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Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

Must have lifetime τχ ≫ τU
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Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

Must have lifetime τχ ≫ τU

Must be electrically neutral (otherwise not dark)

Must have correct relic density: Ωχ ≃ 0.22

If DM consists of thermally produced “elementary” particles:
Leads to events with missing ET at colliders!
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Conditions for Dark Matter Candidates

Requirements for a good DM candidate χ:

Must have lifetime τχ ≫ τU

Must be electrically neutral (otherwise not dark)

Must have correct relic density: Ωχ ≃ 0.22

If DM consists of thermally produced “elementary” particles:
Leads to events with missing ET at colliders!

Counter–examples: axions; dark atoms; primordial black holes; keV

neutrinos: not covered in this talk. Note: Proves that LHC does not “recreate

conditions of the early universe”!
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The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM
particles at sufficiently high temperature T :

χ production rate nχ〈σ(χχ → SM)vχ〉 > expansion rate H
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The “WIMP Miracle”

Assume χ was in full thermal equilibrium with SM
particles at sufficiently high temperature T :

χ production rate nχ〈σ(χχ → SM)vχ〉 > expansion rate H

nχ ∝ e−mχ/T , 〈σ(χχ → SM)v〉 ∝ T 0 or2, H ∝ T 2/MPlanck

=⇒ equality (“freeze-out”) reached at TF ≃ mχ/20

=⇒ Ωχh2 ≃
0.1 pb · c

〈σ(χχ → SM)v〉

Indicates weak–scale χχ annihilation cross section:
〈σ(χχ → any)v〉 ≃ 3 · 10−26cm3s−1
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WIMPs and Early Universe

Ωχh2 can be changed a lot in non–standard cosmologies
(involving T ≫ TBBN):

Increased: Higher expansion rate H(T ∼ TF );
additional non–thermal χ production at T < TF ; . . .
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Ωχh2 can be changed a lot in non–standard cosmologies
(involving T ≫ TBBN):

Increased: Higher expansion rate H(T ∼ TF );
additional non–thermal χ production at T < TF ; . . .

Decreased: Reduced expansion rate H(T ∼ TF );
entropy production at T < TF ; . . .
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WIMPs and Early Universe

Ωχh2 can be changed a lot in non–standard cosmologies
(involving T ≫ TBBN):

Increased: Higher expansion rate H(T ∼ TF );
additional non–thermal χ production at T < TF ; . . .

Decreased: Reduced expansion rate H(T ∼ TF );
entropy production at T < TF ; . . .

Determining σ(χχ → SM) allows probe of very early
Universe, once χ has been established to be “the” DM
particle! e.g. MD, Iminniyaz, Kakizaki, arXiv:0704.1590
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Have WIMPs Been Detected Directly?

Direct detection ≡ search for elastic WIMP–nucleus
scattering
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Direct detection ≡ search for elastic WIMP–nucleus
scattering

Kinematics: vχ ∼ vSun ∼ 10−3c

=⇒ energy transfer to nucleus A:

Q <
∼ min

(
10−6 m2

χ

mA
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)
<
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Have WIMPs Been Detected Directly?

Direct detection ≡ search for elastic WIMP–nucleus
scattering

Kinematics: vχ ∼ vSun ∼ 10−3c

=⇒ energy transfer to nucleus A:

Q <
∼ min

(
10−6 m2

χ

mA
, 10−6mA

)
<
∼ 100 keV

=⇒ Cannot excite (most) nuclei!

Momentum transfer <
∼ 100 MeV =⇒ may need to worry

about elastic form factors; quite well understood (for spin–indep.

scattering)
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Recoil Spectrum

dR
dQ ∝ |F (Q)|2

∫ vmax

vmin

dv
v f1(v)
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Recoil Spectrum

dR
dQ ∝ |F (Q)|2

∫ vmax

vmin

dv
v f1(v)

f1(v) : WIMP velocity distribution. Usually assumed
Maxwellian in rest frame of the galaxy, cut off at
vesc =⇒ vmax. Gives roughly exponentially falling spectrum.
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Normalized Recoil Spectra
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Experimental Challenges

Spectrum “backed up” against instrumental threshold
Qmin
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Spectrum “backed up” against instrumental threshold
Qmin

Rates of current interest ≪ background rate, e.g. from
radioactive decay (for most materials)
=⇒ try to discriminate between nuclear recoil (signal)
and e/γ induced events (background)!
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Experimental Challenges

Spectrum “backed up” against instrumental threshold
Qmin

Rates of current interest ≪ background rate, e.g. from
radioactive decay (for most materials)
=⇒ try to discriminate between nuclear recoil (signal)
and e/γ induced events (background)!

