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1 Fierz ldentities

Products of Dirac bilinears obey interchange relations that are also called Fierz rearrangements.
Introduce the 16 independent antisymmetric combinations of y-matrices

1
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These form a basis of the vector space of 4 x 4-matrics with scalar product given by the trace
of two matrices, that can be used to construct even an orthonormal basis. This implies Fierz-
relations for every product of bilinears of the form

(1T %s) (13T uy) (1.2)
for four 4-component Dirac spinors u;, that we will prove in the following.
(i) Begin by normalizing the 16 matrices I'* to the convention
Tr(TeT?) = 459 . (1.3)
Give all 16 normalized matrices explicitly.

(ii) Write the general Fierz identity as

(Q1FGUQ)(Q3FbU4) = Z ng(ﬂ1FCU4)(ﬂgrdUQ) (1.4)
c,d

with unkown coeflicients. Use the completeness of the I'* to show that
1
CY% = 1—6Tr(FCF“Fde) : (1.5)

AT4TY, = 640k

Hint: Derive the completeness relation in the form ), 4 i

(iii) Work out the explicit Fierz transformations for the products (@1 u2)(tsus) and (1" us2) (t3y,u4).

The process of using Fierz relations is also called “fierzen”.

2 Compton Scattering

In QED, compton scattering is understood as the process of scattering one incoming fermion
with momentum p and an incoming photon with momentum k& and polarization e* to a final
state with fermion and photon of momentum p’ respectively k' with polarization €”.



(i) Draw the two contributing Feynman diagrams at leading order. What is the corresponding

matrix element iM? Evaluate (p + k)2 —m? and (p — k)2 — m? as well as use some Dirac

algebra to obtain

o[ A2 At + 20

iM = —ie?e (K e, (k)a(p' [ }u . 2.6
(ii) As a next step we square this amplitude and sum (or average) over the electron and photon
polarization states in the incoming and outgoing states. For this purpose use the fact that
Zpolarizations 6;61, — —guv in any contraction with physical amplitudes'. Show that the

final result reads
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such that Ny = Nj after replacing k with —k" as well as Ny = N3 by reversing the order
of y-matrices in traces (prove this latter fact using —y? = CyC with C = 7%42))

(iii) Compute Nj and N explicitly yielding
Ny = Nalp——gp = 16(4m* —2m2(p - p') +4m>*(p - k) —2m2(p' - k) + 2(p- k) (p' - k)) (2.8)

and a similar expression for No = N3. Introduce the Mandelstam variables s = (p + k)2,
t=(p' —p)?, u= (kK —p)? to rewrite this as

N = 16(2m4 +m?(s —m?) — %(s —m?)(u— m2)) , (2.9)
Ny = 16(2m* + m*(u —m?) — %(s —m?)(u —m?)) (2.10)
Ny = Ny=-8(4m* + m*(s — m?) + m*(u —m?)). (2.11)

(iv) Use your results to finally obtain

S§SM’2 [< : )) " ((Ii):/)) +2m2((p%k) T (p 1k’)> +m4((p%k) (p 114;/))2} :
(2.12)

(v) Go to the lab frame in which the electron is initially at rest, i.e.
k= (w,we3), p=(m,0), Kk = (' u'sin(6),0,u'cos(0)), p' = (E,p) (2.13)

for w, W' the frequencies before and after scattering, # the angle w.r.t. to the z-axis and
e3 the unit vector in the z-direction. Evaluate all kinematical quantities, in particular
, w

T 1+ “(1—cos(h)’

(2.14)

as well as the two-body phase space integral

d3k’ 1 d3’ 1 4c(4
/dﬂz / 23 2E,( AW +p —k—p). (2.15)

(Make a variable transformation to d€2 and dw’ to reduce all integrals to one remaining
integral [ dcos(6).)

! A formal prove of this identity makes use of the Ward identity k"M, (k) = 0.



(vi) Use |[vg —vg| = 1 (why?) in equation (1.2) on sheet 9 to evaluate the differential cross-

section as
do o (w’)2 [w’ w

dcos(0) — m?

what is known as the spin-averaged Klein-Nishina formula.

= E —sin?(9)], (2.16)
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(vii) Evaluate the differential cross-section in the limit w — 0 and determine the total cross-
section. The result is the familiar Thomson cross-section for scattering of classical elec-
tromagnetic waves by free electrons.



