Relic-density-consistent SUSY models without soft term universality: consequences for collider and neutralino dark matter searches

Eun-Kyung Park
Bonn University

based on JHEP05 (2008) 058
in collaboration with
H. Baer(Florida State U.), A. Mustafayev (U. of Kansas) and X. Tata (U. of Hawaii)

SUSY08, June 16-21, 2008
Outline

• Introduction
 ⋆ Dark Matter
 ⋆ Neutralino
 ⋆ Universal SUSY model : mSUSGRA

• Models without universality in SSB terms
 ⋆ Non-universal scalar mass models
 ⋆ Non-universal gaugino mass models

• Implications for collider searches
• Implications for direct and indirect dark matter detections
• Conclusions
Dark Matter

- Dominant composition of matter in our universe is not detected visibly but inferred from gravitational effects (Galactic Clustering, Rotation Curves, Gravitational Lensing, Cosmic Microwave Background ...)
- Dark Matter should be non-baryonic (no candidate in the SM), non-relativistic (cold), stable (or long-lived), weakly (or super-weakly) interacting matter
- From the WMAP results, the cold dark matter density of the universe is $\Omega_{CDM} h^2 = 0.111^{+0.011}_{-0.015}$: (upper bound is a tight constraint on SUSY models containing DM candidates: DM may consist of several components)

http://map.gsfc.nasa.gov

Neutralino

- In SUSY models with R-parity conservation
 \Rightarrow the Lightest Supersymmetric Particle (LSP) is stable
 \Rightarrow lightest neutralino \tilde{Z}_1 is the LSP in most of MSSM parameter space

\Rightarrow \tilde{Z}_1 is good candidate for Cold Dark Matter (CDM)

$$\tilde{Z}_1 = v_1^{(1)} \psi_{h_u^0} + v_2^{(1)} \psi_{h_d^0} + v_3^{(1)} \lambda_3 + v_4^{(1)} \lambda_0$$

Here, $R_{\tilde{w}} = |v_3^{(1)}|$, $R_{\tilde{B}} = |v_4^{(1)}|$ and $R_{\tilde{H}} = \sqrt{|v_1^{(1)}|^2 + |v_2^{(1)}|^2}$

: W-ino, B-ino and Higgsino

- We assume,
 - MSSM is an effective theory between the weak and GUT scale
 - R-parity is conserved
 - Neutralino LSP

- Number density is governed by Boltzmann equation,

$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

\Rightarrow requires evaluating many thousands Feynman diagrams

\Rightarrow high (co-)annihilation cross section implies low relic abundance
Universal SUSY model: mSUGRA

- Parameter space: universal Soft Susy Breaking terms at $Q = M_{GUT}$
 $m_0, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu)$

- WMAP allowed Regions in m_0-$m_{1/2}$ space
 1. $\tilde{\tau}$ co-annihilation region at low m_0, $m_{\tilde{\tau}_1} \sim m_{\tilde{Z}_1}$
 2. bulk region at low m_0 and $m_{1/2}$, light sleptons (LEP2 excluded)
 3. Higgs-funnel H, A resonance ($2m_{\tilde{Z}_1} \simeq m_{A,H}$) at large $\tan\beta \sim 50$ or h-resonance at low $m_{1/2}$ ($2m_{\tilde{Z}_1} \simeq m_h$)
 4. FP/HB region at large m_0, low $\mu \rightarrow$ mixed higgsino dark matter (MHDM)
 * Region 1, 2, 3 \rightarrow Bino-like LSP

- Motivations for models with non-universality
 * all relic-density-consistent regions in mSUGRA are near the edges of theoretically (or LEP2 experiment) excluded regions
 * need to examine how already drawn conclusions from the mSUGRA model are affected by relaxing the universality assumptions
 * within R-parity conserved neutralino dark matter assumption, WMAP value provides a strong constraint reducing model parameter space by one unit
Models without universality in SSB terms

- **Relic-density-consistent models** obtained by adjusting
 - composition of neutralino (WTN: Well-Tempered Neutralino*)
 - masses of neutralino or other sparticles

- **Non-universal scalar mass models**
 - Generation non-universality: Normal scalar mass hierarchy (NMH)
 - Non-universal Higgs mass: one extra parameter case (NUHM1$_{\mu}$, NUHM1$_{A}$)
 - non-universal Higgs mass: two extra parameter case (HS-Higgs Splitting)