Will go through three claimed signals: DAMA(/LIBRA),
CoGeNT, CRESST.
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DAMA

Pure scintillation detectors (doped NaI) in Gran Sasso:
6 years with 100 kg (DAMA)
6 years with 250 kg (DAMA/LIBRA)
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DAMA

Pure scintillation detectors (doped NaI) in Gran Sasso:
6 years with 100 kg (DAMA)
6 years with 250 kg (DAMA/LIBRA)
All events are counted.
Observe few percent modulation of total rate
Compatible with ∼ 50 GeV WIMP scattering off I, or ∼ 10
GeV WIMP scattering off Na.
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DAMA Results

2-6 keV
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DAMA/NaI (0.29 ton×yr)
(target mass = 87.3 kg)

DAMA/LIBRA (0.53 ton ×yr)
(target mass = 232.8 kg)

2-6 keV
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DAMA/LIBRA ≈ 250 kg   (0.87 ton×yr)
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DAMA: Problems

No e/γ discrimination is attempted, although some (statistical)
discrimination should be possible using light curve
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No e/γ discrimination is attempted, although some (statistical)
discrimination should be possible using light curve

Deduced shape of background spectrum weird: Falls
towards small Q! (Depends on 3–dimensional WIMP velocity distribution.)

Amplitude of modulation is getting smaller!
E.g. in 2–6 keVee bin (in units of 10−3/kg · day · keVee):
DAMA 1995–2001: 20.0 ± 3.2
LIBRA 2003–2007: 10.7 ± 1.9
LIBRA 2007–2009: 8.5 ± 2.2

Ratio LIBRAII
DAMA = 0.43 ± 0.13

More than 4σ away from 1! Results for 2–4, 2–5 keVee bins similar.
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DAMA: Problems

No e/γ discrimination is attempted, although some (statistical)
discrimination should be possible using light curve

Deduced shape of background spectrum weird: Falls
towards small Q! (Depends on 3–dimensional WIMP velocity distribution.)

Amplitude of modulation is getting smaller!
E.g. in 2–6 keVee bin (in units of 10−3/kg · day · keVee):
DAMA 1995–2001: 20.0 ± 3.2
LIBRA 2003–2007: 10.7 ± 1.9
LIBRA 2007–2009: 8.5 ± 2.2

Ratio LIBRAII
DAMA = 0.43 ± 0.13

More than 4σ away from 1! Results for 2–4, 2–5 keVee bins similar.

No convincing non–WIMP interpretation of modulation
known.
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CoGeNT: Time–Averaged Analysis

Operate cryogenic Ge detectors with very low threshold
Qmin.
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very low Q =⇒ small mχ;
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Operate cryogenic Ge detectors with very low threshold
Qmin.
Originally: Found excess relative to simple bckgd model at
very low Q =⇒ small mχ;

χ2 fit with signal not significantly better than with pure
background: no claim of signal in published paper!
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CoGeNT: Time–Averaged Analysis

Operate cryogenic Ge detectors with very low threshold
Qmin.
Originally: Found excess relative to simple bckgd model at
very low Q =⇒ small mχ;

χ2 fit with signal not significantly better than with pure
background: no claim of signal in published paper!
September 2011: More data, re–evaluated background =⇒
size of possible “signal” reduced by ∼ factor 5!
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CoGeNT: Results
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CoGeNT: Modulation

After 15 months of data taken: Find 2.8σ “evidence” for
annual modulation
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Much too large to be compatible with time–averaged
“signal”, for standard halo
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CoGeNT: Modulation

After 15 months of data taken: Find 2.8σ “evidence” for
annual modulation

Much too large to be compatible with time–averaged
“signal”, for standard halo

No event–by–event e/γ rejection at these low energies
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CoGeNT: Summary

No signal claimed in time–averaged analysis!
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CoGeNT: Summary

No signal claimed in time–averaged analysis!

