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1 Fierz Identities

Products of Dirac bilinears obey interchange relations that are also called Fierz rearrangements.
Introduce the 16 independent antisymmetric combinations of γ-matrices

Γa = {1, γµ, 1
2

[γµ, γν ], γ[µγνγρ], γ[µγνγργσ]} . (1.1)

These form a basis of the vector space of 4 × 4-matrics with scalar product given by the trace
of two matrices, that can be used to construct even an orthonormal basis. This implies Fierz-
relations for every product of bilinears of the form

(ū1Γau2)(ū3Γbu4) (1.2)

for four 4-component Dirac spinors ui, that we will prove in the following.

(i) Begin by normalizing the 16 matrices Γa to the convention

Tr(ΓaΓb) = 4δab . (1.3)

Give all 16 normalized matrices explicitly.

(ii) Write the general Fierz identity as

(ū1Γau2)(ū3Γbu4) =
∑
c,d

Cabcd (ū1Γcu4)(ū3Γdu2) (1.4)

with unkown coefficients. Use the completeness of the Γa to show that

Cabcd =
1
16

Tr(ΓcΓaΓdΓb) . (1.5)

Hint: Derive the completeness relation in the form
∑

a
1
4ΓaijΓ

a
kl = δilδjk.

(iii) Work out the explicit Fierz transformations for the products (ū1u2)(ū3u4) and (ū1γ
µu2)(ū3γµu4).

The process of using Fierz relations is also called “fierzen”.

2 Compton Scattering

In QED, compton scattering is understood as the process of scattering one incoming fermion
with momentum p and an incoming photon with momentum k and polarization εµ to a final
state with fermion and photon of momentum p′ respectively k′ with polarization εν .
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(i) Draw the two contributing Feynman diagrams at leading order. What is the corresponding
matrix element iM? Evaluate (p+ k)2−m2 and (p− k′)2−m2 as well as use some Dirac
algebra to obtain

iM = −ie2ε∗µ(k′)εν(k)ū(p′)
[γµk�γν + 2γµpν

2p · k
+
−γνk′�γµ + 2γνpµ

−2p · k′
]
u(p) . (2.6)

(ii) As a next step we square this amplitude and sum (or average) over the electron and photon
polarization states in the incoming and outgoing states. For this purpose use the fact that∑

polarizations ε
∗
µεν → −gµν in any contraction with physical amplitudes1. Show that the

final result reads
1
4

∑
spins

|M|2 =
e4

4

[ N1

(2p · k)2
+

N2

(2p · k)(2p · k′)
+

N3

(2p · k′)(2p · k)
+

N4

(2p · k′)2
]
, (2.7)

such that N4 = N1 after replacing k with −k′ as well as N2 = N3 by reversing the order
of γ-matrices in traces (prove this latter fact using −γT = CγC with C = γ0γ2.)

(iii) Compute N1 and N2 explicitly yielding

N1 = N4|k′→−k = 16
(
4m4 − 2m2(p · p′) + 4m2(p · k)− 2m2(p′ · k) + 2(p · k)(p′ · k)

)
(2.8)

and a similar expression for N2 = N3. Introduce the Mandelstam variables s = (p + k)2,
t = (p′ − p)2, u = (k′ − p)2 to rewrite this as

N1 = 16
(
2m4 +m2(s−m2)− 1

2
(s−m2)(u−m2)

)
, (2.9)

N4 = 16
(
2m4 +m2(u−m2)− 1

2
(s−m2)(u−m2)

)
(2.10)

N2 = N3 = −8
(
4m4 +m2(s−m2) +m2(u−m2)

)
. (2.11)

(iv) Use your results to finally obtain

1
4

∑
spins

|M|2 = 2e4
[(p · k′)

(p · k)
+

(p · k)
(p · k′)

+ 2m2
( 1

(p · k)
− 1

(p · k′)

)
+m4

( 1
(p · k)

− 1
(p · k′)

)2]
.

(2.12)

(v) Go to the lab frame in which the electron is initially at rest, i.e.

k = (ω, ωe3) , p = (m,0) , k′ = (ω′, ω′sin(θ), 0, ω′ cos(θ)) , p′ = (E′,p′) (2.13)

for ω, ω′ the frequencies before and after scattering, θ the angle w.r.t. to the z-axis and
e3 the unit vector in the z-direction. Evaluate all kinematical quantities, in particular

ω′ =
ω

1 + ω
m(1− cos(θ)

, (2.14)

as well as the two-body phase space integral∫
dΠ2 =

∫
d3k′

(2π)3
1

2ω′
d3p′

(2π)3
1

2E′
(2π)4δ(4)(k′ + p′ − k − p) . (2.15)

(Make a variable transformation to dΩ and dω′ to reduce all integrals to one remaining
integral

∫
d cos(θ).)

1A formal prove of this identity makes use of the Ward identity kµMµ(k) = 0.
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(vi) Use |vA − vB| = 1 (why?) in equation (1.2) on sheet 9 to evaluate the differential cross-
section as

dσ

d cos(θ)
=
πα2

m2

(ω′
ω

)2[ω′
ω

+
ω

ω′
− sin2(θ)

]
, (2.16)

what is known as the spin-averaged Klein-Nishina formula.

(vii) Evaluate the differential cross-section in the limit ω → 0 and determine the total cross-
section. The result is the familiar Thomson cross-section for scattering of classical elec-
tromagnetic waves by free electrons.
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