- **Non-universal gaugino mass models**
 - Mixed Wino Dark Matter (MWDM)
 - Bino-Wino Co-Annihilation Scenario (BWCA)
 - Low $|M_3|$ Dark Matter: Compressed SUSY (LM3DM)
 - High $|M_2|$ Dark Matter: left-right split SUSY (HM2DM)

- Some benchmark cases with mSUGRA parameter space
 m_0, $m_{1/2}$, A_0, tanβ, sign(μ) = 300 GeV, 300 GeV, 0, 10, +1 and $m_t = 171.4$ GeV

Eun-Kyung Park neutralino DM searches in relic-density-consistent models without universality
Non-universal scalar mass models

- generation non-universality: Normal scalar Mass Hierarchy (NMH)
 \[m_0(1, 2), m_0, m_{1/2}, A_0, \tan \beta, \text{sign}(\mu) \]
 - \(m_0(1, 2) \): first/second generation, \(m_0(3) = m_{H_u} = m_{H_d} \equiv m_0 \): remaining
 - dial \(m_0(1, 2) \) to low enough to bulk (co-)annihilation via light sleptons

- non-universal Higgs mass: one extra parameter case (NUHM1_\mu, NUHM1_A)
 \[m_0, \delta_\phi, m_{1/2}, A_0, \tan \beta, \text{sign}(\mu) \]
 - \(m_\phi = m_0(1 + \delta_\phi), m_{H_u}^2 = m_{H_d}^2 \equiv \text{sign}(m_\phi)|m_\phi|^2 \)
 - \(m_\phi > m_0 \): small \(\mu \) and MHDM
 - \(m_\phi < 0 \): \(m_A \sim 2m_{\tilde{Z}_1} \rightarrow \) at any \(\tan \beta \)

- non-universal Higgs mass: two extra parameter case (HS-Higgs Splitting)
 \[m_0, m_{H_u}^2 \text{(equivalently } \mu), m_{H_d}^2 \text{(equivalently } m_A), m_{1/2}, A_0, \tan \beta, \text{sign}(\mu) \]
 - \(m_{H_u,d}^2 = m_0^2 (1 \mp \delta_H) \)
 - \(\delta_H < 0 \): low \(\mu \) and low \(m_A \)
 - \(\delta_H > 0 \): WMAP region via \(\tilde{l}_L/\tilde{\nu} \) or \(\tilde{u}_R/\tilde{c}_R \) co-annihilation
Non-universal gaugino mass models

- Mixed Wino Dark Matter (MWDM1, MWDM2):
 \(m_0, M_1(\text{or } M_2), m_{1/2}, A_0, \tan\beta, \text{sign}(\mu) \)
 - by increasing the wino content of the LSP by reducing the ratio \(M_2/M_1 \)
 - \(M_1 \neq M_2 = M_3 = m_{1/2} \) or \(M_2 \neq M_1 = M_3 = m_{1/2} \)

- Bino-Wino Co-Annihilation Scenario (BWCA1, BWCA2):
 same as MWDM but \(M_1 \) and \(M_2 \) are in opposite sign
 - by allowing co-annihilation between high bino-like and wino-like states

- Low \(|M_3| \) Dark Matter: Compressed SUSY (LM3DM):
 \(m_0, M_3, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu) \)
 - by increasing the higgsino content of the LSP by decreasing the gluino mass
 - \(M_3 \neq M_1 = M_2 = m_{1/2} \)

- High \(|M_2| \) Dark Matter: left-right split SUSY (HM2DM):
 \(m_0, M_2, m_{1/2}, A_0, \tan\beta, \text{sign}(\mu) \)
 - by allowing large \(M_2 \) mass
 - \(M_2 \gg M_1 = M_3 = m_{1/2} \)
Some Benchmark Cases: non-universal scalar mass models

