Advanced Quantum Theory

Dr. Hans Jockers and Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Jan. 8th, 2020

-EXERCISES-

11.1 Properties of two vectors $\widetilde{Y}_{l}^{j, m}$

In the lecture the following ansatz was made for the eigenfunctions $\psi_{j, m, \omega}(r, \theta, \phi)$ of the Dirac Hamiltonian in spherical coordinates,

$$
\psi_{j, m, \omega}=\frac{1}{r}\left(\begin{array}{cc}
F(r) & \widetilde{Y}_{l}^{j, m}(\theta, \phi) \tag{1}\\
i G(r) & {\underset{Y}{l}}_{l^{\prime}}^{j, m}(\theta, \phi)
\end{array}\right) \quad ; \quad l=j+\frac{1}{2} \omega, l=j-\frac{1}{2} \omega
$$

where the two vectors $\widetilde{Y}_{l}^{j, m}(\theta, \phi)$ and $\widetilde{Y}_{l^{\prime}}^{j, m}(\theta, \phi)$ are eigenfunctions of $\hat{\vec{J}}^{2}, \hat{J}_{z}$ and $\hat{\vec{L}}^{2}$ with the respective quantum numbers j, m and l (or l^{\prime}).
a) Compute the commutator $\left[\hat{\vec{J}}, \vec{\sigma} \cdot \frac{\vec{x}}{r}\right]$ and deduce that $\left(\vec{\sigma} \cdot \frac{\vec{x}}{r}\right) \tilde{Y}_{l}^{j, m}$ and $\left(\vec{\sigma} \cdot \frac{\vec{x}}{r}\right) \tilde{Y}_{l}^{j, m}$ are eigenfunctions of $\hat{\vec{J}}^{2}$ and \hat{J}_{z} and determine their eigenvalues.
b) Show that the two vectors $\widetilde{Y}_{l}^{j, m}(\theta, \phi)$ and $\widetilde{Y}_{l^{\prime}}^{j, m}(\theta, \phi)$ can be normalised such that they obey

$$
\begin{equation*}
\left(\vec{\sigma} \cdot \frac{\vec{x}}{r}\right) \tilde{Y}_{l}^{j, m}=-\tilde{Y}_{l^{\prime}}^{j, m}, \quad\left(\vec{\sigma} \cdot \frac{\vec{x}}{r}\right) \tilde{Y}_{l^{\prime}}^{j, m}=-\tilde{Y}_{l}^{j, m} \tag{2}
\end{equation*}
$$

Hint: Compute $\left(\vec{\sigma} \cdot \frac{\vec{x}}{r}\right)^{2}$ and consider the action of the parity operator on $\widetilde{Y}_{l}^{j, m}$ and $\widetilde{Y}_{l^{\prime}}^{j, m}$ as a function of the quantum numbers l and l^{\prime}.

11.2 The Hydrogen Atom II

Consider a hydrogen atom in which the electron is a Dirac particle in the central potential

$$
\begin{equation*}
V(r)=-\frac{\alpha}{r}, \alpha>0 \tag{3}
\end{equation*}
$$

The application of the Dirac equation on the wavefunction (1) yields a system of coupled differential equations for the radial functions $F(r)$ and $G(r)$

$$
\begin{align*}
& {\left[-\frac{d}{d r}+\frac{\omega\left(j+\frac{1}{2}\right)}{r}\right] G(r)=\frac{1}{\hbar c}\left(E-m c^{2}+\frac{\alpha}{r}\right) F(r),} \tag{4}\\
& {\left[\frac{d}{d r}+\frac{\omega\left(j+\frac{1}{2}\right)}{r}\right] F(r)=\frac{1}{\hbar c}\left(E+m c^{2}+\frac{\alpha}{r}\right) G(r)} \tag{5}
\end{align*}
$$

a) Analyse the asymptotic behaviour of $F(r)$ and $G(r)$ for $r \rightarrow \infty$ and with the boundary condition $F(0)=G(0)=0$ for $r \rightarrow 0$ to show that