There is a large, poorly understood background

Modulation “signal” statistically very weak, and way too
large
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CRESST

Uses cryogenic CaWO4 crystals; detect scintillation light
and heat: Allows event–by–event discrimination! See 67
events after cuts.
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Uses cryogenic CaWO4 crystals; detect scintillation light
and heat: Allows event–by–event discrimination! See 67
events after cuts.
Unfortunately, quite large backgrounds (rough estimates, not final fit):

e/γ events: 8

α background: 9.2

n background: 1.5 to 11.4

Pb recoil (from 210Po decay): 17
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CRESST

Uses cryogenic CaWO4 crystals; detect scintillation light
and heat: Allows event–by–event discrimination! See 67
events after cuts.
Unfortunately, quite large backgrounds (rough estimates, not final fit):

e/γ events: 8

α background: 9.2

n background: 1.5 to 11.4

Pb recoil (from 210Po decay): 17

Much of fitted excess has essentially no light: only “half a
signal”
No. of α events is correlated with no. of signal events after
α subtraction.
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CRESST: Results
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CRESST: Results

What is negative light yield?
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CRESST: Correlation
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Exclusion Limits from Other Expts

Best limit for larger masses from Xenon100. Uses ionization

and scintillation. Very few events after cuts. Alas, not safe for

mχ ≤ 12 GeV: bound strongly depends on high−v tail of f1(v),

and on experimental energy resolution.
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mχ ≤ 12 GeV: bound strongly depends on high−v tail of f1(v),

and on experimental energy resolution.

Xenon10 more robust at small Q; excludes DAMA, CRESST,
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CDMS (+ EDELWEISS) second best for not too small mχ.

Uses phonons and ionization. Very few events after cuts. Not

safe below 12 GeV.
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Exclusion Limits from Other Expts

Best limit for larger masses from Xenon100. Uses ionization

and scintillation. Very few events after cuts. Alas, not safe for

mχ ≤ 12 GeV: bound strongly depends on high−v tail of f1(v),

and on experimental energy resolution.

Xenon10 more robust at small Q; excludes DAMA, CRESST,

original CoGeNT “signal” for “usual WIMP”

CDMS (+ EDELWEISS) second best for not too small mχ.

Uses phonons and ionization. Very few events after cuts. Not

safe below 12 GeV.

CDMS low−Q analysis uses phonons only; sizable number of

events. Excludes DAMA, original CoGeNT for “usual WIMP”.

SIMPLE heated droplet detector: Challenges DAMA.
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Theory of WIMP–Nucleus Scattering

Leff = cN N̄Nχ̄χ + aN N̄γµNχ̄γµχ + bN N̄γµγ5Nχ̄γµγ5χ

For scalar χ: γµ → i∂µ in 2nd term; 3rd term absent

For Majorana χ: 2nd term absent

1st, 2nd term give spin–independent (s.i.) interaction, 3rd

term gives spin–dependent (s.d.) interaction.

“Usual WIMP”: same s.i. scattering on p and n!
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Isospin violation in s.i. interaction?

σs.i.
χp ≃ σs.i.

χn true for Higgs exchange (in particular, in
(N)MSSM): massive quarks are same for p, n!
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Isospin violation in s.i. interaction?

σs.i.
χp ≃ σs.i.

χn true for Higgs exchange (in particular, in
(N)MSSM): massive quarks are same for p, n!

Not true for q̃, q(1) exchange: quark charges matter!
But: M(χq → χq) has same sign for all quarks: no
cancellations =⇒ isospin violation in praxis not
important, since all nuclei have similar n/p ratio.
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Isospin violation in s.i. interaction?

σs.i.
χp ≃ σs.i.

χn true for Higgs exchange (in particular, in
(N)MSSM): massive quarks are same for p, n!

Not true for q̃, q(1) exchange: quark charges matter!
But: M(χq → χq) has same sign for all quarks: no
cancellations =⇒ isospin violation in praxis not
important, since all nuclei have similar n/p ratio.

Gauge boson exchange can break isospin: coefficients
ap, an may differ in sign! M(χq → χq) is now linear in
(new) quark charges.