<table>
<thead>
<tr>
<th>parameter</th>
<th>mSUGRA</th>
<th>NMH</th>
<th>NUHM1_μ</th>
<th>NUHM1_A</th>
<th>HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>special value</td>
<td>—</td>
<td>$m_0(1,2)$</td>
<td>m_ϕ</td>
<td>m_ϕ</td>
<td>δ_H</td>
</tr>
<tr>
<td>μ</td>
<td>385.1</td>
<td>386.5</td>
<td>105.8</td>
<td>748.5</td>
<td>269.3</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>729.7</td>
<td>722.1</td>
<td>731.4</td>
<td>733.4</td>
<td>728.9</td>
</tr>
<tr>
<td>$m_{\tilde{u}_L}$</td>
<td>720.8</td>
<td>658.4</td>
<td>724.3</td>
<td>720.5</td>
<td>720.1</td>
</tr>
<tr>
<td>$m_{\tilde{t}_1}$</td>
<td>523.4</td>
<td>526.5</td>
<td>484.1</td>
<td>624.5</td>
<td>505.8</td>
</tr>
<tr>
<td>$m_{\tilde{b}_1}$</td>
<td>656.8</td>
<td>659.8</td>
<td>642.2</td>
<td>689.5</td>
<td>645.4</td>
</tr>
<tr>
<td>$m_{\tilde{e}_L}$</td>
<td>364.5</td>
<td>216.2</td>
<td>364.8</td>
<td>365.8</td>
<td>373.4</td>
</tr>
<tr>
<td>$m_{\tilde{e}_R}$</td>
<td>322.3</td>
<td>128.9</td>
<td>322.5</td>
<td>321.9</td>
<td>301.8</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_1}$</td>
<td>317.1</td>
<td>317.6</td>
<td>317.8</td>
<td>316.4</td>
<td>299.3</td>
</tr>
<tr>
<td>$m_{W'_2}$</td>
<td>411.7</td>
<td>412.7</td>
<td>264.7</td>
<td>754.8</td>
<td>321.1</td>
</tr>
<tr>
<td>$m_{W'_1}$</td>
<td>220.7</td>
<td>219.5</td>
<td>91.1</td>
<td>234.9</td>
<td>196.6</td>
</tr>
<tr>
<td>$m_{Z'_2}$</td>
<td>220.6</td>
<td>219.4</td>
<td>117.4</td>
<td>234.5</td>
<td>198.1</td>
</tr>
<tr>
<td>$m_{Z'_1}$</td>
<td>119.2</td>
<td>118.4</td>
<td>69.0</td>
<td>121.5</td>
<td>115.4</td>
</tr>
<tr>
<td>m_{A}</td>
<td>520.3</td>
<td>521.9</td>
<td>584.5</td>
<td>268.5</td>
<td>279.0</td>
</tr>
<tr>
<td>m_{H^+}</td>
<td>529.8</td>
<td>531.4</td>
<td>593.8</td>
<td>281.6</td>
<td>292.0</td>
</tr>
<tr>
<td>m_{h}</td>
<td>110.1</td>
<td>110.1</td>
<td>109.8</td>
<td>110.5</td>
<td>109.8</td>
</tr>
</tbody>
</table>

$\Omega_{\tilde{Z}_1} h^2$	1.1	0.10	0.11	0.11	0.10
$\sigma_{SI}(\tilde{Z}_1p)$	2.1×10^{-9} pb	2.1×10^{-9} pb	7.8×10^{-8} pb	1.2×10^{-9} pb	2.7×10^{-8} pb
R_{H}	0.15	0.14	0.84	0.06	0.26
Some Benchmark Cases: non-universal gaugino mass models

