Embedding MSSM Inflation into the Minimal Left-Right Symmetric Model

Ju Min Kim

University of Bonn

22, Sep., 2008

Work in progress, with M. Drees
The universe dominated by a scalar field ("inflaton"), ϕ:
\[\dddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0. \]

Exponential expanding: $R(t) \propto e^{Ht}$.

$\epsilon \equiv \frac{1}{2} M_P^2 \left(\frac{V'}{V} \right)^2 \ll 1$; $\dot{\phi} = -\frac{V'}{3H}$ (Or, $|\eta \equiv M_P^2 \frac{V''}{V}| << 1$)

"Reheating": After inflation, the inflaton oscillates around the global minimum and produces the entropy density.
(Lifted) Flat Directions in Supersymmetric Theories

The superpotential:

\[W = W_{\text{renorm}} + \sum_{n>3} \frac{\lambda}{M^{n-3}} \phi^n. \]

⇒ Flat directions in MSSM are lifted by soft SUSY-breaking terms and by non-renormalizable terms. [Gherghetta, Kolda, Martin]

⇒ The scalar potential:

\[V = \frac{1}{2} m^2 \phi^2 + A \cos(n\theta + \theta_A) \frac{\lambda_n}{nM_P^3} \phi^n + \frac{\lambda^2}{M_P^2(n-3)} \phi^{2(n-1)}. \]
Only n=6 (LLe, udd) flat directions can be inflaton candidates. Parametrized by, e.g.,
\[L_i = \frac{1}{\sqrt{3}} (0 \phi)^T; \quad L_j = \frac{1}{\sqrt{3}} (\phi 0)^T; \quad e_k = \frac{1}{\sqrt{3}} \phi, \]
The scalar potential is:
\[V = \frac{1}{2} m^2 \phi^2 - \frac{A \lambda_6}{6 M^3} \phi^6 + \frac{\lambda^2}{M^6} \phi^{10}. \]
Tuning \(A^2 = 40 m^2 \), at the saddle point,
\[\phi_0 = \left(\frac{m \phi M^3}{\sqrt{10} \lambda_6} \right)^{1/4}; \quad V(\phi_0) = \frac{4}{15} m^2 \phi_0^2, \]
With $m_{\phi} \sim 1 \text{ TeV}, \lambda_6 \sim 1$,

\[\phi_0 \sim 10^{14} \text{ GeV}; \quad H_{\text{inf}} \sim \frac{m_{\phi}\phi_0}{M_P} \sim (1 - 10) \text{ GeV}; \]

\[n_s \sim 1 - \frac{4}{N_{\text{COBE}}} \approx 0.92; \quad \delta \sim \frac{m_{\phi}M_P}{\phi_0^2}N_{\text{COBE}}^2 \sim 10^{-5}. \]
The Minimal Left-Right (LR) Symmetric Model [Aulakh et. al.]

- $U(1)_{B-L} \times SU(2)_R \rightarrow U(1)_Y$ by $SU(2)_R$ triplet Higgs.

- Heavy right-handed neutrino is naturally included.
 \[\Rightarrow m_\nu \sim m_D^2 / M_R \]

- Parity is broken spontaneously.

- Subgroup of SO(10).
The chiral superfields \((SU(3) \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R)\):

\[
Q = (3, 1/3, 2, 1), \quad Q_c = (3^*, -1/3, 1, 2), \quad L = (1, -1, 2, 1)
L_c = (1, 1, 1, 2), \quad H = (1, 0, 2, 2^*), \quad \Sigma = (1, 2, 3, 1)
\]

\[
\Sigma = (1, -2, 3, 1), \quad \Sigma_c = (1, -2, 1, 3), \quad \Sigma_c = (1, 2, 1, 3)
\]

The renormalizable superpotential: (i, j: family index)

\[
W_{\text{ren}} = m_{\Sigma}(\Sigma \Sigma + \Sigma_c \Sigma_c) + Y_q H Q_i Q_j + Y_l H L_i L_j + \frac{1}{2} Y_N^i (L_i \Sigma_c L_j + L_i \Sigma L_j).
\]

