Advanced Quantum Theory
Dr. Hans Jockers und Urmi Ninad
http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Nov. 6th, 2019
-Exercises-

4.1 Optical Theorem for Central Potentials

For spherical symmetric potentials $V(r)$ (which vanish sufficiently fast for $r \rightarrow+\infty$) we derived in the lecture the scattering amplitude

$$
\begin{equation*}
f_{k}(\theta)=\frac{1}{2 i k} \sum_{\ell=0}^{+\infty}(2 \ell+1)\left(e^{2 i \delta_{\ell}(k)}-1\right) P_{\ell}(\cos \theta), \tag{1}
\end{equation*}
$$

in terms of the polar angle θ, the (real) phase shifts $\delta_{\ell}(k)$, the wave number k, and the Legendre polynomials P_{ℓ}.
a) Determine the total cross section $\sigma_{\text {tot }}(k)$ in terms of the phase shifts $\delta_{\ell}(k)$.
b) Verify for the scattering amplitudes $f_{k}(\theta)$ the optical theorem.
c) Show that - in the absence of non-generic selection rules - the total cross section $\sigma_{\text {tot }}(k)$ becomes in the low energy limit $k \rightarrow 0$

$$
\begin{equation*}
\lim _{k \rightarrow 0} \sigma_{\mathrm{tot}}(k)=4 \pi a_{s}^{2} \tag{2}
\end{equation*}
$$

in terms of the scattering length $-\frac{1}{a_{s}}=\lim _{k \rightarrow 0} k \cot \delta_{0}(k)$.

4.2 s-Wave Phase Shift

Derive a formula for $\tan \delta_{0}(k)$ of the s-wave phase shift $\delta_{0}(k)$ for the central potential

$$
V(r)= \begin{cases}-V_{0} & \text { for } r<R, \tag{3}\\ 0 & \text { for } r \geq R,\end{cases}
$$

for all energies $E>0$ and in all orders in $V_{0}>0$.

4.3 Scattering Length for a Finite Range Central Potential

We want to study in the low energy limit the s-wave ($\ell=0$ mode) scattering of a particle with mass m at a spherical symmetric potential with a finite range $R>0$, i.e., $V(r)=0$ for $r>R$ and $\lim _{r \rightarrow 0} r^{2} V(r)=$ const.
a) Use the first order Born approximation to compute a formula for the scattering length a_{s} in the low energy limit $k R \ll 1$ as a function of $\kappa(V):=\int_{0}^{R} d r r^{2} V(r)$.
b) Apply the result of a) together with the optical theorem to calculate the imaginary part of the forward scattering amplitude to second order in $\kappa(V)$.
(2 Pts)