<table>
<thead>
<tr>
<th>parameter</th>
<th>mSUGRA</th>
<th>MWDM</th>
<th>BWCA</th>
<th>LM3DM</th>
<th>HM2DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>special</td>
<td>—</td>
<td>$M_1(M_{GUT})$</td>
<td>$M_1(M_{GUT})$</td>
<td>$M_3(M_{GUT})$</td>
<td>$M_2(M_{GUT})$</td>
</tr>
<tr>
<td>value</td>
<td>—</td>
<td>490</td>
<td>-480</td>
<td>160</td>
<td>900</td>
</tr>
<tr>
<td>μ</td>
<td>385.1</td>
<td>385.9</td>
<td>376.6</td>
<td>185.3</td>
<td>134.8</td>
</tr>
<tr>
<td>$m_{\tilde{g}}$</td>
<td>729.7</td>
<td>729.9</td>
<td>731.7</td>
<td>420.2</td>
<td>736.4</td>
</tr>
<tr>
<td>$m_{\tilde{\mu}_L}$</td>
<td>720.8</td>
<td>721.2</td>
<td>722.0</td>
<td>496.9</td>
<td>901.8</td>
</tr>
<tr>
<td>$m_{\tilde{\mu}_R}$</td>
<td>702.7</td>
<td>708.9</td>
<td>709.9</td>
<td>467.0</td>
<td>696.3</td>
</tr>
<tr>
<td>$m_{\tilde{\tau}_1}$</td>
<td>523.4</td>
<td>526.5</td>
<td>536.3</td>
<td>312.2</td>
<td>394.3</td>
</tr>
<tr>
<td>$m_{\tilde{\ell}_1}$</td>
<td>656.8</td>
<td>656.0</td>
<td>658.9</td>
<td>443.2</td>
<td>686.4</td>
</tr>
<tr>
<td>$m_{\tilde{e}_L}$</td>
<td>364.5</td>
<td>371.5</td>
<td>371.4</td>
<td>366.1</td>
<td>669.3</td>
</tr>
<tr>
<td>$m_{\tilde{e}_R}$</td>
<td>322.3</td>
<td>353.3</td>
<td>352.2</td>
<td>322.6</td>
<td>321.3</td>
</tr>
<tr>
<td>$m_{\tilde{W}_2}$</td>
<td>411.7</td>
<td>412.4</td>
<td>404.5</td>
<td>282.9</td>
<td>719.7</td>
</tr>
<tr>
<td>$m_{\tilde{W}_1}$</td>
<td>220.7</td>
<td>220.8</td>
<td>220.0</td>
<td>152.5</td>
<td>136.5</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_2}$</td>
<td>220.6</td>
<td>223.2</td>
<td>219.2</td>
<td>163.6</td>
<td>142.3</td>
</tr>
<tr>
<td>$m_{\tilde{Z}_1}$</td>
<td>119.2</td>
<td>194.6</td>
<td>201.7</td>
<td>105.5</td>
<td>94.8</td>
</tr>
<tr>
<td>m_A</td>
<td>520.3</td>
<td>525.9</td>
<td>518.6</td>
<td>398.3</td>
<td>670.7</td>
</tr>
<tr>
<td>m_{H^+}</td>
<td>529.8</td>
<td>535.3</td>
<td>528.1</td>
<td>408.7</td>
<td>679.8</td>
</tr>
<tr>
<td>m_h</td>
<td>110.1</td>
<td>110.2</td>
<td>109.8</td>
<td>106.0</td>
<td>111.9</td>
</tr>
<tr>
<td>$\Omega_{\tilde{Z}_1} h^2$</td>
<td>1.1</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>$\sigma_{SI}(\tilde{Z}_1 p)$</td>
<td>2.1×10^{-9} pb</td>
<td>1.5×10^{-8} pb</td>
<td>3.1×10^{-11} pb</td>
<td>7.2×10^{-8} pb</td>
<td>3.4×10^{-8} pb</td>
</tr>
<tr>
<td>$R_{\tilde{H}}$</td>
<td>0.15</td>
<td>0.25</td>
<td>0.16</td>
<td>0.50</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Dark matter at Colliders

- CERN LHC and Fermilab Tevatron
 - If $\tilde{Z}_2 \rightarrow \tilde{\ell}\bar{\ell}, \tilde{\ell} \rightarrow \tilde{Z}_1\ell\bar{\ell}$ or $\tilde{Z}_2 \rightarrow \tilde{\ell}\ell$ are open ($l = e$ or μ)
 \Rightarrow good prospects for measuring the $\tilde{Z}_2 - \tilde{Z}_1$ mass gap at the CERN LHC and possibly at the Fermilab Tevatron
 - In the mSUGRA case, most of the parameter space has $m_{\tilde{Z}_2} - m_{\tilde{Z}_1} > 90$ GeV, $\Rightarrow \tilde{Z}_2 \rightarrow \tilde{Z}_1Z^0$ or \tilde{Z}_1h “spoiler” decays dominant
 - When the mass gap is much smaller
 * spoiler decays are closed, 3-body decays are open
 * $\ell\bar{\ell}$ mass edge always visible at LHC

- Linear e^+e^- collider (ILC)
 - $m_{\tilde{Z}_2}$, $m_{\tilde{W}_1}$ and $m_{\tilde{Z}_1}$ can be inferred from $\tilde{W}_1^+\tilde{W}_1^- \rightarrow \ell\nu_1\tilde{Z}_1 + q\bar{q}\tilde{Z}_1$ (dijet events)
 - $\tilde{W}_1^+\tilde{W}_1^-, \tilde{Z}_1\tilde{Z}_2$, $\tilde{Z}_2\tilde{Z}_2$ production cross sections can be measured as a function of beam polarization

