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1 Warm-Ups

In this exercise we want to study additional properties of the Poincaré group and its algebra.
As a warm-up, recall some of the facts from the lectures and the exercises.

1. What is the definition of the Poincaré group?

2. What is the commutator of the generators [Mµν ,Mρσ] with (Mµν)ρσ = i(gµρδνσ − gνρδ
µ
σ)?

What is the relation between the group element Λ and the generators of the Lie algebra
Mµν?

3. Let J i = 1
2ε
ijkM jk and Ki = M0i. Calculate the commutation relations between these

generators, i.e. show that

[J i, J j ] = iεijkJk, [J i,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (1.1)

4. Define

T iL/R =
1

2

(
J i ± iKi

)
(1.2)

and show that

[T iL, T
j
L] = iεijkT kL, [T iR, T

j
R] = iεijkT kR, [T iL, T

j
R] = 0. (1.3)

From this we can conclude, that we can classify the Lorentz algebra using two non-negative
integers (jL, jR).

Homework

2 Weyl spinors

Define ~α and ~β via ωij = εijkαk, βi = ω0i. We denote furthermore by D(Λ) the representation
of the Lorentz-group element Λ.

1. Show that

D(Λ) = exp(−i[~α · ~J + ~β · ~K])

= exp(−i[~α− i~β] · ~TL) exp(−i[α+ i~β] · ~TR),
(2.4)

where we only know the commutation relations of ~TL and ~TR. For an explicit representa-
tion, these have to be chosen.
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2. Specialize to a particular representation, where ~TR and ~TL are the Pauli matrices.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (2.5)

The simplest representations of the Lorentz group are (1/2, 0) and (0, 1/2). An object, that
transforms in the representation (1/2, 0) is called a left-chiral Weyl spinor. For a right-
handed Weyl spinor the definition is analogous. How many entries does a Weyl Spinor
have? Write down the transformation laws for the left- and right-handed Weyl spinors.

3. Next we want to rewrite the transformation laws for the Weyl spinors. We start with

D(Λ) = exp

(
− i

2
ωµνM

µν

)
, (2.6)

and we introduce the Pauli matrices σµ and σ̄µ by

σµ = (1, σi), σ̄µ = (1,−σi), (2.7)

and furthermore by

σµν =
i

4
(σµσ̄ν − σν σ̄µ), σ̄µν =

i

4
(σ̄µσν − σ̄νσµ). (2.8)

Denote the left/right-handed chiral Weyl spinor by ψL/R respectively. Denote the corre-
sponding transformation matrices by DL and DR. Show, that the Weyl spinors transform
as

ψL 7→ exp

(
− i

2
ωµνσ

µν

)
ψL, ψR 7→ exp

(
− i

2
ωµν σ̄

µν

)
ψR (2.9)

4. Prove the following identities: D−1L = D†R, σ2DLσ2 = D∗R, σ2 = (DL)Tσ2DL. From the
last identity, what do you conclude concerning the role of σ2 in the spinor space?

5. Show that σ2ψ
∗
L transforms in the (0, 1/2) representation and σ2ψ

∗
R transforms in the

(1/2, 0) representation.

6. Let ψL, ψR, φL, φR by Weyl spinors. Show that the following expressions are invariant
under Lorentz transformations

i(φL)Tσ2ψL,

i(φR)Tσ2ψR,

(φR)†ψL,

(φL)†ψR.

(2.10)

7. Choose φL = ψL and compute i(ψL)Tσ2ψL.

8. Show that the parity operator acts as follows on the generators of the Lorentz algebra

J i 7→ J i,Ki 7→ −Ki (2.11)
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9. Show that under parity transformations a representation (m,n) of the Lorentz algebra
goes to (n,m). Therefore, if m 6= n, the parity transformation maps an element of the
vector space of the representation to an element, that is not part of the vector space.

10. Show that the dimension of the representation (m,n) is (2m+ 1)(2n+ 1).

11. Show that the 4 dim. Minkowski space is the vector space of the (1/2, 1/2) representation.

3 Dirac spinors

Since the vector spaces of the left- and right-chiral Weyl spinors are not mapped to them-
selves under parity, we consider the following (reducible) representation of the Lorentz algebra
(1/2, 0)⊕ (0, 1/2). In other words: we take a left-chiral Weyl spinor ψL and a right-chiral Weyl
spinor φR and take them as the components of a new 4-component spinor, called the Dirac
spinor

Ψ =

(
ψL
φR

)
. (3.12)

Note that this is only possible for the chiral representation of the Clifford algebra.

1. Show that the Dirac spinor transforms under a Lorentz transformation as

ψ 7→ Ψ′ = DΨ = exp

(
− i

2
ωµνγ

µν

)
Ψ, (3.13)

with γµν = i
4 [γµ, γν ] and γµ in the Weyl representation

γµ =

(
0 σµ

σ̄µ 0

)
. (3.14)

Here D denotes a representation of the proper Lorentz group, which contains the identity
and can therefore be expressed by the exponential function.

2. Prove the following equations

[γµ, γνσ] = (Mνσ)µργ
ρ, D−1γµD = Λµ νγ

ν . (3.15)

3. Show that in the chiral representation γ5 = iγ0γ1γ2γ3 can be written as

γ5 =

(
−1 0
0 1

)
, (3.16)

and prove that [γ5, D] = 0.

4. Show that the following operators are a complete set of projection operators

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5). (3.17)

What is their action on a Dirac spinor in the chiral representation?
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5. Show that
D† = γ0D−1γ0, (3.18)

and from this it follows
Ψ̄ 7→ Ψ̄D−1, (3.19)

where Ψ̄ = Ψ†γ0.

6. Consider the parity operator DP , i.e. (ΛP = diag(1,−1,−1,−1). Show that one represen-
tation of the parity operator is DP = γ0. Examine its action on a Dirac spinor in a chiral
representation.

7. Check the covariance and the behavior under parity of the five bilinear covariants

scalar Ψ̄Ψ,

vector Ψ̄γµΨ,

tensor Ψ̄γµνΨ,

pseudo-scalar Ψ̄γ5Ψ,

pseudo-vector Ψ̄γ5γµΨ.

(3.20)
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