Advanced Quantum Theory

Dr. Hans Jockers and Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Jan. 15th, 2020

-Exercises-

12.1 Dirac Equation in a Constant Magnetic Field

Consider a Dirac particle of charge e in a uniform and constant magnetic field \vec{B} along the z-axis. We want to solve for the energy eigenvalues of this system.
a) Solve for the electromagnetic vector potential A^{μ} that gives rise to the constant magnetic field $\vec{B}=(0,0, B)$ such that only one component of A^{μ} is non-zero. Distinct solutions to A^{μ} that give rise to the same magnetic field are known as gauges.
b) In the following we will work with the gauge where only the x-component of A^{μ} non-zero. Solve the Dirac equation minimally coupled to the electromagnetic field

$$
\begin{equation*}
\left[\frac{i}{\hbar}\left(\hat{P}-\frac{e A}{c}\right)-\frac{m c}{\hbar}\right] \psi(t, \vec{x})=0 \tag{1}
\end{equation*}
$$

with the ansatz for the wavefunction $\psi(t, \vec{x})$ being an eigenfunction of the Hamiltonian, i.e.,

$$
\begin{equation*}
\psi(t, \vec{x})=e^{\frac{-i E t}{\hbar}}\binom{\varphi_{1}(\vec{x})}{\varphi_{2}(\vec{x})}, \tag{2}
\end{equation*}
$$

where φ_{1} and φ_{2} are 2-component spinors.
c) Eliminate φ_{2} from the system of equations resulting from (1) and (3) to obtain a second order differential equation in φ_{1}.
d) Plug in the ansatz

$$
\begin{equation*}
\varphi_{1}(\vec{x})=e^{\frac{i}{\hbar}\left(p_{x} x+p_{z} z\right)}\binom{\chi_{1}(y)}{\chi_{2}(y)}, \tag{3}
\end{equation*}
$$

into the differential equation resulting from c). Here $\vec{p}=\left(p_{x}, p_{y}, p_{z}\right)$ is the three-momentum. Introduce the dimensionless variable

$$
\begin{equation*}
\xi=\sqrt{\frac{|e B|}{\hbar}}\left(y+\frac{p_{x}}{e B}\right), \tag{4}
\end{equation*}
$$

to rewrite the differential equations in χ_{1}, χ_{2} as

$$
\begin{equation*}
\left(\frac{d^{2}}{d \xi^{2}}-\xi^{2}+a_{1 / 2}\right) \chi_{1 / 2}=0, \tag{5}
\end{equation*}
$$

with $a_{1 / 2}$ being a function of energy.
e) Equation (5) is a special form of the Hermite differential equation. To restore the conventional form of this differential equation introduce the variable $\zeta_{i}=\chi_{i} e^{\frac{\xi^{2}}{2}}$. Solve this differential equation and state the constraint on $a_{1 / 2}$ that ensures a polynomial solution.
Remark: Note that the requirement for polynomial solutions $\zeta_{i}(\xi)$ ensures the existence of normalisable solutions upon suitably integrating over the momentum eigenvalues p_{x} and p_{z}.
f) Solve for the quantised energy eigenvalues, known as the relativistic Landau levels, given by

$$
\begin{equation*}
E=\sqrt{m^{2} c^{4}+c^{2} p_{z}^{2}+2 k m c^{2} \hbar \omega_{c}} . \tag{6}
\end{equation*}
$$

Here $k \in \mathbb{N}_{0}$ and $\omega_{c}=\frac{|e B|}{m}$ is the cyclotron frequency.
g) Compare the energy levels of part f) with the non-relativistic Landau levels of the electron given by

$$
\begin{equation*}
E=\hbar \omega_{c}\left(n+\frac{1}{2}\right)+\frac{p_{z}^{2}}{2 m}-\frac{1}{2} \hbar \omega_{c} \sigma_{z} \tag{7}
\end{equation*}
$$

12.2 The Permutation Group

Suppose we have an ordered set of n elements, denoted $\{1,2, \ldots, n\}$, and a permutation σ that acts as

$$
\begin{equation*}
\{1,2, \ldots, n\} \mapsto \sigma\{1,2, \ldots, n\} \equiv\{\sigma(1), \sigma(2), \ldots, \sigma(n)\} \tag{8}
\end{equation*}
$$

a) Show that the permutations of n elements form a group, denoted S_{n}, and compute its dimension.
Remark: A group G is a set with a binary operation $\cdot: G \times G \rightarrow G,(a, b) \mapsto a \cdot b$ such that:

- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for any $a, b, c \in G$ (associativity),
- there exists an element $e \in G$ with $e \cdot a=a \cdot e=a$ for any $a \in G$ (identity),
- and for all $a \in G$ there exists a^{\prime} with $a \cdot a^{\prime}=a^{\prime} \cdot a=e$ (inverse).
b) For $1 \leq k \leq n$, let $a_{1}, a_{2}, \ldots, a_{k} \in\{1,2, \ldots, n\}$ be pairwise different. A cycle $\left(a_{1}, \ldots, a_{k}\right)$ is the cyclic permutation $a_{1} \mapsto a_{2}, a_{2} \mapsto a_{3}, \ldots, a_{k} \mapsto a_{1}$; it acts as the identity on all elements other than the a_{i}. We call k the length of the cycle.
Show that any permutation σ can be written as a product of disjoint cycles (two cycles are disjoint if they contain no common elements).
c) A transposition is a cycle of length 2 . For $n \geq 2$, show that every cycle (and thus every permutation) can be written as a product of transpositions. In particular, show that for $k \geq 2,\left(a_{1}, \ldots, a_{k}\right)=\left(a_{1}, a_{2}\right)\left(a_{2}, a_{3}\right) \cdots\left(a_{k-1}, a_{k}\right)$.