- ISAJET program (H. Baer, F.E. Paige, S.D. Protopopescu, and X. Tata)
Implications for collider searches 1

- with $A_0 = 0$, $m_t = 171.4$ GeV, $\tan \beta = 10$
 (except for the mSUGRA model: $\tan \beta = 10, 30, 45, 50, 52$ and 55)
- non-universal mass dialed to yield $\Omega \tilde{Z}_1 h^2 \approx 0.11$

- $m_{\tilde{g}}$ vs. $m_{\tilde{u}_R}$
 - dotted lines: 100 fb$^{-1}$ reach of CERN LHC
 - dashed line: $m_{\tilde{u}_R} = m_{\tilde{g}}$
- most of models within reach of LHC except HB/FP region of mSUGRA

- $m_{\tilde{W}_1}$ vs. $m_{\tilde{Z}_2} - m_{\tilde{Z}_1}$
 - dashed line: $m_{\tilde{Z}_2} - m_{\tilde{Z}_1} = M_Z$
- below the line, 3-body decay like $\tilde{Z}_2 \rightarrow \tilde{Z}_1 l \bar{l}$
 - open
- in most models, $m(l\bar{l})$ mass edge visible at LHC
Dilepton Distribution at LHC

- **mSUGRA**: sharp peak at $m(l^+l^-) \sim M_Z$ from $\tilde{Z}_2 \rightarrow \tilde{Z}_1 Z^0$ decays

- **NUGM**: Z^0 peak from $\tilde{Z}_3, \tilde{Z}_4, \tilde{W}_2$ decays + continuum distribution $m(l^+l^-) < m\tilde{Z}_2 - m\tilde{Z}_1$
Implications for collider searches 2

- m_h vs. $m_{\tilde{t}_1}$
 - heavier \tilde{t}_1 squarks are correlated with larger values of m_h (due to top-Yukawa radiative corrections to m_h)
 - in many models with $m_A \gg M_Z$, then $h \approx H_{SM}$: the LEP2 lower bound of 114.1 GeV applicable

- $m_{\tilde{W}_1}$ vs. $m_{\tilde{\tau}_1}$
 - dashed lines: reach of ILC500 ($\sqrt{s} = 500$ GeV)
 - dotted lines: reach of ILC1000 ($\sqrt{s} = 1000$ GeV)
Implications for $BF(b \to s\gamma)$ and $(g - 2)_\mu$

- $BF(b \to s\gamma)$

 - dotted line: combined experimental measurement (CLEO, Belle, BABAR)

 $$BF(b \to s\gamma) = (3.55 \pm 0.26) \times 10^{-4}$$

 - dashed line: SM prediction

 $$BF(b \to s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$$

- $(g - 2)_\mu$

 - positive deviation in $a_\mu \equiv \frac{(g - 2)_\mu}{2}$

 $$\Delta a_\mu = a_\mu^{exp} - a_\mu^{SM} = 22(10) \times 10^{-10}$$

 - $\Delta a_\mu^{SUSY} \propto \tan \beta$

 * We assume,

 - (near)degeneracy of first and second generation of SSB sfermions \rightarrow FCNC suppressed

 - CP-violating phases in SSB suppressed \rightarrow CP contribution of SUSY is small
Direct and Indirect Dark Matter Detection

• Direct Detection: Spin independent Neutralino-Proton scattering Cross section
 (with current experimental sensitivities: Xenon-10(100, 1000), SuperCDMS, LUX)

• Indirect Detection
 – Detection of μ: Neutrinos from the Sun - IceCube
 $\tilde{Z}_1\tilde{Z}_1 \rightarrow W^+W^-, q\bar{q}, \ldots \rightarrow \pi^- (\pi^+) \rightarrow \bar{\nu}_\mu (\nu_\mu) \rightarrow \mu^- (\mu^+)$
 – Detection of antiparticles: $\tilde{Z}_1\tilde{Z}_1 \rightarrow W^+W^-, q\bar{q}, ZZ, \ldots \rightarrow jets$
 Antiprotons ($jets \ni \bar{p}$): PAMELA, Positrons ($jets \ni e^+$): PAMELA,
 Antideuterons ($jets \ni \bar{D}$): GAPS
 – Detection of Gamma Rays from the galactic center - GLAST