The symmetry is broken by nonrenormalizable terms:

\[
W_{\text{nr}} \ni \frac{\lambda_{\sigma}}{4M_P} (\Sigma_c \Sigma_c)^2.
\]

The LR symmetry breaking scale:

\[
10^{13} \text{GeV} \lesssim M_R (= \sqrt{\frac{m_{\Sigma} M_P}{\lambda_{\sigma}}}) \lesssim 10^{16} \text{GeV}.
\]
The chiral superfields \((SU(3) \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R)\):

\[
Q = (3, 1/3, 2, 1), \quad Q_c = (3^*, -1/3, 1, 2), \quad L = (1, -1, 2, 1) \\
L_c = (1, 1, 1, 2), \quad H = (1, 0, 2, 2^*), \quad \Sigma = (1, 2, 3, 1) \\
\Sigma = (1, -2, 3, 1), \quad \Sigma_c = (1, -2, 1, 3), \quad \Sigma_c = (1, 2, 1, 3)
\]

The renormalizable superpotential: (i, j: family index)

\[
W_{\text{ren}} = m_\Sigma (\Sigma \bar{\Sigma} + \Sigma_c \bar{\Sigma}_c) + Y_q H Q_i Q_j + Y_l H L_i L_j + \frac{i}{2} Y_N (L_c i \Sigma_c L_c j + L_i \Sigma L_j).
\]

The symmetry is broken by nonrenormalizable terms:

\[
W_{\text{nr}} \ni \lambda_\sigma \frac{M_P}{4}\bar{\Sigma}c (\Sigma_c \bar{\Sigma}_c)^2.
\]

The LR symmetry breaking scale:

\[
10^{13} \text{GeV} \lesssim M_R = \sqrt{\frac{m_\Sigma M_P}{\lambda_\sigma}} \lesssim 10^{16} \text{GeV}.
\]
The Set-up

- $Q_c Q_c Q_c L_c$ flat direction: Lift by $n=4$ $Q_c Q_c Q_c L_c$.

 Parametrizing the fields such as

 \[Q_{ci} = e^{i\theta_\phi} (\phi \ 0)^T, \quad Q_{cj} = e^{i\theta_\phi} (0 \ \phi)^T, \quad Q_{ck} = e^{i\theta_\phi} (0 \ \phi)^T, \quad L_{cj} = c_j e^{i\theta_j} (\psi \ 0)^T, \quad L_{ck} = c_k e^{i\theta_k} (\psi \ 0)^T, \ldots \]

 \(j \neq k; c_j^2 + c_k^2 = 1; c_j, c_k \in \mathbb{R} \), flat directions:

 1. $\psi = \phi; \sigma = \sigma = 0; \cos(2\theta_j - 2\theta_k) = 1 - \frac{1}{2c_j^2 2c_k^2}$.
 ("LR-symmetric" flat direction)

 2. $\psi = 0; \sigma = \sqrt{-\frac{\phi^2}{4} + \frac{1}{4} \sqrt{\frac{64m^2 M_P^2}{\lambda^2 \sigma^2} + \phi^4}}; \sigma = \sqrt{\frac{\phi^2}{4} + \frac{1}{4} \sqrt{\ldots}}$
 ("MSSM-like" flat direction)

 - $W_{nr} = \frac{\lambda_{\sigma}}{4M_P} (\Sigma c \overline{\Sigma c})^2 + \frac{\lambda_{4j}}{3M_P} \Phi^3 L_{cj} + \frac{\lambda_{4k}}{3M_P} \Phi^3 L_{ck}$.
The Dynamics

(i) "LR-symmetric" direction ($\bar{\sigma} = \sigma = 0$)

- Constraints:
 - Nucleon (non-)decay $\Rightarrow \lambda_4 \lesssim 10^{-8}$.
 - LR Symmetry breaking $\Rightarrow m_\Sigma \sim m_{\text{soft}}$.

