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—EXERCISES—

10.1 The Hydrogen Atom

Consider a hydrogen atom in which the electron is replaced by a particle of the same mass and
the same charge but with spin 0 obeying the Klein-Gordon equation. The potential energy is
given by

V(T’) ) (1)

(6%
r
ﬁ2

where oo = i E with rp the Bohr radius.

a) Use the Klein-Gordon equation minimally coupled to the four-vector potential A* of the
electromagnetic field, i.e., the four-momentum P* is transformed as
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to derive the eigenvalue equation
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for the wavefunction ¢(r, 0, ). Here A is the Laplacian in 3d and E is the energy eigenvalue
of the electron. (2 Pts)

b) Use the separation of variables on the wavefunction ¢(r, 8, @) of the electron to derive the
differential equation
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in terms of the ansatz R(r) = @ for the radial part R(r) of the wavefunction. (2 Pts)

c) Analyse the asymptotic behaviour of u(r) for r — oo and with the boundary condition
u(0) = 0 for r — 0 to show that

u(r) = 7”6_5’“1)(7“) , (5)

where v = 3 + \/(l + l)2 - (3)2, § = 7+/(mc?)? — E? and v(r) is a polynomial in r of
degree kmax. (4 Pts)



4)

e)

Derive from the differential equation (3) a recursion relation for the coefficients ¢ of the
polynomial
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Argue that in order for v(r) to be a polynomial of degree kp,ax there are discrete energy
levels F,, ; which can be written as
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for n =1+ 1+ kmax, el:H—%—[(l—l—%)Q—(%)ﬂ .HereneNand!=0,1,...n— 1.
(4 Pts)

Extract the non-relativistic energy spectrum by expanding (7) in powers of 1/c?.

Hint: Note that the leading energy contribution is the rest mass of the (spinless) electron,
which diverges in the non-relativistic limit ¢ — oo. (3 Pts)

10.2 Gamma Matrix ldentities

The gamma matrices v# = (7°,~%) are defined as

0 __ iﬂgxg 0 X i 0 iUi

fori=1,2,3.

a)

Show that y#T = 40~#~0, (1 Pt)

b) Show that
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Hint: Use the Clifford algebra of the gamma matrices. (2 Pts)
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c¢) Prove the gamma matrix identities for 4> := iy0y1y243 |

(i) (v°)? =1axe ,
(ii) {+*,7°}=0.

(2 Pts)
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