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1 Warm-Ups

We want to recall some notions when passing to the field formalism, that we encountered and
used in previous exercises.

Transition to field formalism

Let g,(t),n =1,2,... be a complete set of canonical coordinates of a given dynamical quantum
system. Let f,,(Z),n =1,2,... be an orthonormal, complete basis of a Hilbert space and define
the quantum field

o
¢($) = d)(fa t) = Z QH(t)fn(-f) (1'1)
n=1
1. From the Euler-Lagrange equation for the discrete variable ¢, (t), deduce the Euler-Lagrange
equation for the field ¢(x), regarded as a continuous canonical quantum coordinate.
2. What is the momentum conjugate to ¢(x)?

3. Starting from the canonical commutation relations for the discrete variables, deduce those
for the field variables.

2 Lorentz algebra and trace relations

In this exercise, we prove some identities, that will turn out to be useful in our ongoing discussion
of quantum field theory.

Using just the algebra {v*,7"} = 2¢"*¥ and defining v*> = i7"y
i['y“, ~¥], prove the following results:

L ()2 =1,

2. dydy = 2a1 - ag — diydy = a1 - az + 25" ayaz.,

1290 d = auy", and SH =

3. Tig,d, = day - as,
4. Try® =0,

5. Trddy - =0 if r is odd,

6. Tr(ddostssty) = 4{(a1 - a2)(as - as) + (a1 - ag)(az - a3) — (aras)(az - as)}

7. Tr(fy5¢i1¢i2)



8. Yud" = —24,
9. Yud doy" = 4ay - az,
10 Yughy oy = —24haghodhy
L vy oty v = 244 dy fodhs + 2t adtodt 4y

12. T‘r(fy5¢i1¢i2¢3¢4) = 4i6>\u,,pai\a§ba§ai

Homework

The first exercise should provide a better understanding of the process of quantization, starting
from a classical setup. The second exercise illustrates the relation SO(3) ~ SU(2)/Zs.

3 The quantum string

The Hamiltonian of the classical discrete chain is given by

(B ke
H(p,q) = +5(G —a+1)” | (3.2)

. 2m
Jj=1

where p; = mg;. The system can be quantized by replacing p; and ¢; by Hermitian operators
satisfying the commutation relations

[pj, ak] = —idjk. (3.3)

1. Impose periodic boundary conditions qy+1 = ¢q1, pN+1 = p1 and consider the expansion
in the normal modes

1 N/2 1 N/2
o 2ming /N o 2ming /N
q; = —F/— Z Qne y P = —F/—= Z Pe )
N n=—N/2 N n=—N/2 (3'4)

Pl =P, Q= Qn.
What are the commutation relations beween P, and Q7
2. Rewrite the Hamiltonian, using the variables P,, Q.
3. Find the spectrum of the Hamiltonian.

4. Perform the continuum limit in the classical Hamiltonian, introducing the field variables
p(Z,t),q(Z,t) instead of the discrete variables p;, g;.

5. How are the variables p(z,t), q(x,t) quanitzed?



4 SU(2) and SO(3)

The rotational group SO(3) is given by the set of 3 x 3 matrices R with real entries, such that
RTR=1and detR =1,

1.

2.

Show that these matrices form a group.

Write down explicit matrix representations for rotations about an angle 6 about the z-,
y- and z-axis and denote them by R;0), j = x,y, 2. Calculate the generator J;,i = z,vy, 2
given by
dR;(0)

g |,y

Calculate the commutator between the generators [J;, J;] = J;J; — J;J;.

Up to a factor of A you should recover the commutation relations of angular momentum.
Therefore angular momentum operators are the generators of rotations. Generators de-
scribe an infinitesimal rotation about the corresponding axis. Given the generator, which
is an element of the Lie algebra, one obtains the group element by the following procedure

Jj =

(4.5)

S| =

R;(6) (1+iJ; 0/N)N = i (4.6)

= lim
N—oo

Check that this is true for the three generators obtained in the previous calculation.

. The group SU(2) is given by the 2 x 2 matrices U with complex entries, such that UTU =

1,det U = 1. Using the defintion on a matrix <CCL b> € Mat(2, C), what does it imply for

d
the entries? What is the geometric interpretation?

. Interpret this as a transformation in a 2-complex dimensional space with basic spinor

&= (?) with € — U¢, €1 — ¢TUT. How does the transformation act on ££7? Show that
2
¢ and ¢ = (_%
&1

The spinors £ and £* are related by a matrix ¢, which you should determine!

) transform in the same way under SU(2).

. Calculate the trace of —H = ££'T. What are its transformation properties under SU(2)?

Let 7 = (z,y,2)" and h a traceless 2 x 2 matrix with the same transformation properties
as H under SU(2). Show that h is given by

h=d-7 (4.7)

with ¢ = (04, 0y,0,) and o; are the Pauli matrices given as

O N ) N 4

Show that det h’ = det h where I’ is the transformed h under SU(2).
Conclude that a SU(2) transformation on £ corresponds to a SO(3) transformation on 7.
Express z,y, z in terms of & and &.



6. Consider a rotation under SU(2). How do the components of 7 transform under SU(2)?
Setting a = €'*/2,b = 0 (why?), what is the result for the rotation of 2’,y/,2? What is
therefore the relation between SU(2) and SO(3)? Rewrite the group elements in terms of
generators. For the two other rotations about the axis, set a = cos(3/2),b = sin(3/2) and
a = cos(y/2),b =isin(vy/2).

From this we conclude, that the relation between SU(2) and SO(3) is given by

SU@2):U=¢e"%% & 503): R=e"". (4.9)

7. Calculate the commutator of the generators of SU(2). We finish with the observation,
that U and —U in SU(2) correspond to R in SO(3) and therefore SO(3) ~ SU(2)/Zs.