$$
\begin{equation*}
F(r)=r^{s} e^{-\kappa r} v_{F}(r), \quad G(r)=r^{s} e^{-\kappa r} v_{G}(r), \tag{6}
\end{equation*}
$$

where $\kappa=\frac{1}{\hbar c}\left(\sqrt{\left(m c^{2}\right)^{2}-E^{2}}\right), s=\sqrt{\left(\omega\left(j+\frac{1}{2}\right)\right)^{2}-\left(\frac{\alpha}{\hbar c}\right)^{2}}$ and $v_{F}(r), v_{G}(r)$ are polynomials in r of degree $k_{\text {max }}$ atmost.
(4 Pts)
b) Derive from the ansatz (6) a recursion relation for the coefficients f_{k} and g_{k} of the polynomials

$$
\begin{equation*}
v_{F}(r)=\sum_{k=0}^{k_{\max }} f_{k} r^{k}, \quad v_{G}(r)=\sum_{k=0}^{k_{\max }} g_{k} r^{k}, \tag{7}
\end{equation*}
$$

where $f_{0} \neq 0, g_{0} \neq 0$ and $\binom{f_{k_{\max }}}{g_{k_{\max }}} \neq 0$. Show that there are discrete energy levels $E_{n, j}$ which can be written as

$$
\begin{equation*}
E_{n, j}=m c^{2}\left(1+\frac{(\alpha / \hbar c)^{2}}{\left(n-\epsilon_{j}\right)^{2}}\right)^{-1 / 2} \tag{8}
\end{equation*}
$$

for $n=j+\frac{1}{2}+k_{\max }, \epsilon_{j}=j+\frac{1}{2}-\left[\left(j+\frac{1}{2}\right)^{2}-\left(\frac{\alpha}{\hbar c}\right)^{2}\right]^{1 / 2}$. Here $n \in \mathbb{N}$ and j takes all half integral values in the interval $(0, n)$, i.e., $j=\frac{1}{2}, \frac{3}{2}, \ldots n-\frac{1}{2}$.

11.3 Gamma Matrix Identities II

The gamma matrices $\gamma^{\mu}=\left(\gamma^{0}, \gamma^{i}\right)$ are defined as

$$
\gamma^{0}=\left(\begin{array}{cc}
i \mathbb{1}_{2 \times 2} & 0 \tag{9}\\
0 & -i \mathbb{1}_{2 \times 2}
\end{array}\right) \quad ; \quad \gamma^{i}=\left(\begin{array}{cc}
0 & i \sigma_{i} \\
-i \sigma_{i} & 0
\end{array}\right),
$$

for $i=1,2,3$ and σ_{i} the Pauli matrices.
a) Show first that

$$
\begin{equation*}
(\vec{\sigma} \cdot \hat{\vec{A}})(\vec{\sigma} \cdot \hat{\vec{B}})=(\hat{\vec{A}} \cdot \hat{\vec{B}})+i \vec{\sigma} \cdot(\hat{\vec{A}} \times \hat{\vec{B}}), \tag{10}
\end{equation*}
$$

for operators $\hat{\vec{A}}$ and $\hat{\vec{B}}$.
b) Use the result of a) to show that

$$
\begin{equation*}
\vec{\gamma} \cdot \hat{\vec{P}}=\left(\vec{\gamma} \cdot \frac{\vec{x}}{r}\right)\left(\hat{p}_{r} \cdot \mathbb{1}_{4 \times 4}+\frac{i}{4}\left(\hbar \mathbb{1}_{2 \times 2}+\vec{\sigma} \cdot \vec{L}\right) \otimes \mathbb{1}_{2 \times 2}\right), \tag{11}
\end{equation*}
$$

where $\hat{\vec{P}}=-i \hbar \vec{\nabla}$ is the momentum operator and $\vec{\gamma}=\left(\gamma^{1}, \gamma^{2}, \gamma^{3}\right)$.