• IsaRES code (Baer-Belyaev-O’Farrill) and DarkSUSY
Implications for direct/indirect (neutrino) DM detection

- models with WTN within reach of next generation of detectors
- models adjusted masses to get WMAP value below sensitivities of detectors
- muon fluxes from neutralino annihilation in the solar core to ν_μ states
- main contribution comes from Z-exchange \leftrightarrow enhanced if neutralino has high higgsino content
Implications for indirect (γ-ray, antiparticle) DM detection

Gamma-ray Detection : Ad. Contr. N03 HM

Positron Detection : Ad. Contr. N03 HM

Anti-proton Detection : Ad. Contr. N03 HM

Anti-deuteron Detection : Ad. Contr. N03 HM

Eun-Kyung Park neutralino DM searches in relic-density-consistent models without universality
Conclusions

1. ★ WTN occurs only in FP/HB region in mSUGRA (MHDM: \(m_{\tilde{q}} >> m_{\tilde{Z}_1, \tilde{W}_1, \tilde{g}} \)). But, in relic-density-consistent models, easily get WTN with \(m_{\tilde{q}} \sim m_{\tilde{g}} \)
 ★ Higgs funnel enhancement is only for very large \(\tan \beta \) values in mSUGRA.
 But, in non-universal Higgs mass models, we have Higgs funnel for any \(\tan \beta \) value

2. In many relic-density-consistent models, \(\tilde{Z}_2 - \tilde{Z}_1 \) mass gap < \(M_Z \)
 → 2-body decay modes kinematically closed
 → 3-body decay modes open ⇒ at least one dilepton mass edge detectable at LHC
 → location of dilepton mass edge is clean signature of SUSY models

3. ★ \(m_{\tilde{q}} = m_{\tilde{g}}, m_{\tilde{q}, \tilde{g}} < 3100 \) GeV for most relic-density-consistent models
 → implies SUSY signals at LHC
 ★ \(m_{\tilde{\tau}} < 500 \) GeV for LM3DM
 → accessible at ILC with \(\sqrt{s} = 1 \) TeV

4. In WTN models,
 ★ enhanced annihilation rates enhance direct DM detection rates
 ★ in many cases, muon neutrino signals accessible at IceCube
 ★ indirect DM searches in galactic halo into gamma rays and anti-matter elevated; large uncertainties associated with unknown galactic DM density profile
MSSM RGEs

\[
\frac{dm_{H_u}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10} g_1^2 S + 3f_t^2 X_t \right)
\]

\[
\frac{dm_{H_d}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + 3f_b^2 X_b + f_{\tau}^2 X_{\tau} \right)
\]

\[
\frac{dm_{Q_3}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{1}{15} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{10} g_1^2 S + f_t^2 X_t + f_b^2 X_b \right)
\]

\[
\frac{dm_{t_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{16}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 - \frac{2}{5} g_1^2 S + 2f_t^2 X_t \right)
\]

\[
\frac{dm_{b_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{4}{15} g_1^2 M_1^2 - \frac{16}{3} g_3^2 M_3^2 + \frac{1}{5} g_1^2 S + 2f_b^2 X_b \right)
\]

\[
\frac{dm_{L_3}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{3}{10} g_1^2 S + f_{\tau}^2 X_{\tau} \right)
\]

\[
\frac{dm_{\tau_R}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{12}{5} g_1^2 M_1^2 + \frac{3}{5} g_1^2 S + 2f_{\tau}^2 X_{\tau} \right)
\]

\[
S = m_{H_u}^2 - m_{H_d}^2 + Tr \left[m_{Q}^2 - m_{L}^2 - 2m_{U}^2 + m_{D}^2 + m_{E}^2 \right]
\]
where $t = \log(Q)$, $f_{t,b,\tau}$ are the t, b and τ Yukawa couplings, and

\[
\begin{align*}
X_t &= m_{Q3}^2 + m_{tR}^2 + m_{Hu}^2 + A_t^2 \\
X_b &= m_{Q3}^2 + m_{bR}^2 + m_{Hd}^2 + A_b^2 \\
X_\tau &= m_{L3}^2 + m_{\tau R}^2 + m_{Hd}^2 + A_\tau^2
\end{align*}
\]
Feynman Diagrams Contributing to Neutralino DM Detection

• Direct Detection

• Indirect Detection