WIMP Detection – p. 22/44



Large isospin violation in s.i. interaction?

|M(χA → χA)|2 ∝ |Zap + (A − Z)an|
2

=⇒ need apan < 0 for significant isospin violation:
arrange for cancellation in unwanted nuclei (e.g. Xe).
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Does not work for CDMS vs. CoGeNT: same target!
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Large isospin violation in s.i. interaction?

|M(χA → χA)|2 ∝ |Zap + (A − Z)an|
2

=⇒ need apan < 0 for significant isospin violation:
arrange for cancellation in unwanted nuclei (e.g. Xe).

Does not work for CDMS vs. CoGeNT: same target!

Need even larger |ap| to describe claimed signals
=⇒ Need new light gauge bosons!

Combined analyses: (e.g. Kopp, Schwetz, Zupan, arXiv:1110.2721

[hep-ph]) Still cannot explain all data consistently!
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Weisskopf’s (?) Theorem

A theory that explains all data must be wrong, since at any
given point some data are wrong.
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Weisskopf’s (?) Theorem

A theory that explains all data must be wrong, since at any
given point some data are wrong.

Competition between null experiments with few
(background) events after cuts, and claimed “signals” with
large, not always well understood backgrounds!
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WIMPs and Colliders

1 Generalities: WIMP DM Production and Missing ET
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WIMPs and Colliders

1 Generalities: WIMP DM Production and Missing ET

2 Light Gauge Bosons

3 SUSY DM and the LHC

4 Higgs Searches and Direct DM Detection
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Cannot predict missingET from χχ production

Thermal WIMP: Only know total χχ → SM cross
section; contribution of specific final states
(e+e−, uū + dd̄) not known
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Cannot predict missingET from χχ production

Thermal WIMP: Only know total χχ → SM cross
section; contribution of specific final states
(e+e−, uū + dd̄) not known

Ωχh2 determined from σ(χχ → SM) near threshold
(TF ≃ mχ/20 =⇒ s ≃ 4m2

χ). At colliders need ≥ 3 body
final state to get signature (e.g. e+e− → χχγ, qq̄ → χχg)
=⇒ typically need σ(χχ → SM) at s ∼ 6 to 10m2

χ!
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“Model-independent” approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang,

Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240

Parameterize χ interaction with relevant SM fermion
through dim–6 operator; e.g. for hadron colliders:

Leff = Gχχ̄Γχχq̄Γqq
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“Model-independent” approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang,

Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240

Parameterize χ interaction with relevant SM fermion
through dim–6 operator; e.g. for hadron colliders:

Leff = Gχχ̄Γχχq̄Γqq

χ Majorana =⇒ Γχ ∈ {1, γ5, γµγ5}

Γq ∈ {1, γ5, γµ, γµγ5}

If Γχ, Γq ∈ {1, γ5} : Gχ = mq/(2M
3
∗
) (chirality violating!), else

Γχ = 1/(2M2
∗
) Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.
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“Model-independent” approach

Goodman et al., arXiv:1005.1286 and 1008.1783; Bai, Fox, Harnik, arXiv:1005.3797; Wang,

Li, Shao, Zhang, arXiv:1107.2048; Fox, Harnek, Kopp, Tsai, arXiv:1103.0240

Parameterize χ interaction with relevant SM fermion
through dim–6 operator; e.g. for hadron colliders:

Leff = Gχχ̄Γχχq̄Γqq

χ Majorana =⇒ Γχ ∈ {1, γ5, γµγ5}

Γq ∈ {1, γ5, γµ, γµγ5}

If Γχ, Γq ∈ {1, γ5} : Gχ = mq/(2M
3
∗
) (chirality violating!), else

Γχ = 1/(2M2
∗
) Rajamaran, Shepherd, Tait, Wijango, arXiv:1108.1196.

Compute monojet signal from qq̄ → χχg, compare with
monojet limits (current bound) and background (ultimate
reach)!
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.

For Γχ = γµγ5 (spin-dep. interact.): LHC bound better
than (comparable to) direct search limit for mχ ≤ (≥) 20

GeV; future reach factor 103 better, if no other BSM
source of missing ET exists.
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.

For Γχ = γµγ5 (spin-dep. interact.): LHC bound better
than (comparable to) direct search limit for mχ ≤ (≥) 20

GeV; future reach factor 103 better, if no other BSM
source of missing ET exists.