- $V = V_\sigma + V_\phi + V_c$, where

 $V_\sigma = \left(m_\Sigma - \frac{\lambda_\sigma^2}{2M_P} \sigma \bar{\sigma} \right)^2 \left(\sigma^2 + \bar{\sigma}^2 \right) + \frac{1}{2} m^2 \left(\sigma^2 + \bar{\sigma}^2 \right) - \mu^2 \left(\sigma \bar{\sigma} + \text{h.c.} \right) - \frac{\lambda_\sigma^2 A_{\alpha}}{4M_P} \left(\sigma \bar{\sigma} \right)^2,$

 $V_\phi = \frac{1}{2} m_\phi^2 \phi^2 - \frac{\lambda_4 A_4}{4M_P} \phi^4 + \frac{\lambda_4^2}{M_P^2} \phi^6.$

$\Rightarrow \phi_0 = \sqrt{\frac{m_\phi M_P}{\lambda_4}}$

\Rightarrow Consistent with observation.
(ii) "MSSM-like" direction ($\bar{\sigma} \neq 0, \sigma \neq 0$)

We "integrate out" the \tilde{L}_c first: $\tilde{L}_c \simeq -\frac{\lambda_4}{3M_P} \bar{\sigma}^3 \phi^3 \left(\sigma^2 + \frac{\lambda_4 \phi^4}{M_P^2} \right)$

- $\phi \ll M_R : V \simeq \phi^2 \left(m^2 - \frac{\lambda^2 A \phi^4}{M_P^2 M_R} + \frac{\lambda^4 \phi^8}{M_P^4 M_R^2} \right)$
 $\Rightarrow V \rightarrow V_{MSSM}$, with $\lambda^2 \frac{M_P}{M_R} \rightarrow \lambda$.
 \Rightarrow Smaller ϕ_0.

- $\phi \gg M_R$
 - $\bar{\sigma} \gg \frac{\phi^2}{M_P} : V \simeq \phi^2 \left(m^2 - \frac{\lambda^2 A \phi^5}{M_P^2 M_R^2} + \frac{\lambda^4 \phi^{14}}{M_P^4 M_R^8} \right)$
 \Rightarrow Very complicated fine-tuning needed.

- $\bar{\sigma} \ll \frac{\phi^2}{M_P} : V \simeq m^2 \phi^2 - A M_R^2 \phi + \frac{\lambda^2}{M_P^2} \phi^6$
 \Rightarrow No flat potential.

\Rightarrow Works only for $\phi_0 < M_R$.
(ii') Assumption: \(\exists \) A symmetry suppressing the \(Q_cQ_cQ_cL_c \).
\[\Rightarrow W_{nr} = \frac{\lambda_0}{4M_P}(\Sigma_c \overline{\Sigma}_c)^2 + \frac{\lambda_7}{6M_P^4} \phi^6 \Sigma_c. \]

- \(\phi \ll \sqrt{\frac{8m_\Sigma M_P}{\lambda}} : V \simeq \phi^2 \left(m^2 - \frac{A\lambda M_R}{M_P^4} \phi^4 + \frac{\lambda^2 M_R^2}{M_P^8} \phi^8 \right) \)
 \[\Rightarrow V \rightarrow V_{MSSM}, \text{ with } \lambda \frac{M_R}{M_P} \rightarrow \lambda \]

- \(\phi \gg \sqrt{\frac{8m_\Sigma M_P}{\lambda}} : V \simeq \phi^2 \left(m^2 - \frac{A\lambda}{M_P^4} \phi^5 + \frac{\lambda^2}{M_P^8} \phi^{10} \right) \)
 \[\Rightarrow \phi_0 \simeq \left(\frac{M_P^4 m}{\lambda_7 M_R} \right)^{1/4} \]

\[\Rightarrow \text{Slightly larger } \phi_0 \text{ (compared to that in MSSM inflation), but works.} \]
Preheating

- Basic picture [Kofman, Linde, Starobinsky]

Assuming $V = \frac{m^2}{2} \phi^2 + \frac{1}{2} g^2 \phi^2 \chi^2$, EOM for quantum fluctuations of the scalar field χ:

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2(t)} + g^2 \Phi(t)^2 \sin^2(m\phi t) \right) \chi_k = 0.$$

(a: scale factor, Φ: amplitude of oscillations)

\Rightarrow Parametric resonance can happen!

