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1 Warm-Ups

We want to recall some notions when passing to the field formalism, that we encountered and
used in previous exercises.

Transition to field formalism

Let qn(t), n = 1, 2, . . . be a complete set of canonical coordinates of a given dynamical quantum
system. Let fn(~x), n = 1, 2, . . . be an orthonormal, complete basis of a Hilbert space and define
the quantum field

φ(x) = φ(~x, t) =

∞∑
n=1

qn(t)fn(~x). (1.1)

1. From the Euler-Lagrange equation for the discrete variable qn(t), deduce the Euler-Lagrange
equation for the field φ(x), regarded as a continuous canonical quantum coordinate.

2. What is the momentum conjugate to φ(x)?

3. Starting from the canonical commutation relations for the discrete variables, deduce those
for the field variables.

2 Lorentz algebra and trace relations

In this exercise, we prove some identities, that will turn out to be useful in our ongoing discussion
of quantum field theory.
Using just the algebra {γµ, γν} = 2gµν and defining γ5 = iγ0γ1γ2γ3, /a = aµγ

µ, and Sµν =
1
4 [γµ, γν ], prove the following results:

1. (γ5)2 = 1,

2. /a1/a2 = 2a1 · a2 − /a2/a1 = a1 · a2 + 2Sµνa1µa2ν ,

3. Tr/a1/a2 = 4a1 · a2,

4. Trγ5 = 0,

5. Tr/a1/a2 · · · /ar = 0 if r is odd,

6. Tr(/a1/a2/a3/a4) = 4 {(a1 · a2)(a3 · a4) + (a1 · a4)(a2 · a3)− (a1a3)(a2 · a4)}

7. Tr(γ5/a1/a2)
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8. γµ/aγ
µ = −2/a,

9. γµ/a1/a2γ
µ = 4a1 · a2,

10. γµ/a1/a2/a3γ
µ = −2/a3/a2/a1,

11. γµ/a1/a2/a3/a4γ
µ = 2/a4/a1/a2/a3 + 2/a3/a2/a1/a4

12. Tr(γ5/a1/a2/a3/a4) = 4iελµνρa
λ
1a

µ
2a

ν
3a
ρ
4

Homework

The first exercise should provide a better understanding of the process of quantization, starting
from a classical setup. The second exercise illustrates the relation SO(3) ' SU(2)/Z2.

3 The quantum string

The Hamiltonian of the classical discrete chain is given by

H(p, q) =
N∑
j=1

(
p2j
2m

+
k

2
(qj − qj+1)

2

)
, (3.2)

where pj = mqj . The system can be quantized by replacing pj and qj by Hermitian operators
satisfying the commutation relations

[pj , qk] = −iδjk. (3.3)

1. Impose periodic boundary conditions qN+1 = q1, pN+1 = p1 and consider the expansion
in the normal modes

qj =
1√
N

N/2∑
n=−N/2

Qne
2πinj/N , pj =

1√
N

N/2∑
n=−N/2

Pne
2πinj/N ,

P †n = P−n, Q
†
n = Q−n.

(3.4)

What are the commutation relations beween Pn and Qn?

2. Rewrite the Hamiltonian, using the variables Pn, Qn.

3. Find the spectrum of the Hamiltonian.

4. Perform the continuum limit in the classical Hamiltonian, introducing the field variables
p(~x, t), q(~x, t) instead of the discrete variables pj , qj .

5. How are the variables p(x, t), q(x, t) quanitzed?
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4 SU(2) and SO(3)

The rotational group SO(3) is given by the set of 3× 3 matrices R with real entries, such that
RTR = 1 and detR = 1.

1. Show that these matrices form a group.

2. Write down explicit matrix representations for rotations about an angle θ about the x-,
y- and z-axis and denote them by Rjθ), j = x, y, z. Calculate the generator Ji, i = x, y, z
given by

Jj =
1

i

dRj(θ)

dθ

∣∣∣∣
θ=0

. (4.5)

Calculate the commutator between the generators [Ji, Jj ] = JiJj − JjJi.
Up to a factor of ~ you should recover the commutation relations of angular momentum.
Therefore angular momentum operators are the generators of rotations. Generators de-
scribe an infinitesimal rotation about the corresponding axis. Given the generator, which
is an element of the Lie algebra, one obtains the group element by the following procedure

Rj(θ) = lim
N→∞

(1 + iJj θ/N)N = eiJjθ. (4.6)

Check that this is true for the three generators obtained in the previous calculation.

3. The group SU(2) is given by the 2× 2 matrices U with complex entries, such that U †U =

1, detU = 1. Using the defintion on a matrix

(
a b
c d

)
∈ Mat(2,C), what does it imply for

the entries? What is the geometric interpretation?

4. Interpret this as a transformation in a 2-complex dimensional space with basic spinor

ξ =

(
ξ1
ξ2

)
with ξ → Uξ, ξ† → ξ†U †. How does the transformation act on ξξ†? Show that

ξ and ξ′ =

(
−ξ∗2
ξ∗1

)
transform in the same way under SU(2).

The spinors ξ′ and ξ∗ are related by a matrix ζ, which you should determine!

5. Calculate the trace of −H = ξξ′†. What are its transformation properties under SU(2)?
Let ~r = (x, y, z)T and h a traceless 2× 2 matrix with the same transformation properties
as H under SU(2). Show that h is given by

h = ~σ · ~r, (4.7)

with ~σ = (σx, σy, σz) and σi are the Pauli matrices given as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 1

)
. (4.8)

Show that deth′ = deth where h′ is the transformed h under SU(2).
Conclude that a SU(2) transformation on ξ corresponds to a SO(3) transformation on ~r.
Express x, y, z in terms of ξ1 and ξ2.
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6. Consider a rotation under SU(2). How do the components of ~r transform under SU(2)?
Setting a = eiα/2, b = 0 (why?), what is the result for the rotation of x′, y′, z′? What is
therefore the relation between SU(2) and SO(3)? Rewrite the group elements in terms of
generators. For the two other rotations about the axis, set a = cos(β/2), b = sin(β/2) and
a = cos(γ/2), b = i sin(γ/2).
From this we conclude, that the relation between SU(2) and SO(3) is given by

SU(2) : U = eiσ·θ/2 ↔ SO(3) : R = eiJ ·θ. (4.9)

7. Calculate the commutator of the generators of SU(2). We finish with the observation,
that U and −U in SU(2) correspond to R in SO(3) and therefore SO(3) ' SU(2)/Z2.
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