Γχ = γ5 similar to first case; cannot be probed in direct
WIMP detection (rate ∝ v2

χ)
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Remarks

For Γχ = 1 (spin-indep. interact.): Current bound poor;
ultimate LHC reach interesting only for mχ ≤ 5 GeV.

For Γχ = γµγ5 (spin-dep. interact.): LHC bound better
than (comparable to) direct search limit for mχ ≤ (≥) 20

GeV; future reach factor 103 better, if no other BSM
source of missing ET exists.

Γχ = γ5 similar to first case; cannot be probed in direct
WIMP detection (rate ∝ v2

χ)

Bound does not hold if mass of mediator particle
≤ max(mχ, ET/ )!

Altogether: very limited usefulness for most actual WIMP
models.
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2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light (m ≤ few
GeV) (gauge) bosons U :

MeV DM: Suggested as explanation of 511 keV line
(=⇒ slow e+) excess from central region of our galaxy
(Boehm et al., astro-ph/0309686). Should have mχ ≤ 10 MeV (γ
constraints)
=⇒ mχ ≤ mU ≤ 200 MeV to mediate χχ → e+e−; fixes
gUχχgUe+e−/m2

U ! (Unless 2mχ ≃ mU .)
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2 DM and Light (Gauge) Bosons

(At least) 3 kinds of WIMP models require light (m ≤ few
GeV) (gauge) bosons U :

MeV DM: Suggested as explanation of 511 keV line
(=⇒ slow e+) excess from central region of our galaxy
(Boehm et al., astro-ph/0309686). Should have mχ ≤ 10 MeV (γ
constraints)
=⇒ mχ ≤ mU ≤ 200 MeV to mediate χχ → e+e−; fixes
gUχχgUe+e−/m2

U ! (Unless 2mχ ≃ mU .)

PAMELA/FermiLAT inspired TeV DM: Needs light
boson for Sommerfeld enhancement (e.g. Arkani-Hamed et al.,

arXiv:0810.0713(4)) (χχ → UU → 4l is also somewhat less
constrained by γ spectrum than χχ → 2l.)
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DAMA/CoGeNT inspired few GeV DM: Needs light
mediator to achieve sufficiently large σχp. (2 different
mediators for isospin violation to evade bounds: Cline, Frey,

arXiv:1108.1391)
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Light Gauge Bosons (cont’d)

In all cases: U couplings to (most) SM particles must be
≪ 1 to evade bounds! (gµ − 2, meson decays, ν cross
sections, APV, . . . ).
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In all cases: U couplings to (most) SM particles must be
≪ 1 to evade bounds! (gµ − 2, meson decays, ν cross
sections, APV, . . . ).

Possible explanation: kinetic mixing with γ/B boson! Is
1-loop effect =⇒ squared Uff̄ coupling is O(α3).
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Light Gauge Bosons (cont’d)

In all cases: U couplings to (most) SM particles must be
≪ 1 to evade bounds! (gµ − 2, meson decays, ν cross
sections, APV, . . . ).

Possible explanation: kinetic mixing with γ/B boson! Is
1-loop effect =⇒ squared Uff̄ coupling is O(α3).

Uχχ coupling may well be large.
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Signatures of light gauge bosons

If mU > 2mχ: U → χχ dominant! Is invisible =⇒ need extra

tag, e.g. e+e− → γU → γ+ nothing.
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If mU > 2mχ: U → χχ dominant! Is invisible =⇒ need extra

tag, e.g. e+e− → γU → γ+ nothing.

Physics background ∝ s =⇒ lower energy is better!
Borodatchenkova, Choudhury, MD, hep-ph/0510147
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Signatures of light gauge bosons

If mU > 2mχ: U → χχ dominant! Is invisible =⇒ need extra

tag, e.g. e+e− → γU → γ+ nothing.