\Rightarrow Particle production: $n_k = \frac{\omega_k}{2} \left(\frac{\left| \dot{\chi}_k \right|^2}{\omega_k^2} + |\chi_k|^2 \right) - \frac{1}{2}$.

- Post-MSSM inflation [Allahverdi, Enqvist, Garcia-Bellido, Jokinen, Mazumdar]

The gauge bosons and gauginos are produced when the inflaton passes through the origin.

\Rightarrow Get "fatten"s when the inflaton oscillates.

\Rightarrow Decays to the matter fields.
Preheating

Basic picture [Kofman, Linde, Starobinsky]

Assuming \(V = \frac{m^2_\phi}{2} \phi^2 + \frac{1}{2} g^2 \phi^2 \chi^2 \), EOM for quantum fluctuations of the scalar field \(\chi \):

\[
\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2(t)} + g^2 \Phi(t)^2 \sin^2(m_\phi t) \right) \chi_k = 0.
\]

(\(a \): scale factor, \(\Phi \): amplitude of oscillations)

\(\Rightarrow \) Parametric resonance can happen!

\(\Rightarrow \) Particle production:

\[
n_k = \frac{\omega_k}{2} \left(\frac{\left| \dot{\chi}_k \right|^2}{\omega_k^2} + \left| \chi_k \right|^2 \right) - \frac{1}{2}.
\]

Post-MSSM inflation [Allahverdi, Enqvist, Garcia-Bellido, Jokinen, Mazumdar]

The gauge bosons and gauginos are produced when the inflaton passes through the origin.

\(\Rightarrow \) Get "fatten"s when the inflaton oscillates.

\(\Rightarrow \) Decays to the matter fields.
Particle Production

Post-"MLRSM" inflation - "LR symmetric" direction.

$SU(2)_R \times U(1)_{B-L}$ Symmetry breaking

$\Rightarrow \exists \delta_0 \left(\sim \lambda_{\sigma} \frac{M_R^2}{M_P} \right)$ [Aulakh et. al.]

\Rightarrow All $\phi (\sim TeV)$, $\tilde{L}_c \left(\sim 10^{14} GeV \right)$, $\delta_0 \left(\sim TeV \right)$ start to oscillate.

$\Rightarrow \delta_0$ slowly changing, \tilde{L}_c rapidly fixed at the minimum.

$(m = 10^{-16} M_P, \ m_\Sigma = 10^{-14} M_P, \ \lambda_{\sigma} = 10^{-7}, \ H = 10^{-18} M_P)^N$
Summary Prospects

- Both $n = 4$ and $n = 7$ operator in the $Q_c Q_c Q_c L_c$ direction can provide us the slow-roll inflation, either by tuning the nonrenormalizable coupling or the initial conditions.
 - "LR-symmetric" direction: OK, with suppressed nonrenormalizable couplings.
 - "MSSM-like" direction: ϕ_0 should lie below M_R.

- The post-inflation cosmology is very different along each branch:
 - "LR-symmetric" direction: Neutral $SU(2)_R$ triplet Higgs ($m \sim \mathcal{O}(\text{TeV})$) is produced.
 - "MSSM-like" direction: All vacuum energy is transferred to the radiation.
Both $n = 4$ and $n = 7$ operator in the $Q_c Q_c Q_c L_c$ direction can provide us the slow-roll inflation, either by tuning the nonrenormalizable coupling or the initial conditions.

- "LR-symmetric" direction: OK, with suppressed nonrenormalizable couplings.
- "MSSM-like" direction: ϕ_0 should lie below M_R.

The post-inflation cosmology is very different along each branch:

- "LR-symmetric" direction: Neutral $SU(2)_R$ triplet Higgs ($m \sim \mathcal{O}(\text{TeV})$) is produced.
- "MSSM-like" direction: All vacuum energy is transferred to the radiation.
Combining the information from cosmological observation with the collider signal, the model can be strongly constrained.

Implications on Baryogenesis will be explored.