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In this exercise, we want to recall some basic notions from complex analysis and especially on
integration in the complex plane. This becomes important in the evaluation of propagators,
which are a central object in QFT.

1 Some basics on integration in the complex plane

This exercise is a short recap of some facts about complex integration, that we need in the next
exercise.

1. Integrate the function f(z) = zn, n ∈ Z along the two closed paths in the complex plane
paramterized by

γ(t) = re±it, 0 ≤ t ≤ 2π (1.1)

for n = −1 and n 6= −1. Do the results depend on the parameter r? Do they depend on
the orientation of the path (i.e. the ± sign)?

2. Relate this result to the existence or non-existence of a primitive along the complete
path(s).

3. The Laurent series is a generalization of the Taylor series that includes poles/ singularities,

f(z) =
∞∑

ν=−∞
aν(z − z0)ν . (1.2)

The coefficient of the single poles is called the residues of f in z0,

a−1 = resz0f. (1.3)

From the above investigations, motivate the residue theorem
Let γ be a closed path in U ⊂ C, S a discrete set, f holomorphic in U−S, and Sp(γ)∩S = ∅.
Then

1

2πi

∫
γ
f(z) dz =

∑
a∈S

n(γ, a)resaf, (1.4)

where n(γ, a) is the winding number of the path γ with respect to a.
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2 Properties of the Propagator ∆(x− y)

Expand the field φ(x) in annihilation and creation operators, calculate ∆(x−y) = −i〈0|φ(x)φ(y)|0〉
and show that it has the following properties:

1. ∆(x− y) is a Lorentz-invariant function,

2. ∆(x− y) = −∆(y − x),

3. ∆(x− y) obeys the following boundary conditions:

δ(0, ~x− ~y) = 0,
∂

∂x0
∆(x0 − y0, ~x− ~y)

∣∣
x0=y0

= −δ(3)(~x− ~y). (2.5)

4. ∆(x− y) obeys the homogeneous Klein-Gordon equation

(� +m2)∆(x− y) = 0. (2.6)

5. ∆(x− y) vanishes for spacelike arguments:

∆(x− y) = 0, if (x− y)2 < 0. (2.7)

Homework

3 Poincaré algebra

Suppose we have a theory described by a Lagrangian L(φµ, ∂φµ). The total 4-momentum of this
theory Pµ and the total angular momentum Mµν are given by

Pµ =

∫
d3xTµ0, Mµν =

∫
d3x M̃0µν , (3.8)

where M̃λµν is the angular momentum tensor.

1. Using canonical commutation relations, check that the operators Pµ, Mµν obey the Poincare
algebra

[Pµ, Pν ] = 0,

[Mµν , Pλ] = i(gνλPµ − gµλPν),

[Mµν ,Mστ ] = i(gνσMµτ + gµτMνσ − gντMµσ − gµσMντ )

(3.9)

2. The Pauli-Lubanski four-vector is defined in terms of Pµ,Mµν as W λ = 1
2ε
λσµνMµνPσ.

Prove the following commutation relations

[W λ,Mµν ] = i
(
Wµgνλ −W νgµλ

)
, [W λ,W σ] = iελσµνWµPν . (3.10)

3. Show that PµP
µ and WµW

µ are Casimir operators of the Poincare group.
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