Physics background ∝ s =⇒ lower energy is better!
Borodatchenkova, Choudhury, MD, hep-ph/0510147

Instrumental backgrounds (not from e+e− annihilation)
seem large
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Sensitivity at B−factories (100 fb−1)
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Red, black: Regions allowed by Ωχ, σ(χχ → e+e−).
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Signatures of light gauge bosons (cont.d)

If mU < 2mχ: U → ℓ+ℓ−
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Signatures of light gauge bosons (cont.d)

If mU < 2mχ: U → ℓ+ℓ−

Sufficiently light U can even be produced in fixed–target
experiments: e−N → e−e+e−N (tridents), with peak in
Me+e−
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If mU < 2mχ: U → ℓ+ℓ−

Sufficiently light U can even be produced in fixed–target
experiments: e−N → e−e+e−N (tridents), with peak in
Me+e−

First exptl. results from MAMI A1 arXiv:1101.4091 and JLAB
APEX arXiv:1108.2750 Excludes new mass ranges around 200
to 300 MeV for A′ ≡ U kinetically mixed with photon.
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Signatures of light gauge bosons (cont.d)

If mU < 2mχ: U → ℓ+ℓ−

Sufficiently light U can even be produced in fixed–target
experiments: e−N → e−e+e−N (tridents), with peak in
Me+e−

First exptl. results from MAMI A1 arXiv:1101.4091 and JLAB
APEX arXiv:1108.2750 Excludes new mass ranges around 200
to 300 MeV for A′ ≡ U kinetically mixed with photon.

Also, KLOE-2 performed search, mostly for φ → Uη: no
signal. arXiv:1107.2531
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A1 and APEX results
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3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)

WIMP Detection – p. 36/44



3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

WIMP Detection – p. 36/44



3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

Stabilizes hierarchy m2
Higgs ≪ M2

Planck

WIMP Detection – p. 36/44



3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

Stabilizes hierarchy m2
Higgs ≪ M2

Planck

Allows unification of gauge couplings

WIMP Detection – p. 36/44



3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

Stabilizes hierarchy m2
Higgs ≪ M2

Planck

Allows unification of gauge couplings
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3 SUSY DM and the LHC

Saw above: WIMP searches at colliders not promising, if
WIMP is only accessible new particle. Fortunately, in many
cases the WIMP is the lightest of many new particles! True
in SUSY. (Also in Little Higgs.)
Recall: Primary motivation for SUSY not related to DM!

Stabilizes hierarchy m2
Higgs ≪ M2

Planck

Allows unification of gauge couplings

In scenarios with unified Higgs masses: EWSB requires
sizable hierarchy! (Not in NUHM2.)

HLS theorem, relation to superstrings: don’t single out weak
scale.
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Features of SUSY

Need superpartner for each SM particle: Same rep. of gauge

group, spin differs by 1/2
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Features of SUSY

Need superpartner for each SM particle: Same rep. of gauge

group, spin differs by 1/2

Need at least 2 Higgs doublets (anomalies, mt · mb 6= 0)

SUSY implies equal masses for partners =⇒ SUSY must be

broken

Naturalness: sparticle masses should be at weak scale (strictly

true only for 3rd generation, elw gauginos)

In simplest, R−parity invariant scenario: lightest superparticle

LSP is stable: satisfies one condition for DM candidate!
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SUSY DM candidate: neutralino χ̃0
1

Mixture of B̃, W̃3, h̃0
u, h̃0

d
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In constrained models: often is lightest sparticle in
visible sector! (Other possibility: lightest stau τ̃1)

In “most” of parameter space: χ̃0
1 ≃ B̃, and predicted

Ωχ̃0
1
h2 too large! O(1 to 10) rather than O(0.1) in

standard cosmology,
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SUSY DM candidate: neutralino χ̃0
1

Mixture of B̃, W̃3, h̃0
u, h̃0

d

In constrained models: often is lightest sparticle in
visible sector! (Other possibility: lightest stau τ̃1)

In “most” of parameter space: χ̃0
1 ≃ B̃, and predicted

Ωχ̃0
1
h2 too large! O(1 to 10) rather than O(0.1) in

standard cosmology,

but DM–allowed regions of parameter space do exist
even in constrained models!
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Regions with correctΩχ̃0

1
h2

Co–annihilation region: mχ̃0
1
≃ mτ̃1
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1 is
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1 is
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arranged “anywhere” in NUHM.)

Heavy higgsino: Needs |µ| ≃ 1.1 TeV: naturalness? Can
be arranged in cMSSM.

