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Some Information on the mid-term exam

The midterm exam will take place on June 6th, 2011 in Hörsaal I of the PI from 16 to 18
o’clock. With the next exercise sheet we also distribute a checklist of notions, that we assume
to be known.

1 Warm-Up

1. Recall the definition of the Dirac and the Klein-Gordon propagator and comment on their
differences.

2. Which deeper lesson can you learn from this?

3. What is the Majorana condition?

2 A first glance at the path integral and Feynman graphs

In this exercise we want to give a first introduction to the Feynman path integral and how this
leads to Feynman graphs. We will not cover the details but refer to the literature for these.
We introduce the partition function Z of a field X : M → R, where we consider a toy model
such that M is a point. This is also referred to as 0 dimensional quantum mechanics. The
corresponding action S[X] is given by the following expression

Z :=
∫
dX e−S[X]. (2.1)

We are interested in correlation functions of some funtion f(x), that are given by

〈f(X)〉 :=
∫
dX f(X) e−S[X]. (2.2)

In addition, we also define the normalized correlation functions by∫
dX f(X) e−S[X]∫
dX e−S[X]

. (2.3)

1. Consider a variation of the action of the form

S 7→ S′ = S +
∑
i

aifi(X). (2.4)

How can you obtain the correlation function 〈fi(X)〉?

1



2. As an example consider the following action

S[X] =
α

2
X2 + iεX3. (2.5)

The partition function now depends on two parameters Z = Z(α, ε). Evaluate the partition
function Z(α, 0).

3. We term with X3 can be considered as a perturbation. For the case that ε � 1, we can
expand the partition function in powers of ε. Perform this expansion.

We come back to to our toy model but first we want to introduce the notion of Feynman
diagrams/graphs.

4. Consider the function
f(α, J) =

∫
dX e−

αX2

2
+JX , (2.6)

and perform the integration by completing the square. Calculate

∂rf(α, J)
∂Jr

∣∣∣∣
J=0

. (2.7)

5. Observe the following: Each derivative w.r.t. J leads to a factor J/α, which can be
absorbed by another derivative w.r.t. J . What would happen if it were not absorbed
when setting J = 0? Therefore in computing the integral of Xr, one has to choose all
pairs of X and contract them, which is called Wick contraction. Therefore one obtains for
drf(α,J)
dJr

drf(α, J)
dJr

=
1

αr/2
× (#ways of contracting). (2.8)

Possible contractions are represented by lines which are called propagators, which is
weighted by a factor 1

α .

6. Return to the model described above and consider the first non-trivial correction to Z(α, 0).

(−iε)
2!

∫
dX X3 ×X3 × e−

α
2
X2
. (2.9)

Now do the following: For each Xk draw a vertex with k edges emanating from it (in this
case two vertices with three edges each). Now write down all possible contractions of two
edges and show that there are just two toplogical distinct graphs which come with the
corresponding factors 1

2(−iε)2
(

1
α

)3 × 3! and 1
2(−iε)2

(
1
α

)3 × 32. So the number of possible
contractions is 3! + 32 = 15. Why is this the number we expected?
In general the combinatorial factor associated to each connected graph is given by

(−3!iε)V α−E/|Aut(G)|, (2.10)

where V is the number of vertices of the graph, E is the number of the edges and |Aut(G)|
denotes the order of the automorphism group of the graph.
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7. For the multivariable case we have Xi with i = 1, . . . , N and the action is given by

S(Xi,M,C) =
1
2
XiMijX

j + CijkX
iXjXk, (2.11)

where M is a positive definite and invertible matrix. Evaluate the partition function to
show that

Z(M,C = 0) =
(2π)N/2√

detM
. (2.12)

The term CijkX
iXjXk leads to a vertex with three lines metting at a point and a factor

of −Cijk. Again one can expand the partition function for small C in powers of C. The
propagator connecting Xi and Xj carries a factor (M−1)ij .

Majorana fermions II

In this exercise we use again σµ = (1, σ) and σ̄µ = (1,−σ). In the chiral representation, the
Dirac matrices are

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
. (2.13)

The left- and right-handed components of the Dirac spinor Ψ = (ψL, ψR) are given by

ΨR,L =
1
2

(1± γ5)Ψ, ΨR =
(

0
ψR

)
, ΨL =

(
ψL
0

)
. (2.14)

Under infinitesimal Lorentz transformations,

ψL/R → (1− i

2
θ · σ ∓ 1

2
β · σ)ψL/R, (2.15)

where θ and β are the parameters of an infinitesimal rotation and a boost.

1. Consider the two-component spinor field ψL/R. Using the identity σ2σ∗ = −σσ2, show
that σ2ψ∗L/R transforms like ψR/L under Lorentz transformation.

2. Show that the equation
iσ̄ · ∂ψ − imσ2ψ∗ = 0 (2.16)

is relativistically invariant.

3. Show that the components of ψ obey the Klein-Gordon equation. (Here: ψ ≡ ψL/R.)

4. Determine the equation of motion of the following action

S =
∫
d4x

(
ψ†iσ̄ · ∂ψ +

im

2
(ψTσ2ψ − ψ†σ2ψ∗)

)
. (2.17)

Classically, the two component field ψ is an anti-commuting Grassmann variable.
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5. Quantize the theory, promoting ψ(x) to a quantum field satisfying the canonical anti-
commutation relations

{ψa(x), ψ†b(y)} = δabδ
(3)(x− y). (2.18)

Construct a Hermitian Hamiltonian, and find a representation of the canoncial commuta-
tion relations that diagonalizes the Hamiltonian in terms of a set of creation and annihi-
lation operators.

6. Writing the Dirac field as Ψ =
(
ψL
ψR

)
, recall that the lower component ψR transforms in a

way equivalent by a unitary transformation to a complex conjugate of the representation
ψL. In this way, we can rewrite the 4-component Dirac field in terms of two 2-component
spinors ψL = ψ1 and ψR = iσ2ψ∗2, which you should know from the previous exercises.

7. Show that the above action has a global symmetry. Compute the divergences of the
currents

Jµ = ψ†σ̄µψ, Jµ = ψ†1σ̄
µψ1 − ψ†2σ̄

µψ2, (2.19)

for the above theory and relate your results to the symmetries of these theories. Construct
a theory of N free massive 2-component fermion fields with O(n) symmetry.
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