Significant effects of second KK particles on LKP dark matter physics

Mitsuru Kakizaki (Bonn Univ. & ICRR, Univ. of Tokyo)

30 March, 2006 @ Dortmund Univ.

Collaborated with
- Shigeki Matsumoto (KEK)
- Yoshio Sato (Saitama U.)
- Masato Senami (ICRR)

Refs:
1. Motivation

Recent observation of cosmic microwave background anisotropies by WMAP:

Non-baryonic cold dark matter

What is the constituent of dark matter?

- Weakly interacting massive particles are good candidates:
 - Lightest supersymmetric particle (LSP) in supersymmetric (SUSY) models
 - Lightest Kaluza-Klein particle (LKP) in universal extra dimension models
- etc.

Today’s topic
In universal extra dimension (UED) models, Kaluza-Klein (KK) dark matter physics is drastically affected by second KK particles.

Reevaluation of relic density of KK dark matter including coannihilation and resonance effects.

Dark matter particle mass consistent with WMAP increases

1. Motivation
2. Universal extra dimension (UED) models
3. Relic abundance of KK dark matter
4. Resonance in KK dark matter annihilation
5. Summary
2. Universal extra dimension (UED) models

Idea: All SM particles propagate flat compact spatial extra dimensions

- Dispersion relation: \(E^2 = \vec{p}^2 + (p_5^2 + M^2) \)

- Momentum along the extra dimension → Mass in four-dimensional viewpoint

In case of \(S^1 \) compactification with radius \(R \),
\(p_5 = \frac{n}{R} \quad (n = 0, 1, 2, \cdots) \) is quantized

- Momentum conservation in the extra dimension
 Conservation of KK number \(n \) in each vertex

[Appelquist, Cheng, Dobrescu, PRD64 (2001) 035002]
Minimal UED model

- In order to obtain chiral fermions at zeroth KK level, the extra dimension is compactified on an S^1/Z_2 orbifold

- Conservation of KK parity [+ (−) for even (odd) n]

 The lightest KK particle (LKP) is stable
 c.f. R-parity and LSP

 The LKP is a good candidate for dark matter

- Only two new parameters in the MUED model:
 \(R \): Size of extra dimension
 \(\Lambda \): Scale at which boundary terms vanish

- Constraints from electroweak measurements are weak:
 \[R^{-1} > 250 \text{ GeV} \]
 \[R^{-1} > 700 \text{ GeV} \]
 [Appelquist, Cheng, Dobrescu (2001); Appelquist, Yee, PRD67 (2003)]

 : Inclusion of 2-loop SM contributions and LEP2 data

30 March, 2006
Mitsuru Kakizaki
Mass spectra of KK states

- KK modes are degenerate in mass at each KK level:
 \[m_n = \sqrt{(n/R)^2 + m_{\text{SM}}^2} \approx n/R \]

- Compactification \(\rightarrow\) 5D Lor. inv.
 Orbifolding \(\rightarrow\) Trans. Inv. in 5th dim.
 Radiative corrections relax the degeneracy

- Lightest KK Particle (LKP):
 Next to LKP: SU(2)_L singlet leptons:
 \(E^{(1)}_i, \ i = e, \mu, \tau \)

1-loop corrected mass spectrum at the first KK level

\[R^{-1} = 500 \text{ GeV}, \ \Lambda R = 50, \ m_h = 120 \text{ GeV} \]

\[\Lambda : \text{Cutoff scale} \]

[From Cheng, Matchev, Schmaltz, PRD 036005 (2002)]
3. Relic abundance of KK dark matter

- Generic picture
 - Dark matter was at thermal equilibrium in the early universe
 - After the annihilation rate dropped below the expansion rate, the number density per comoving volume is almost fixed

- Relic abundance of LKP dark matter
 - [Servant, Tait, NPB 650 (2003) 391]
 - Only tree level diagrams are considered
4. Resonance in KK dark matter annihilation

- Dark matter particles are non-relativistic when they decouple
 (Incident energy of two LKPs) \(\sim \) (Masses of 2nd KK modes)

- LKPs annihilate through s-channel 2nd KK Higgs boson exchange at loop level

\[\gamma^{(1)} \xrightarrow{h^{(2)}} t^{(1)} \quad \bar{t} \]
\[\gamma^{(1)} \xrightarrow{T^{(1)}} g^{(1)} \]

The annihilation cross section is enhanced

Mass splitting in MUED:
\[\delta \equiv \frac{(m_h^{(2)} - 2m)}{2m} \]
Thermal average of annihilation cross section for LKP

Smaller δ

The averaged cross section becomes maximum at later time and has larger maximum value.
Relic abundance of LKP (without coannihilation)

- The $h^{(2)}$–resonance in annihilation effectively reduces the number density of dark matter.

- The resonance effect raises the LKP mass consistent with the WMAP data.

2nd KK modes play an important role in calculation of the relic density of the LKP dark matter.
Coannihilation with NLKP $E^{(1)}$

- We can systematically survey 2nd KK–resonance effects
 - $h^{(2)}$–resonance in $\gamma^{(1)}\gamma^{(1)} \rightarrow$ SM particles: sizable
 - $E^{(2)}$–resonance in $B^{(1)}E^{(1)} \rightarrow$ SM particles: relatively small
 - No 2nd KK–resonance in $E^{(1)}\bar{E}^{(1)} \rightarrow$ SM particles

- Evolution of dark matter abundance $Y = n/s$ [Three flavors: $E^{(1)}_i, i = e, \mu, \tau$

\[
\begin{align*}
1/R &= 1000 \quad \Lambda R = 50 \\
\delta &= -0.3\% \\
\delta &= 1.5\% \\
\delta &= 0.7\% \\
\delta &= 0.1\% \\
x &= m/T
\end{align*}
\]

The number density gradually decreases even after decoupling
Allowed mass region

\[0.104 \leq \Omega h^2 \leq 0.116 \]

\[0.098 \leq \Omega h^2 \leq 0.122 \]

\(\Lambda R = 20 \)

Tree level results

Tree (\(\Lambda R = 20 \))

\(\Lambda R = 50 \)

Including resonance

Tree + Res. (\(\Lambda R = 20 \))
6. Summary

- UED models provide a viable dark matter candidate:
 - The lightest Kaluza-Klein particle (LKP)
- (Masses of 2nd KK particles) $\sim 2 \times$ (Masses of 1st KK particles)
 - Annihilation takes place near poles

- We evaluated the relic abundance of the LKP dark matter including **resonance** and **coannihilation** (with the NLKPs)
- The LKP mass consistent with WMAP data is sizably raised due to 2nd KK—resonance in dark matter annihilation