Very heavy wino: Needs |M2| ≃ 3 TeV: naturalness???
Not possible in cMSSM.
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Regions with correctΩχ̃0

1
h2

Co–annihilation region: mχ̃0
1
≃ mτ̃1

Higgs funnel(s): mχ̃0
1
≃ mh/2, mA/2

Well–tempered neutralino: µ − M1 ≤ MZ =⇒ χ̃0
1 is

B̃ − h̃0 mixture. (Requires mq̃ ≫ mg̃ in cMSSM; can be
arranged “anywhere” in NUHM.)

Heavy higgsino: Needs |µ| ≃ 1.1 TeV: naturalness? Can
be arranged in cMSSM.

Very heavy wino: Needs |M2| ≃ 3 TeV: naturalness???
Not possible in cMSSM.

Note: DM–allowed region of (m0,m1/2) plane of cMSSM
depends on A0, tan β!
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Impact of LHC searches

Is model dependent: Only probe g̃, q̃ sector so far! Here:
Assume cMSSM for definiteness.
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Is model dependent: Only probe g̃, q̃ sector so far! Here:
Assume cMSSM for definiteness.

Well–tempered neutralino, A−pole need large mq̃: limits
still fairly weak: mg̃,min increased from ∼ 400 GeV to
∼ 550 GeV
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Impact of LHC searches

Is model dependent: Only probe g̃, q̃ sector so far! Here:
Assume cMSSM for definiteness.

Well–tempered neutralino, A−pole need large mq̃: limits
still fairly weak: mg̃,min increased from ∼ 400 GeV to
∼ 550 GeV

τ̃1 co–annihilation requires mq̃ ≤ mg̃: good for LHC
searches; still plenty of allowed region left.
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Impact of direct WIMP Searches

XENON, CDMS⊕EDELWEISS begin to probe
well–tempered neutralino
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Impact of direct WIMP Searches

XENON, CDMS⊕EDELWEISS begin to probe
well–tempered neutralino

Signals in other regions very small
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Impact of Future WIMP Discovery at Collider

Generically: could determine:

WIMP mass: Very useful for indirect searches (greatly
reduced “look elsewhere” problem); less so for direct
searches, once mχ ≥ mN
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reduced “look elsewhere” problem); less so for direct
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WIMP couplings: Determine cross sections and final
states in indirect searches; determine cross sections in
direct searches
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Impact of Future WIMP Discovery at Collider

Generically: could determine:

WIMP mass: Very useful for indirect searches (greatly
reduced “look elsewhere” problem); less so for direct
searches, once mχ ≥ mN

WIMP couplings: Determine cross sections and final
states in indirect searches; determine cross sections in
direct searches

Most interesting to me: Predict Ωχh2, compare with
observation: Constrain very early universe!
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4 Impact of Higgs Searches

In many WIMP models, Higgs exch. dominates χp

scattering, in which case σχp ∝ 1/m4
H : crucial to know

Higgs mass!
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In SUSY at large tan β: σχ̃0
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TeVatron and CMS searches for H,A → τ+τ−

significantly increase lower bound on DM–allowed mχ̃0
1

in general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338);
exclude scenarios with very large σχ̃0
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4 Impact of Higgs Searches

In many WIMP models, Higgs exch. dominates χp

scattering, in which case σχp ∝ 1/m4
H : crucial to know

Higgs mass!

In SUSY at large tan β: σχ̃0
1p

∝ tan2 β/m4
A: need info on

heavy Higgses!

TeVatron and CMS searches for H,A → τ+τ−

significantly increase lower bound on DM–allowed mχ̃0
1

in general MSSM (Aborno Vasquez, Belanger, Boehm, arXiv:1108.1338);
exclude scenarios with very large σχ̃0

1p
.

Higgs searches can also be used to distinguish
between WIMP models and to help determine
parameters. E.g. mh in MSSM constrains stop sector.
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Summary

Rumors of the direct detection of WIMPs are greatly
exaggerated
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Summary

Rumors of the direct detection of WIMPs are greatly
exaggerated

Well–motivated WIMP models can be tested at
colliders!

Scenarios with new light gauge bosons with
suppressed couplings to SM fermions are now being
probed at low−E colliders, fixed–target expts.

LHC not very good for “model–independent” WIMP
search. (Signal is O(α2αS), background is O(ααS).)

Higgs sector also very important for WIMP physics!
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