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12.1 Dirac Equation in a Constant Magnetic Field

Consider a Dirac particle of charge e in a uniform and constant magnetic field ~B along the
z-axis. We want to solve for the energy eigenvalues of this system.

a) Solve for the electromagnetic vector potential Aµ that gives rise to the constant magnetic
field ~B = (0, 0, B) such that only one component of Aµ is non-zero. Distinct solutions to
Aµ that give rise to the same magnetic field are known as gauges. (1 Pt)

b) In the following we will work with the gauge where only the x-component of Aµ non-zero.
Solve the Dirac equation minimally coupled to the electromagnetic field[
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ψ(t, ~x) = 0 , (1)

with the ansatz for the wavefunction ψ(t, ~x) being an eigenfunction of the Hamiltonian,
i.e.,

ψ(t, ~x) = e
−iEt
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)
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where ϕ1 and ϕ2 are 2-component spinors. (2 Pts)

c) Eliminate ϕ2 from the system of equations resulting from (1) and (3) to obtain a second
order differential equation in ϕ1. (1 Pt)

d) Plug in the ansatz

ϕ1(~x) = e
i
~ (pxx+pzz)

(
χ1(y)
χ2(y)

)
, (3)

into the differential equation resulting from c). Here ~p = (px, py, pz) is the three-momentum.
Introduce the dimensionless variable

ξ =

√
|eB|
~
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)
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to rewrite the differential equations in χ1, χ2 as(
d2

dξ2
− ξ2 + a1/2

)
χ1/2 = 0 , (5)

with a1/2 being a function of energy. (2 Pts)
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e) Equation (5) is a special form of the Hermite differential equation. To restore the con-

ventional form of this differential equation introduce the variable ζi = χie
ξ2

2 . Solve this
differential equation and state the constraint on a1/2 that ensures a polynomial solution.

Remark: Note that the requirement for polynomial solutions ζi(ξ) ensures the existence of
normalisable solutions upon suitably integrating over the momentum eigenvalues px and
pz. (3 Pts)

f) Solve for the quantised energy eigenvalues, known as the relativistic Landau levels, given
by

E =
√
m2c4 + c2p2z + 2kmc2~ωc . (6)

Here k ∈ N0 and ωc = |eB|
m is the cyclotron frequency. (2 Pts)

g) Compare the energy levels of part f) with the non-relativistic Landau levels of the electron
given by

E = ~ωc
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2

)
+

p2z
2m
− 1

2
~ωcσz . (7)

(1 Pt)

12.2 The Permutation Group

Suppose we have an ordered set of n elements, denoted {1, 2, . . . , n}, and a permutation σ that
acts as

{1, 2, . . . , n} 7→ σ{1, 2, . . . , n} ≡ {σ(1), σ(2), . . . , σ(n)}. (8)

a) Show that the permutations of n elements form a group, denoted Sn, and compute its
dimension.

Remark : A group G is a set with a binary operation · : G×G→ G, (a, b) 7→ a · b such
that:

• a · (b · c) = (a · b) · c for any a, b, c ∈ G (associativity),

• there exists an element e ∈ G with e · a = a · e = a for any a ∈ G (identity),

• and for all a ∈ G there exists a′ with a · a′ = a′ · a = e (inverse).

(2 Pts)

b) For 1 ≤ k ≤ n, let a1, a2, . . . , ak ∈ {1, 2, . . . , n} be pairwise different. A cycle (a1, . . . , ak)
is the cyclic permutation a1 7→ a2, a2 7→ a3, . . . , ak 7→ a1; it acts as the identity on all
elements other than the ai. We call k the length of the cycle.
Show that any permutation σ can be written as a product of disjoint cycles (two cycles
are disjoint if they contain no common elements). (3 Pts)

c) A transposition is a cycle of length 2. For n ≥ 2, show that every cycle (and thus every
permutation) can be written as a product of transpositions. In particular, show that for
k ≥ 2, (a1, . . . , ak) = (a1, a2)(a2, a3) · · · (ak−1, ak). (3 Pts)
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