Advanced Quantum Theory

Dr. Hans Jockers and Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php

Due Date: Dec. 18th, 2019

-Exercises-

10.1 The Hydrogen Atom

Consider a hydrogen atom in which the electron is replaced by a particle of the same mass and the same charge but with spin 0 obeying the Klein-Gordon equation. The potential energy is given by

$$V(r) = -\frac{\alpha}{r} , \qquad (1)$$

where $\alpha = \frac{\hbar^2}{mr_B}$ with r_B the Bohr radius.

a) Use the Klein-Gordon equation minimally coupled to the four-vector potential A^{μ} of the electromagnetic field, i.e., the four-momentum \hat{P}^{μ} is transformed as

$$\hat{P}^{\mu} \to \hat{P}^{\mu} - \frac{e}{c} A^{\mu} , \qquad (2)$$

to derive the eigenvalue equation

$$\left(\Delta - \left(\frac{mc}{\hbar}\right)^2 + \frac{1}{\hbar^2 c^2} (E - V(r))^2\right) \varphi(r, \theta, \phi) = 0 , \qquad (3)$$

for the wavefunction $\varphi(r, \theta, \phi)$. Here Δ is the Laplacian in 3d and E is the energy eigenvalue of the electron. (2 Pts)

b) Use the separation of variables on the wavefunction $\varphi(r, \theta, \phi)$ of the electron to derive the differential equation

$$u''(r) = \left(-\frac{1}{\hbar^2 c^2} \left((E - V(r))^2 - (mc^2)^2\right) + \frac{l(l+1)}{r^2}\right) u(r)$$
(4)

in terms of the ansatz $R(r) = \frac{u(r)}{r}$ for the radial part R(r) of the wavefunction. (2 Pts)

c) Analyse the asymptotic behaviour of u(r) for $r \to \infty$ and with the boundary condition u(0) = 0 for $r \to 0$ to show that

$$u(r) = r^{\gamma} e^{-\delta r} v(r) , \qquad (5)$$

where $\gamma = \frac{1}{2} + \sqrt{\left(l + \frac{1}{2}\right)^2 - \left(\frac{\alpha}{\hbar c}\right)^2}$, $\delta = \frac{1}{\hbar c}\sqrt{(mc^2)^2 - E^2}$ and v(r) is a polynomial in r of degree k_{max} . (4 Pts)

-1 / 2 -

d) Derive from the differential equation (3) a recursion relation for the coefficients c_k of the polynomial

$$v(r) = \sum_{k=0}^{k_{\text{max}}} c_k \ r^k \ .$$
 (6)

Argue that in order for v(r) to be a polynomial of degree k_{\max} there are discrete energy levels $E_{n,l}$ which can be written as

$$E_{n,l} = mc^2 \left(1 + \frac{(\alpha/\hbar c)^2}{(n-\epsilon_l)^2} \right)^{-1/2} , \qquad (7)$$

for $n = l + 1 + k_{\max}$, $\epsilon_l = l + \frac{1}{2} - \left[(l + \frac{1}{2})^2 - \left(\frac{\alpha}{\hbar c}\right)^2 \right]^{1/2}$. Here $n \in \mathbb{N}$ and $l = 0, 1, \dots, n-1$. (4 Pts)

e) Extract the non-relativistic energy spectrum by expanding (7) in powers of $1/c^2$.

<u>*Hint:*</u> Note that the leading energy contribution is the rest mass of the (spinless) electron, which diverges in the non-relativistic limit $c \to \infty$. (3 Pts)

10.2 Gamma Matrix Identities

The gamma matrices $\gamma^{\mu} = (\gamma^0, \gamma^i)$ are defined as

$$\gamma^{0} = \begin{pmatrix} i \ \mathbb{1}_{2 \times 2} & 0\\ 0 & -i \ \mathbb{1}_{2 \times 2} \end{pmatrix} \quad ; \quad \gamma^{i} = \begin{pmatrix} 0 & i \ \sigma_{i}\\ -i \ \sigma_{i} & 0 \end{pmatrix} , \tag{8}$$

for i = 1, 2, 3.

a) Show that
$$\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$$
. (1 Pt)

b) Show that

$$\frac{1}{4}\left[\left[\gamma^{\rho},\gamma^{\nu}\right],\gamma^{\mu}\right] = \eta^{\mu\nu}\gamma^{\rho} - \eta^{\mu\rho}\gamma^{\nu} .$$
(9)

<u>*Hint:*</u> Use the Clifford algebra of the gamma matrices. (2 Pts)

- c) Prove the gamma matrix identities for $\gamma^5:=i\gamma^0\gamma^1\gamma^2\gamma^3$,
 - (i) $(\gamma^5)^2 = \mathbb{1}_{2 \times 2}$,
 - (ii) $\{\gamma^{\mu}, \gamma^{5}\} = 0$.

(2 Pts)