
Physikalisches Institut Exercise 1
Universität Bonn
Theoretische Physik SS2011

Exercises Quantum Field Theory I
Prof. Dr. Albrecht Klemm

Some general remarks

Responsible for the exercises are Denis Klevers and Thomas Wotschke.
You may reach us

• via email klevers@th.physik.uni-bonn.de or wotschke@th.physik.uni-bonn.de,
• via phone 73-2557, 73-2549,
• or in our office, room 104 (1.032) in the Physikalisches Institut.

If you have any questions, remarks, need for further discussion etc. concerning the exercises or
the lectures, we highly advice you to consult us during our office hour on Wednesday from 2-4

pm. Feedback is also highly welcome at any time.

The lecture times are

• Monday 4-6 pm and Thursday 12-13 at HS1 PI.

You can find informations about the lecture and the exercises on the webpage
http://www.th.physik.uni-bonn.de/klemm/QFT1SS2011/index.php

1 Classical Electrodynamics and Field Theory

In this exercise session we want to study some basics in field theory. We focus on the simplest
setup, which you should be familiar with from classical electrodynamics.

1.1 Warm-Ups

1. Recall the definition of the field strength tensor Fµν from electrodynamics. What is its
relation to the potential Aµ?

2. How does gauge invariance manifest itself in this setup?

3. Consider a theory which is described by a Lagrangian density L(φ, ∂µφ), depending on the
field φ and its derivative. Recall the expression for the equations of motion and furthermore
recall the statement of Noether’s theorem. To which symmetry is the energy-momentum
tensor associated and what is its general formula from Noether’s theorem?
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1.2 Exercises

1. Consider the following action for electrodynamics without sources

S = −1

4

∫
d4xFµνF

µν , (1.1)

and derive Maxwell equations from that.

2. Calculate the energy-momentum tensor. Check whether it is symmetric!

3. In order to obtain a symmetric energy-momentum tensor, we can add a term of the form
∂αK

αµν (recall why?). Demanding that ∂αK
αµν is divergenceless, what does this imply

for its symmetries? Use
Kλµν = FµλAν , (1.2)

to introduce the completed energy-momentum tensor

T̂µν = Tµν + ∂αK
αµν , (1.3)

and derive the expressions for the electromagnetic energy and momentum densities.

4. How to incorporate a source term? What would change in 1.-3. in this case?

2 The Lorentz group I

In this exercise we would like to recall some basic facts about the Lorentz group, which you
hopefully encountered earlier in your studies. We work with the convention, that the metric
gµν has the following form gµν = diag(1,−1,−1,−1) and four-vectors are usually denoted by
x = (x0, ~x). We sometimes write 〈x, y〉 = gµνx

µyν . Furthermore the canonical basis of R4 is
denoted by eµ with 1 in the µ-th component and 0 otherwise.

1. Remind yourself, what are space-, light- and time-like vectors!

2. What is the defining property of a Lorentz transformation?

3. How can one interpret spatial rotations as a Lorentz transformation?

4. Show explicitly, that the two transformations T = diag(−1, 1, 1, 1) and S = diag(1,−1,−1,−1)
are elements of the Lorentz group. What is the interpretation of their action?

5. Following the definition, show that |Λ0
0| ≥ 1 and det Λ = ±1. What is the meaning of

Λ0
0 < 0?

6. Show that the Lorentztransformations make up a group, called the Lorentz group L =
O(1, 3) which has four disconnected branches (as a manifold)

L↑+ : Λ0
0 ≥ 1, detΛ = 1, L↑− : Λ0

0 ≥ 1, detΛ = −1,

L↓− : Λ0
0 ≤ −1, detΛ = −1, L↓+ : Λ0

0 ≤ −1, detΛ = 1.
(2.4)

Which component is connected to 1? For the case that Λ0
0 ≥ 1, Λ is called orthochronous.

If det Λ = 1, then Λ is called proper. The proper Lorentz transformations L+ := L↑+ ∪L
↓
+

are called SO(1, 3). How can one obtain the other branches of the Lorentz group from the
orthochronous, proper branch?
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7. Consider the set of skew-symmetric matrices L̂, i.e. 〈x,Ay〉 = −〈Ax, y〉 w.r.t. the
Minkowski metric. Define furthermore

ωµνx = eµ〈eν , x〉 − eν〈eµ, x〉, µ < ν (2.5)

Show that L̂ is a six dimensional vector space with basis ωµν and [A,B] = AB −BA ∈ L̂
for A,B ∈ L̂.

8. Calculate [ωµν , ωκλ]!

9. In addition, show that
Λ(τ) = exp(τA) ∈ L+, (2.6)

Hint: You might want to use that det exp(A) = exp(TrA).

This promotes the vector space L̂ to a Lie algebra of the Lie group L+and ωµν are called
the generators of L+ (why only L+?).

3 Homework

3.1 The complex scalar field

Let φ : R4 → C be a field, that obeys the Klein-Gordon equation. The action is given by

S =

∫
d4x (∂µφ

∗∂µφµ −m2φ∗φ). (3.7)

This theory is best analyzed by considering φ(x) and φ∗(x) as the basic dynamic variables.

1. Find the conjugate momenta to φ(x) and φ∗(x) and the canonical commutation relations.
Show that the Hamiltonian is given by

H =

∫
d3x

(
π∗π +∇φ∗ · ∇φ+m2φ∗φ

)
. (3.8)

Compute the Heisenberg equation of motion for φ(x) and show that it is indeed the Klein-
Gordon equation.

2. Diagonalize H by introducing creation and annihilation operators. Show that the theory
contains two sets of particles of mass m.

3. Show that the theory is invariant under φ(x) 7→ eiαφ(x) and therefore exhibits a global
U(1) symmetry.

4. Rewrite the conserved charge

Q =

∫
d3x

i

2
(φ∗π∗ − πφ) , (3.9)

in terms of creation and annihilation operators and evaluate the charge of the particles of
each type.
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5. Consider the case of two complex Klein-Gordon fields with the same mass. Label the fields
as φa(x), where a = 1, 2. Show that there are now four conserved charges, one given by
the generalization of the part above, and the other three given by

Qi =

∫
d3x

i

2

(
φ∗a(σ

i)abπ
∗
b − πa(σi)abφb

)
, (3.10)

where σi are the Pauli matrices. Show that these three charges have the commutation
relations of angular momentum (SU(2))! This leads to the concept of anti-particles.
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