear scalar interaction A0

at scale of Grand Unification MX ≃ 2 · 1016 GeV.

Bilinear scalar parameter B0 assumed independent of A0;
traded for ratio of vevs tanβ

|µ| determined via (radiative) electroweak symmetry breaking
Ibáñez & Ross 1982 µ > 0 preferred by gµ − 2, b → sγ.
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mSUGRA≡CMSSM
Most widely studied SUSY framework of SUSY. Defined by:

Common scalar mass m0

Common gaugino mass m1/2

Common trilinear scalar interaction A0

at scale of Grand Unification MX ≃ 2 · 1016 GeV.

Bilinear scalar parameter B0 assumed independent of A0;
traded for ratio of vevs tanβ

|µ| determined via (radiative) electroweak symmetry breaking
Ibáñez & Ross 1982 µ > 0 preferred by gµ − 2, b → sγ.

Assume χ̃0
1 is stable LSP: DM candidate! (See Dutta’s talk.)
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LHC reach

Reach defined by: require S > 5
√

B, S > 0.2B, at least 5
signal events. Consider many channels, optimize jet and
missing ET cuts within each channel; take best channel. No
combination of channels! (Unlike Tevatron SM Higgs
search.)
From: Baer, Barger, Lessa & Tata 2009/10
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Optimized reach at
√

s = 7 TeV
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Reach at
√

s = 7 TeV, different channels
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Optimized reach at
√

s = 10 TeV
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Optimized reach at
√

s = 14 TeV

0 1000 2000 3000 4000 5000 6000 7000
m

0
 (GeV)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

m
1/

2 (
G

eV
)

3000 fb
-1

 (oFIT)

1000 fb
-1

 (oFIT)

100 fb
-1

50 fb
-1

10 fb
-1

1 fb
-1

N
jets

≥ 2   (with E
T

miss
 cuts, optimized)

MSSM at the LHC – p. 26/35



mSUGRA Reach table:mg̃ reach in TeV
√

s [TeV]
∫
Ldt [fb−1] mq̃ <∼ mg̃ mq̃ ≫ mg̃

7 0.1 0.80 0.48

7 1.0 1.1 0.62

7 2.0 1.2 0.70

10 1 1.4 0.8

10 10 1.9 1.0

10 100 2.3 1.3

10 3000 2.9 1.8

14 1 1.9 1.1

14 10 2.4 1.5

14 100 3.1 1.8

14 3000 4.0 2.6 to 4.5 ?
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Remarks

Usually best reach in pure jets plus missing ET

channel. In SM, missing ET comes from neutrinos,
which are frequently produced together with charged
leptons (W+jets, tt̄).
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channel. In SM, missing ET comes from neutrinos,
which are frequently produced together with charged
leptons (W+jets, tt̄).

But: no optimization of leptonic observables attempted!
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Remarks

Usually best reach in pure jets plus missing ET

channel. In SM, missing ET comes from neutrinos,
which are frequently produced together with charged
leptons (W+jets, tt̄).

But: no optimization of leptonic observables attempted!

For “natural” sparticle masses: expect signals in many
channels!
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Reach in Other Scenarios

mGMSB (has gravitino LSP): at least as good, often
better (hard, isolated photons or long–lived charged
sleptons) Baer, Mercadante, Tata, Wang 2000
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Reach in Other Scenarios

mGMSB (has gravitino LSP): at least as good, often
better (hard, isolated photons or long–lived charged
sleptons) Baer, Mercadante, Tata, Wang 2000

mAMSB: comparable; better, if long–lived χ̃±

1 can be
detected Baer, Mizukoshi & Tata 2000

Explicit R−parity breaking: Improves reach if
χ̃0

1 → ℓ+ℓ′−ν; worse reach for mSUGRA–like searches if
χ̃0

1 → udd Baer, Chen & Tata 1996. : But: did not consider new
single q̃ production channels; new “jet substructure”
methods to find “fat jets” from χ̃0

1 decay. Butterworth, Ellis,

Raklev & Salam 2009.
Certainly can probe mg̃ <∼ 1 TeV at

√
s = 14 TeV with 10

fb−1.
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Example of Model Discrimination

Consider SO(10) model with 2 intermediate scales:
SO(10) → SU(4) × SU(2)L × SU(2)R → SU(3)C × U(1)B−L ×
SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1)Y Aulakh, Bajc, Melfo,

Rasin & Senjanovic 2000
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SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1)Y Aulakh, Bajc, Melfo,

Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to νR
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(∼ 2% effect)
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3
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, mχ̃±
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;
enhanced gaugino–higgsino mixing
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Example of Model Discrimination

Consider SO(10) model with 2 intermediate scales:
SO(10) → SU(4) × SU(2)L × SU(2)R → SU(3)C × U(1)B−L ×
SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1)Y Aulakh, Bajc, Melfo,

Rasin & Senjanovic 2000

Has extra terms in high–scale superpotential (related to νR

masses)

=⇒ reduced mt̃, m
b̃

(∼ 2% effect)

=⇒ reduced |µ| (by ∼ 10%): reduced mχ̃0

3
, mχ̃0

4
, mχ̃±

2

;
enhanced gaugino–higgsino mixing

=⇒ significantly increased B(g̃ → Z0 + X)! (7.6% vs. 4.3%
or 5.0%) MD, Kim, Park 2010
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SubtractedMℓ+ℓ− distribution ( m0 ≪ M1/2)
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SubtractedMℓ+ℓ− distribution ( m0 ≪ M1/2)
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SO(10) has significantly more pronounced Z0 peak

SO(10) model also has more like–sign di–lepton events:
492 vs. 422 (434).
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SUSY and QCD
Bornhauser, MD, Dreiner, Kim 2009

qq → q̃q̃ can proceed via g̃ (CNS: color non–singlet) and
W̃ , B̃ (CS: color singlet) exchange.
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qq → q̃q̃ can proceed via g̃ (CNS: color non–singlet) and
W̃ , B̃ (CS: color singlet) exchange.

CS exchange: “no” gluon emission between squarks
CNS exchange: gluons emitted preferentially between
squarks
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SUSY and QCD
Bornhauser, MD, Dreiner, Kim 2009

qq → q̃q̃ can proceed via g̃ (CNS: color non–singlet) and
W̃ , B̃ (CS: color singlet) exchange.

CS exchange: “no” gluon emission between squarks
CNS exchange: gluons emitted preferentially between
squarks

Effect biggest for q̃Lq̃L production (W̃ exchange)
=⇒ look for events with 2 hard jets, 2 leptons with same

charge, missing ET

e.g. uu → ũLũL → (χ̃+
1 d)(χ̃+

1 d) → (ℓ+νℓχ̃
0
1d)(ℓ′+νℓ′χ̃

0
1d)

Additional leptons allowed.
Require rapidity distance δη ≥ 3.0
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ET between the hard jets (SPS1a’)

HERWIG:
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Softer jets between the hard jets (SPS1a’)

HERWIG:
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Summary

LHC will test idea of “weak scale Supersymmetry”
decisively!
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Summary

LHC will test idea of “weak scale Supersymmetry”
decisively!

Generally will have signals in many different final states:
offers many possibilities to distinguish between models
by counting events! Can be combined with kinematic
methods. (See Dutta’s talk)
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Summary

LHC will test idea of “weak scale Supersymmetry”
decisively!

Generally will have signals in many different final states:
offers many possibilities to distinguish between models
by counting events! Can be combined with kinematic
methods. (See Dutta’s talk)

For detailed analyses: sometimes have to worry
mundane QCD uncertainties (e.g. HERWIG vs.
PYTHIA)
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